
Information Security Bulletin July 2000, Page 13

WINDOWS 2000 SECURITY

Windows 2000 Security -
An Overview and Analysis

Part 1
Dr. Jesper M. Johansson

Introduction and History
On February 17, 2000 Microsoft released the
newest version of its “industrial strength” oper-
ating system, Windows NT. This version, origi-
nally named Windows NT 5.0, was renamed
Windows 2000 about half-way through the beta
cycle. Although the name change appears to
have been largely a marketing move, it has
caused no small amount of confusion for users.
Many still believe that Windows 2000 is essen-
tially a “better Windows 98.” Nothing could be
further from the truth. Contrary to Windows 95
and 98, both of which have virtually no mean-
ingful security mechanisms, Windows 2000 is an
upgrade to Windows NT 4.0. Windows NT 4.0
was designed with a security model in mind;
Windows 2000 modifies and extends this model.
Hence, a discussion of the security features of
Windows 2000 is highly meaningful and rele-
vant. In this first part of a paper on this subject I
present the security model of Windows 2000 as it
relates to three basic components of security:
user identification, user accountability, and ob-
ject security.

Windows 2000 is quite possibly the most com-
plex operating system ever built. It follows that
the security related features are exceedingly
complex as well. In this paper I will not try to
cover all security related features of Windows
2000. To do so would require a few books. Nor
am I trying to expose all security related vulnera-
bilities in Windows 2000. No one could do that
at this early stage. I am simply setting out to
evaluate how the most fundamental tenets of
InfoSec, user identification, accountability, and
object security, are designed and implemented
in Windows 2000. Each section covers a specific
topic. Section 2 contains a review of the Win-
dows 2000 security model, and Section 3 dis-
cusses how user identification information is
managed in Windows 2000. The next and final
paper in the series looks at how it is possible to
restrict and audit access once users are identi-
fied. The second paper also presents some obser-
vations and conclusions.

The Security Model in Windows 2000
Windows 2000 is based on the same security
model as its predecessor, Windows NT 4.0. That
model, originating with the first release of Win-
dows NT, is designed from the ground up to
match the security requirements of the United

States Department of Defense’s Trusted Com-
puter Systems Evaluation Criteria (TCSEC) C2
classification [1]. These requirements dictate that
the trusted computing base must provide three
security measures:

- User identification

- User accountability

- Object security

These same features are part of the new Com-
mon Criteria that is replacing the TCSEC as the
preferred security evaluation criteria. Windows
2000 has elements of at least the following secu-
rity functional requirements [2]:

FAU_GEN Security audit data generation

FAU_SAR Security audit review

FDP_ACC Access control policy

FDP_ACF Access control functions

FDP_RIP Residual information protection

FIA_AFL Authentication failures

FIA_ATD User attribute definition

FIA_UAU User authentication

FIA_UID User identification

FIA_USB User-subject binding

Note that no formal evaluation of Windows 2000
with respect to any formal security criteria has been
performed. By listing formal requirements I thus
do not mean to imply that Windows 2000 is en-
tirely compliant with them. However, Windows
2000 does at least meet elements of these func-
tional requirements. Whereas in Windows NT 4.0
both accountability and object security are op-
tional during setup, user identification in addi-
tion to these two requirements is optional in
Windows 2000. A given system does not have to
enforce any of them, although for the remainder
of this paper we will assume that a system is
configured to do so.

Security Requirements and Windows 2000
The most basic requirement for any secure sys-
tem is user identification. In Windows 2000, user
identification is optional. During setup, the per-
son installing the system is asked whether the
system should automatically log on a user at

13



July 2000, Page 14 Information Security Bulletin

Copyright ©2000 by CHI Publishing Ltd - All Rights Reserved - Do Not Copy Without Written Permission

WINDOWS 2000 SECURITY

startup. This could also be done in Windows NT
4.0, but is not configured during setup. If auto-
matic logon is selected, all user identification is
effectively disabled and further security mea-
sures based on user identification, such as object
security and user accountability, are meaning-
less. However, if the system is configured to re-
quire a logon, it can track user accounts. These
accounts can be managed either locally on the
workstation, or by a network server known as a
domain controller (DC). Local accounts are usable
only to connect to the workstation or server
where they are defined. They are stored in a
portion of the Registry database on the local sys-
tem. This portion of the Registry is readable only
by registered operating system components, and
contains all information about each user’s ac-
count, including the password representations. If
network accounts are used, the computer must
be a member of a domain. A domain is a group-
ing of systems that share a common user ac-
count database. Accounts are managed by the
Security Accounts Manager (SAM), which manages
the SAM Database. Under Windows NT 4.0, the
domain accounts database was stored in the
Registry of the DCs, just like a local database.
However, in Windows 2000 it is stored in the Ac-
tive Directory, which is described below.

Windows 2000 File Systems
Windows 2000 supports three disk file systems:
16-bit File Allocation Table (FAT16), 32-bit File Allo-
cation Table (FAT32), and the New Technology File
System (NTFS) version 5.0. The first two file sys-
tems hail from the days of MS-DOS. FAT16 is the
file system supported under MS-DOS, and
DOS-based operating systems, such as Windows
95. However, FAT16 limits partition sizes to 2
gigabytes (4 on Windows NT) and therefore a
32-bit version of FAT was developed for a service
release of Windows 95. FAT32 supports volumes
as large as 2 terabytes, although the maximum
size volume that can be formatted under Win-
dows 2000 is 32 GB. This is not a technical limita-
tion, but rather a limitation related to the Win-
dows 2000 format command. Windows 2000 can
access larger FAT32 volumes created under Win-
dow 98. NTFS should, however, be used on all
volumes in Windows 2000. Windows 2000 main-
tains Discretionary Access Control Lists (DACL) and
System Access Control Lists (SACL) on files and di-
rectories within all NTFS volumes. Without NTFS,
object security and user accountability are not
possible. Windows 2000 also maintains DACLs
and SACLs on other system objects, including
memory constructs, the Active Directory, and the
Registry. Section 4 in the next paper in the series
will discuss ACLs in Windows 2000.

User Identification -
The Active Directory
Perhaps the most important difference between
Windows 2000 and Windows NT 4.0 is the move
to a new method of tracking user and computer

accounts; these are now tracked in the Active Di-
rectory (AD). The term Active Directory is really a
marketing term denoting the database that orga-
nizes and stores user account information for a
Windows 2000 domain. It consists of two parts;
the storage mechanism itself, and a location
mechanism used to locate entries in the data-
base. The database, stored in a file called ntds.dit,
is managed by the Extensible Storage Engine
(ESE), which is also used in Microsoft Exchange.
That engine, in turn, is based on the Microsoft Jet
Engine. Access to the data store is accomplished
almost exclusively through the Directory System
Agent (ntdsa.dll). The only exception is that
Messaging API (MAPI) clients may access the da-
tabase layer directly. The main interfaces to the
directory are either the Lightweight Directory Ac-
cess Protocol (LDAP) [3] or Active Directory Services
Interface (ADSI). ADSI is an API that provides an
interface to LDAP from a wide range of lan-
guages, such as C++, Visual Basic, Visual Basic
Script, JavaScript, and others.

The Active Directory is created when the first
server is promoted to become a DC. At that time,
the SAM database is replaced by a “stub SAM;”
the Registry-based SAM database on a DC holds
only a few security accounts. All the operational
accounts are now stored in AD. The few ac-
counts left in the SAM are used when the DC is
started in Directory Services Restore mode. The
disposition of the accounts in the SAM when a
server is promoted depends on whether a new
domain was created, or whether the server was
added to an existing domain. If the server is pro-
moted to manage a new domain, the accounts in
the SAM become accounts in the new AD do-
main. If the server is added to an existing do-
main, the local accounts are removed.

Objects in Active Directory are uniquely identi-
fied by a Globally Unique Identifier (GUID). In pre-
vious versions of Windows NT objects were
identified by a Security Identifier (SID). However,
the Active Directory stores entries from several
domains, and it is possible that SIDs are identical
across domains. Each object still has a SID, but
the SIDs are no longer static. A SID for a particu-
lar object may change, and the Active Directory
maintains the binding between the GUID and
the SID if necessary.

One of the main shortcomings of Windows NT 4.0
was its limitation of being capable of holding only
40,000 objects in the SAM database. Active Direc-
tory removes that limitation. The Windows 2000
implementation of the ESE can support databases
up to 16 terabytes in size. Microsoft has tested the
Active Directory with 40 million objects.

Active Directory Data Model
The Active Directory data model is based on the
X.500 [4] model. However, AD is not an X.500
compliant directory, nor does it support X.500
protocols. It is simply related in that the data
models are similar. Items are identified using the



Information Security Bulletin July 2000, Page 16

Copyright ©2000 by CHI Publishing Ltd - All Rights Reserved - Do Not Copy Without Written Permission

WINDOWS 2000 SECURITY

X.500/LDAP distinguished name convention [5].
AD is based on an object-oriented model of classes
of objects containing attributes. Each class, in turn,
is an instance of the classSchema class, while each
attribute is an instance of the attributeSchema
class. Thus, the entire schema definition of AD is
stored in AD itself. The schema definition is stored
in the Schema Container of the Directory Information
Tree (DIT). The default DIT that ships with Win-
dows 2000, called the “base-DIT,” contains 142
classes. However, not all of these are used to de-
fine user and computer objects. For example, the
above mentioned classSchema and
attributeSchema classes are part of that number.
Many of the classes have hundreds of attributes.
For example, the user class has 212 attributes if all
the attributes of its superclasses are included. To
show a drawing of all the classes and attributes is
obviously impossible. A subset of the classes and
associated attributes that are relevant to user and
entity identification is shown instead in Figure 1 -
please refer to the legend for an explanation of the
semantics used.

The data model in Figure 1 is only a subset of
the classes available in Active Directory. It is a
subset that relates to user identification, and
hence contains the entire inheritance hierarchy
(see below) for users, as well as relevant contain-
ers that can hold user accounts, such as domains
and organizational units. In addition, a few of
the attributes for each class are shown, where
they are relevant to security. Attributes shown in
bold face are required; all others are optional.

The Active Directory inheritance model is analo-
gous to that of Java, and is based on the 1993 X.500
specification. It contains three kinds of classes:

- Structural (type 1)

- Abstract (type 2)

- Auxiliary (type 3)

Only structural classes can be instantiated, in
other words, all objects in the Active Directory
belong to a structural class. Structural classes are
shown in white in Figure 1. A structural class
can be derived from an abstract class. Abstract
classes are classes that define a template for new
classes only. These classes are shown in
gray-green in Figure 1. Auxiliary classes are
classes that contain only attributes and that can-
not be instantiated. They are essentially con-
ceived of as a container for attributes common to
other classes, which can derive from an auxiliary
class. The model is strictly single-inheritance
based. A class can have only one parent, but can
implement the attributes of several auxiliary
classes. The auxiliary classes are shown in light
green in Figure 1. Abstract and auxiliary classes
can be sub-classes of other abstract or auxiliary
classes, but may not be subclasses of a structural
class, since any subclass of a structural class is
also an instantiable structural class.

As can be seen in Figure 1, all classes in Active
Directory derive from the root class top. Top de-
fines a number of attributes, such as the Ob-
ject-GUID (Globally Unique Identifier), which is
used to uniquely identify all objects in the Active
Directory. The top class also has a required
nTSecurityDescriptor, which contains the security
information about an object. It contains the ID of
the object’s owner, as well as the optional DACL
and SACL. Users are not directly derived from
top. Rather, a person is the class derived from
top. A person is simply a class to hold all in-
stances of people objects. It contains little of in-
terest, except that there is an attribute called
userPassword in the person class. That string
holds a plain-text password used by LDAP cli-
ents. It does not appear to be related to the
user’s NT password at all. A person also has a cn
(LDAP common name). From a person, an
organizationalPerson is derived. An organizatio-
nalPerson has many attributes related to em-
ployees, such as Employee IDs, and even photos.
However, no security related information is de-
fined in organizationalPerson. Since Active Di-
rectory is deeply tied into the object model for
Microsoft Exchange, contacts are derived from
organizationalPerson. Contacts implement the
interface in the auxiliary class mailRecipient.
Finally, user is derived from contact. This means
that all users by definition are contacts, and
hence e-mail users. The user class contains the
user’s name (userPrincipalName), any X.509 cer-
tificates held by the user, in addition to those
held by the mailRecipient, that is, that user, and
various security-related information.

Among the more interesting attributes are the
two passwords - unicodePwd, and dBCSPwd -
with their associated password histories. The
unicodePwd is the descendant of the NT hash
from NT 4.0. It contains a hashed representation
of the user’s Unicode password. The hash is fur-
ther encrypted using the syskey technology. The
dBCSPwd is the LanMan hash that was also cre-
ated in Windows NT 4.0. In other words, even
Windows 2000 is backward compatible with
LanMan clients, at the expense of the security
implications of storing the LanMan hash. The
user class also stores information regarding the
last logon time of the user, the last logon com-
puter, etc.

Most of the security related information for users
is actually not contained in the user class itself,
but rather in the securityPrincipal auxiliary class.
The latter class contains the Security Identifier
for each object, as well as the relative identifier
of the Active Directory domain in which the ob-
ject is defined. The security principal also has an
nTSecurityDescriptor. This raises an obvious
question in how conflicts between the nTSecu-
rityDescriptor in the top class and that in the
securityPrincipal class are handled. Each object
oriented language has to define how such con-
flicts are handled. Normally, the attribute de-
fined in the sub-class will override the attribute



July 2000, Page 17 Information Security Bulletin

Copyright ©2000 by CHI Publishing Ltd - All Rights Reserved - Do Not Copy Without Written Permission

contact

cn

user

userCertificate
userPrincipalName

unicodePwd
ntPwdHistory

dBCSPwd
lmPwdHistory

lastLogon

badPasswordTime

I

computer

cn

dNSHostName

r DSetReferences
operatingSystem

netbootGUID

domain

dc

group

groupType

member
nTGroupMembers

nonSecurityMember

mailRecipient

cn

userCertificate

securityPrincipal

objectSid

sAMAccountName
sAMAccountType

nTSecurityDescriptor

rid
securityIdentifier

SA -Domain-BaseM

nTSecurityDescriptor

objectSid

nextRid
maxPwdAge

pwdProperties

SAMDomain

auditingPolicy

domainPolicyObject

lockoutThreshold
maxPwdAge

minPwdAge

nETBIOSName

nTMixedDomain

treeName

organizationalUnit

ou

userPassword
managedBy

top

nTSecurityDescriptor

cn

objectGUID

person

cn

userPassword

organizationalPerson

employeeID

ed partment

co

thumbnailPhoto
ou

o

domainDNS

Legend:
Category - The class connected to the bottom of one of these is a
category of the class at the top of one of these. The top is
typically an auxiliary class

Relationship - essentially a many-to-one relationship. The class pointed
to has an attribute that can hold one or more of the related class.

Inheritance - all classes, except the root class top, are derived from
another class. The class pointed to in one of these relationships is the
parent class.

Structural class

Auxiliary class

Abstract class

Figure 1 - The Active Directory Data Model Subset

WINDOWS 2000 SECURITY



Information Security Bulletin July 2000, Page 18

Copyright ©2000 by CHI Publishing Ltd - All Rights Reserved - Do Not Copy Without Written Permission

WINDOWS 2000 SECURITY

defined in the super-class; it would thus be rea-
sonable to assume that this would happen in the
AD as well. However, no documentation on that
process is currently available. The attribute
classes of the two nTSecurityDescriptors are
identical, so there appears to be no additional
functionality added by having another nTSecuri-
tyDescriptor in the securityPrincipal class. The
same issue arises with the sAMDomainBase
class.

Users can be grouped into organizational units
(ous). An ou is a construct that represents a
group of users who have similar security re-
quirements. An ou can contain separate group
policies, but other than that can be conceived of
simply as a container. It is essentially used to
group those users together that have particular
characteristics, such as needing access to a cer-
tain printer, or having certain password require-
ments. These things can be implemented using a
group policy that applies only to the ou. The ou
has a managedBy attribute, which is the GUID
of the user that is charged with managing the
ou.

Users are obviously members of groups. How-
ever, the implementation of that in Active Direc-
tory is rather counterintuitive for those who are
not used to object oriented systems. In a stan-
dard relational database, this would be a
many-to-many relationship, and hence would
need an intersection entity to handle the in-
stances. In AD, the group class contains a
multi-valued attribute called nTGroupMembers,
which contains zero or more GUIDs who are
members of the group. Groups also contain
other member attributes, such as member and
nonSecurityMember. Non-security members are
used for distribution groups. Windows 2000 de-
fines two types of groups: security groups and dis-
tribution groups. Distribution groups are used by
Microsoft Exchange (and possible other
messaging servers in time) to define mailing lists.
Security groups are the kinds of groups we had
in Windows NT 4.0; they hold users and could
be assigned permissions. The group type attrib-
ute is used to define the scope of the group. A
universal group is replicated to the Global Catalog
server, whereas a limited group is used only
within the domain. The limited groups are do-
main local groups, which are used to grant access
to resources within a domain, and global groups.
Global groups are available in trusting domains
and can be used to assign user permissions in
that case.

Users and groups are members of a domainDNS,
which is the Windows 2000 AD domain. It is de-
rived from a domain class, and implements the
sam domain interfaces, samDomain and samDo-
mainBase. The sam domain interfaces are where
all the security information for a domain is de-
fined. They contain the relative identifiers, the
password policies, auditing policies, and so
forth. It seems a little strange to define a samDo-

mainBase auxiliary class, then to derive the
samDomain class from it. It is unclear why
Microsoft has done this.

It is very interesting to note that computers are
derived from users. That means that computers
are users, and contacts, and organizational-
Persons, and even persons! Apart from the
anthropomorphizing of computers, there is little
information that is directly related to security in
the computer class. Most of that information is
contained in the user parent class and the
securityPrincipal class. The computer class is
mostly used to set the host name, the operating
system information, and a GUID for use when
the computer is booted from the network. The
GUID is stored on the PXE-compliant network
interface card for the computer.

Conclusion
So what will Windows 2000 provide organiza-
tions interested in high levels of information se-
curity? The answer is “much.” Consider the se-
curity model discussed earlier, a well-reasoned
model that incorporates strong authentication,
auditing, access control, and so forth. Windows
2000 appears to be the first Microsoft operating
system that is potentially well-suited for high
risk operational environments. At the same
time, however, the security and data models for
Active Directory are extremely complex, per-
haps overly so. The documentation available, al-
though copious in volume, is also strangely
void on such fundamental issues as how inheri-
tance conflicts are managed. Users are tightly
integrated with the Microsoft Exchange
messaging system, in preparation for Exchange
Server 2000. The complexity of Windows 2000 is
likely to be the greatest obstacle in successfully
designing and implementing security for this
new operating system.

Perhaps the largest surprise in Windows 2000,
however, is the amount of backwards compati-
bility that is present. An example is that the
LanMan hash is still created and stored, just as
in Windows NT 4.0 and earlier versions. Back-
wards compatibility has historically been one of
the most significant security problems in Win-
dows NT as well as other operating systems. It
appears that Windows 2000 is going to be no
different, unfortunately. The main implication
is that backwards compatibility allows attackers
to find and exploit “weak links” such as vulner-
abilities in legacy mechanisms used for
interoperability (e.g., between Windows NT
and Windows 2000 or between Windows 98
and Windows 2000). It seems as if “old ghosts
never go away.”

As we shall see in next part of this paper, how-
ever, complexity and backwards compatibility
(and possibly also the lack of complete docu-
mentation) are not the only serious security-re-
lated concerns in Windows 2000. The default
Discretionary Access ControlList (DACL) on the



July 2000, Page 20 Information Security Bulletin

Copyright ©2000 by CHI Publishing Ltd - All Rights Reserved - Do Not Copy Without Written Permission

WINDOWS 2000 SECURITY

Active Directory can cause a significant amount
of confidential organizational information to be
available to outsiders. The next part of the paper
explores this and other Windows 2000 security
issues.

References
1. Department of Defense, Department of Defense
Trusted Computer System Evaluation Criteria. 1985:
Washington, D.C. p. 121.

2. Common Criteria Project Sponsoring Organi-
zations, Common Criteria for Information Technol-
ogy Security Evaluation. 1999, National Security
Agency.

3. Wahl, M., T. Howes, and S. Kille, RFC 2251,
Lightweight Directory Access Protocol (v3). 1997,
Network Working Group.

4. CCITT, X.500, The Directory - Overview of Con-
cepts, Models, and Services. 1992, CCITT: Mel-
bourne.

5. Wahl, M., S. Kille, and T. Howes, RFC 2253,
Lightweight Directory Access Protocol (v3): UTF-8
String Representation of Distinguished Names. 1997,
Network Working Group.

Jesper M. Johansson is an
Assistant Professor in the
MIS department at Boston
University. He holds a
Ph.D. from the University
of Minnesota, a Masters of
Science in Information Sys-
tems and a Masters of Busi-
ness Administration, from
the University of Maryland.

His primary research inter-
ests are in the areas of information systems security
and administration; and IT infrastructure design, es-
pecially the underlying networking and database de-
signs. He teaches networking and telecommunications
at Boston University. He also teaches System Adminis-
tration on the Windows NT Platform for the Systems
Administration, Networking and Security (SANS) In-
stitute, for which he also edits the SANS Windows Se-
curity Digest. He has 11 years of experience in system
administration and holds several professional certifica-
tions on Microsoft products, including the Microsoft
Certified Systems Engineer and Microsoft Certified
Professional + Internet certifications.


