
CHAPTER SIXTEEN

PHYSICAL LAY OUT OF
THE KERNEL SOURCE

So far, we’ve talked about the Linux kernel from the perspective of writing device
drivers. Once you begin playing with the kernel, however, you may find that you
want to “understand it all.” In fact, you may find yourself passing whole days navi-
gating through the source code and grepping your way through the source tree to
uncover the relationships among the differ ent parts of the kernel.

This kind of “heavy grepping” is one of the tasks your authors perfor m quite
often, and it is an efficient way to retrieve information from the source code.
Nowadays you can even exploit Internet resources to understand the kernel
source tree; some of them are listed in the Preface. But despite Internet resources,
wise use of gr ep,* less, and possibly ctags or etags can still be the best way to
extract information from the kernel sources.

In our opinion, acquiring a bit of a knowledge base before sitting down in front of
your preferr ed shell prompt can be helpful. Therefor e, this chapter presents a
quick overview of the Linux kernel source files based on version 2.4.2. If you’re
inter ested in other versions, some of the descriptions may not apply literally.
Whole sections may be missing (like the drivers/media dir ectory that was intro-
duced in 2.4.0-test6 by moving various preexisting drivers to this new directory).
We hope the following information is useful, even if not authoritative, for brows-
ing other versions of the kernel.

Every pathname is given relative to the source root (usually /usr/sr c/linux), while
filenames with no directory component are assumed to reside in the “current”
dir ectory—the one being discussed. Header files (when named with < and >
angle brackets) are given relative to the include dir ectory of the source tree. We
won’t dissect the Documentation dir ectory, as its role is self-explanatory.

* Usually, find and xar gs ar e needed to build a command line for gr ep. Although not triv-
ial, proficient use of Unix tools is outside of the scope of this book.

506

22 June 2001 16:44



Booting the Ker nel
The usual way to look at a program is to start where execution begins. As far as
Linux is concerned, it’s hard to tell wher e execution begins—it depends on how
you define “begins.”

The architectur e-independent starting point is start_ker nel in init/main.c. This
function is invoked from architectur e-specific code, to which it never retur ns. It is
in charge of spinning the wheel and can thus be considered the “mother of all
functions,” the first breath in the computer’s life. Before start_ker nel, ther e was
chaos.

By the time start_ker nel is invoked, the processor has been initialized, protected
mode* has been entered, the processor is executing at the highest privilege level
(sometimes called supervisor mode), and interrupts are disabled. The start_ker nel
function is in charge of initializing all the kernel data structures. It does this by
calling external functions to perfor m subtasks, since each setup function is defined
in the appropriate kernel subsystem.

The first function called by start_ker nel, after acquiring the kernel lock and print-
ing the Linux banner string, is setup_ar ch. This allows platform-specific C-lan-
guage code to run; setup_ar ch receives a pointer to the local command_line
pointer in start_ker nel, so it can make it point to the real (platform-dependent)
location where the command line is stored. As the next step, start_ker nel passes
the command line to parse_options (defined in the same init/main.c file) so that
the boot options can be honored.

Command-line parsing is perfor med by calling handler functions associated with
each kernel argument (for example, video= is associated with video_setup). Each
function usually ends up setting variables that are used later, when the associated
facility is initialized. The internal organization of command-line parsing is similar
to the init calls mechanism, described later.

After parsing, start_ker nel activates the various basic functionalities of the system.
This includes setting up interrupt tables, activating the timer interrupt, and initializ-
ing the console and memory management. All of this is perfor med by functions
declar ed elsewher e in platform-specific code. The function continues by initializ-
ing less basic kernel subsystems, including buffer management, signal handling,
and file and inode management.

Finally, start_ker nel forks the init ker nel thr ead (which gets 1 as a process ID) and
executes the idle function (again, defined in architectur e-specific code).

The initial boot sequence can thus be summarized as follows:

* This concept only makes sense on the x86 architectur e. Mor e matur e architectur es don’t
find themselves in a limited backward-compatible mode when they power up.

Booting the Ker nel

507

22 June 2001 16:44



Chapter 16: Physical Layout of the Ker nel Sour ce

1. System fir mware or a boot loader arranges for the kernel to be placed at the
pr oper addr ess in memory. This code is usually external to Linux source code.

2. Architectur e-specific assembly code perfor ms very low-level tasks, like initial-
izing memory and setting up CPU registers so that C code can run flawlessly.
This includes selecting a stack area and setting the stack pointer accordingly.
The amount of such code varies from platform to platfor m; it can range from a
few dozen lines up to a few thousand lines.

3. start_ker nel is called. It acquires the kernel lock, prints the banner, and calls
setup_ar ch.

4. Architectur e-specific C-language code completes low-level initialization and
retrieves a command line for start_ker nel to use.

5. start_ker nel parses the command line and calls the handlers associated with
the keyword it identifies.

6. start_ker nel initializes basic facilities and forks the init thr ead.

It is the task of the init thr ead to perfor m all other initialization. The thread is part
of the same init/main.c file, and the bulk of the initialization (init) calls are per-
for med by do_basic_setup. The function initializes all bus subsystems that it finds
(PCI, SBus, and so on). It then invokes do_initcalls; device driver initialization is
per formed as part of the initcall pr ocessing.

The idea of init calls was added in version 2.3.13 and is not available in older ker-
nels; it is designed to avoid hairy #ifdef conditionals all over the initialization
code. Every optional kernel feature (device driver or whatever) must be initialized
only if configured in the system, so the call to initialization functions used to be
surr ounded by #ifdef CONFIG_FEATURE and #endif. With init calls, each
optional feature declar es its own initialization function; the compilation process
then places a refer ence to the function in a special ELF section. At boot time,
do_initcalls scans the ELF section to invoke all the relevant initialization functions.

The same idea is applied to command-line arguments. Each driver that can receive
a command-line argument at boot time defines a data structure that associates the
argument with a function. A pointer to the data structure is placed into a separate
ELF section, so parse_option can scan this section for each command-line option
and invoke the associated driver function, if a match is found. The remaining argu-
ments end up in either the environment or the command line of the init pr ocess.
All the magic for init calls and ELF sections is part of <linux/init.h>.

Unfortunately, this init call idea works only when no ordering is requir ed acr oss
the various initialization functions, so a few #ifdefs are still present in
init/main.c.

508

22 June 2001 16:44



It’s interesting to see how the idea of init calls and its application to the list of
command-line arguments helped reduce the amount of conditional compilation in
the code:

morgana% grep -c ifdef linux-2.[024]/init/main.c
linux-2.0/init/main.c:120
linux-2.2/init/main.c:246
linux-2.4/init/main.c:35

Despite the huge addition of new features over time, the amount of conditional
compilation dropped significantly in 2.4 with the adoption of init calls. Another
advantage of this technique is that device driver maintainers don’t need to patch
main.c every time they add support for a new command-line argument. The addi-
tion of new features to the kernel has been greatly facilitated by this technique
and there are no mor e hairy cross refer ences all over the boot code. But as a side
ef fect, 2.4 can’t be compiled into older file formats that are less flexible than ELF.
For this reason, uClinux* developers switched from COFF to ELF while porting
their system from 2.0 to 2.4.

Another side effect of extensive use of ELF sections is that the final pass in compil-
ing the kernel is not a conventional link pass as it used to be. Every platform now
defines exactly how to link the kernel image (the vmlinux file) by means of an
ldscript file; the file is called vmlinux.lds in the source tree of each platform. Use
of ld scripts is described in the standard documentation for the binutils package.

Ther e is yet another advantage to putting the initialization code into a special sec-
tion. Once initialization is complete, that code is no longer needed. Since this code
has been isolated, the kernel is able to dump it and reclaim the memory it occu-
pies.

Before Booting
In the previous section, we treated start_ker nel as the first kernel function. How-
ever, you might be interested in what happens befor e that point, so we’ll step back
to take a quick look at that topic. The uninterested reader can jump directly to the
next section.

As suggested, the code that runs before start_ker nel is, for the most part, assembly
code, but several platforms call library C functions from there (most commonly,
inflate, the core of gunzip).

On most common platforms, the code that runs before start_ker nel is mainly
devoted to moving the kernel around after the computer’s firmwar e (possibly with

* uClinux is a version of the Linux kernel that can run on processors without an MMU.
This is typical in the embedded world, and several M68k and ARM processors have no
hardwar e memory management. uClinux stands for microcontr oller Linux, since it’s
meant to run on microcontr ollers rather than full-fledged computers.

Before Booting

509

22 June 2001 16:44



Chapter 16: Physical Layout of the Ker nel Sour ce

the help of a boot loader) has loaded it into RAM from some other storage, such
as a local disk or a remote workstation over the network.

It’s not uncommon, though, to find some rudimentary boot loader code inside the
boot dir ectory of an architectur e-specific tr ee. For example, ar ch/i386/boot
includes code that can load the rest of the kernel off a floppy disk and activate it.
The file bootsect.S that you will find there, however, can run only off a floppy disk
and is by no means a complete boot loader (for example, it is unable to pass a
command line to the kernel it loads). Nonetheless, copying a new kernel to a
floppy is still a handy way to quickly boot it on the PC.

A known limitation of the x86 platform is that the CPU can see only 640 KB of sys-
tem memory when it is powered on, no matter how large your installed memory
is. Dealing with the limitation requir es the kernel to be compressed, and support
for decompression is available in ar ch/i386/boot together with other code such as
VGA mode setting. On the PC, because of this limit, you can’t do anything with a
vmlinux ker nel image, and the file you actually boot is called zImage or bzImage;
the boot sector described earlier is actually prepended to this file rather than to
vmlinux. We won’t spend more time on the booting process on the x86 platform,
since you can choose from several boot loaders, and the topic is generally well
discussed elsewhere.

Some platforms differ greatly in the layout of their boot code from the PC. Some-
times the code must deal with several variations of the same architectur e. This is
the case, for example, with ARM, MIPS, and M68k. These platforms cover a wide
variety of CPU and system types, ranging from powerful servers and workstations
down to PDAs or embedded appliances. Differ ent envir onments requir e dif ferent
boot code and sometimes even differ ent ld scripts to compile the kernel image.
Some of this support is not included in the official kernel tree published by Linus
and is available only from third-party Concurrent Versions System (CVS) trees that
closely track the official tree but have not yet been merged. Current examples
include the SGI CVS tree for MIPS workstations and the LinuxCE CVS tree for
MIPS-based palm computers. Nonetheless, we’d like to spend a few words on this
topic because we feel it’s an interesting one. Everything from start_ker nel onward
is based on this extra complexity but doesn’t notice it.

Specific ld scripts and makefile rules are needed especially for embedded systems,
and particularly for variants without a memory management unit, which are sup-
ported by uClinux. When you have no hardware MMU that maps virtual addresses
to physical ones, you must link the kernel to be executed from the physical
addr ess wher e it will be loaded in the target platform. It’s not uncommon in small
systems to link the kernel so that it is loaded into read-only memory (usually flash
memory), where it is dir ectly activated at power-on time without the help of any
boot loader.

510

22 June 2001 16:44



When the kernel is executed directly from flash memory, the makefiles, ld scripts,
and boot code work in tight cooperation. The ld rules place the code and read-
only segments (such as the init calls information) into flash memory, while placing
the data segments (data and block started by symbol (BSS)) in system RAM. The
result is that the two sets are not consecutive. The makefile, then, offers special
rules to coalesce all these sections into consecutive addresses and convert them to
a for mat suitable for upload to the target system. Coalescing is mandatory because
the data segment contains initialized data structures that must get written to read-
only memory or otherwise be lost. Finally, assembly code that runs before
start_ker nel must copy over the data segment from flash memory to RAM (to the
addr ess wher e the linker placed it) and zero out the address range associated with
the BSS segment. Only after this remapping has taken place can C-language code
run.

When you upload a new kernel to the target system, the firmwar e ther e retrieves
the data file from the network or from a serial channel and writes it to flash mem-
ory. The intermediate format used to upload the kernel to a target computer varies
fr om system to system, because it depends on how the actual upload takes place.
But in each case, this format is a generic container of binary data used to transfer
the compiled image using standardized tools. For example, the BIN format is
meant to be transferred over a network, while the S3 format is a hexadecimal
ASCII file sent to the target system through a serial cable.* Most of the time, when
powering on the system, the user can select whether to boot Linux or to type
fir mware commands.

The init Process
When start_ker nel forks out the init thr ead (implemented by the init function in
init/main.c), it is still running in kernel mode, and so is the init thr ead. When all
initializations described earlier are complete, the thread drops the kernel lock and
pr epar es to execute the user-space init pr ocess. The file being executed resides in
/sbin/init, /etc/init, or /bin/init. If none of those are found, /bin/sh is run as a
recovery measure in case the real init got lost or corrupted. As an alternative, the
user can specify on the kernel command line which file the init thr ead should
execute.

The procedur e to enter user space is simple. The code opens /dev/console as stan-
dard input by calling the open system call and connects the console to stdout and
stderr by calling dup; it finally calls execve to execute the user-space program.

The thread is able to invoke system calls while running in kernel mode because
init/main.c has declared __KERNEL_SYSCALLS_ _ befor e including
<asm/unistd.h>. The header defines special code that allows kernel code to

* We are not describing the formats or the tools in detail, because the information is readily
available to people researching embedded Linux.

The init Process

511

22 June 2001 16:44



Chapter 16: Physical Layout of the Ker nel Sour ce

invoke a limited number of system calls just as if it were running in user space.
Mor e infor mation about kernel system calls can be found in
http://www.linux.it/ker neldocs/ksys.

The final call to execve finalizes the transition to user space. There is no magic
involved in this transition. As with any execve call in Unix, this one replaces the
memory maps of the current process with new memory maps defined by the
binary file being executed (you should remember how executing a file means
mapping it to the virtual address space of the current process). It doesn’t matter
that, in this case, the calling process is running in kernel space. That’s transparent
to the implementation of execve, which just finds that there are no previous mem-
ory maps to release before activating the new ones.

Whatever the system setup or command line, the init pr ocess is now executing in
user space and any further kernel operation takes place in response to system calls
coming from init itself or from the processes it forks out.

Mor e infor mation about how the init pr ocess brings up the whole system can be
found in http://www.linux.it/ker neldocs/init. We’ll now proceed on our tour by
looking at the system calls implemented in each source directory, and then at how
device drivers are laid out and organized in the source tree.

The ker nel Director y
Some kernel facilities—those associated with filesystems, memory management,
and networking—live in their own source trees. The ker nel dir ectory of the source
tr ee includes all other basic facilities.

The most important such facility is scheduling. Thus, sched.c, together with
<linux/sched.h>, can be considered the most important source file in the
Linux kernel. In addition to the scheduler proper, implemented by schedule, the
file defines the system calls that control process priorities and all the mechanisms
for sleeping and waking.

The fork and exit system calls are implemented by two files that are named after
them. They are compr ehensive and well-structured files that deal with everything
related to process creation and destruction.

The delivery of kernel messages is implemented in printk.c, which is also con-
cer ned with console management. Console code is not trivial, since the concept of
“console” is pretty abstract nowadays and includes the text screen (either native or
based on the frame buffer), the serial port, and even the printer port.

Other facilities that are implemented in this directory are time handling (time.c),
ker nel timers (timer.c), signal delivery and handling (signal.c), module manage-
ment and related system calls (module.c), the kmod thr ead (kmod.c), systemwide
power management (pm.c), tasklets (softir q.c), and the panic function (panic.c).

512

22 June 2001 16:44



The fs Director y
File handling is at the core of any Unix system, and the fs dir ectory in Linux is the
fattest of all directories. It includes all the filesystems supported by the current
Linux version, each in its own subdirectory, as well as the most important system
calls after fork and exit.

The execve system call lives in exec.c and relies on the various available binary for-
mats to actually interpret the binary data found in the executable files. The most
important binary format nowadays is ELF, implemented by binfmt_elf.c.
binfmt_script.c supports the execution of interpreted files. After detecting the need
for an interpreter (usually on the #! or “shebang” line), the file relies on the other
binary formats to load the interpreter.

Miscellaneous binary formats (such as the Java executable format) can be defined
by the user with a /pr oc inter face defined in binfmt_misc.c. The misc binary for-
mat is able to identify an interpreted binary format based on the contents of the
executable file, and fire the appropriate interpreter with appropriate arguments.
The tool is configured via /pr oc/sys/fs/binfmt_misc.

The fundamental system calls for file access are defined in open.c and
read_write.c. The former also defines close and several other file-access system
calls (chown, for instance). select.c implements select and poll. pipe.c and fifo.c
implement pipes and named pipes. readdir.c implements the getdents system call,
which is how user-space programs read directories (the name stands for “get direc-
tory entries”). Other programming interfaces to access directory data (such as the
readdir inter face) ar e all implemented in user space as library functions, based on
the getdents system call.

Most system calls related to moving files around, such as mkdir, rmdir, rename,
link, symlink, and mknod, are implemented in namei.c, which in turn lays its
foundations on the directory entry cache that lives in dcache.c.

Mounting and unmounting filesystems, as well as support for the use of a tempo-
rary root for initr d, are implemented in super.c.

Of particular interest to device driver writers is devices.c, which implements the
char and block driver registries and acts as dispatcher for all devices. It does so by
implementing the generic open method that is used before the device-specific
file_operations structur e is fetched and used. read and write for block
devices are implemented in block_dev.c, which in turn delegates to buf fer.c every-
thing related to buffer management.

Ther e ar e several other files in this directory, but they are less interesting. The
most important ones are inode.c and file.c, which manage the internal organization
of file and inode data structures; ioctl.c, which implements ioctl; and dquot.c,
which implements quotas.

The fs Director y

513

22 June 2001 16:44



Chapter 16: Physical Layout of the Ker nel Sour ce

As we suggested, most of the subdirectories of fs host individual filesystem imple-
mentations. However, fs/partitions is not a filesystem type but rather a container
for partition management code. Some files in there are always compiled, regard-
less of kernel configuration, while other files that implement support for specific
partitioning schemes can be individually enabled or disabled.

The mm Director y
The last major directory of kernel source files is devoted to memory management.
The files in this directory implement all the data structures that are used through-
out the system to manage memory-related issues. While memory management is
founded on registers and features specific to a given CPU, we’ve already seen in
Chapter 13 how most of the code has been made platform independent. Interested
users can check how asm/ar ch-arch/mm implements the lowest level for a spe-
cific computer platform.

The kmalloc/kfr ee memory allocation engine is defined in slab.c. This file is a
completely new implementation that replaces what used to live in kmalloc.c. The
latter file doesn’t exist anymore after version 2.0.

While most programmers are familiar with how an operating system manages
memory in blocks and pages, Linux (taking an idea from Sun Microsystem’s
Solaris) uses an additional, more flexible concept called a slab. Each slab is a
cache that contains multiple memory objects of the same size. Some slabs are spe-
cialized and contain structs of a certain type used by a certain part of the kernel;
others are mor e general and contain memory regions of 32 bytes, 64 bytes, and so
on. The advantage of using slabs is that structs or other regions of memory can be
cached and reused with very little overhead; the more ponder ous technique of
allocating and freeing pages is invoked less often.

The other important allocation tool, vmalloc, and the function that lies behind
them all, get_fr ee_pages, are defined in vmalloc.c and page_alloc.c respectively.
Both are pretty straightforward and make interesting reading.

In addition to allocation services, a memory management system must offer mem-
ory mappings. After all, mmap is the foundation of many system activities, includ-
ing the execution of a file. The actual sys_mmap function doesn’t live here,
though. It is buried in architectur e-specific code, because system calls with more
than five arguments need special handling in relation to CPU registers. The func-
tion that implements mmap for all platforms is do_mmap_ pgoff, defined in
mmap.c. The same file implements sys_sendfile and sys_brk. The latter may look
unr elated, because brk is used to raise the maximum virtual address usable by a
pr ocess. Actually, Linux (and most current Unices) creates new virtual address
space for a process by mapping pages from /dev/zer o.

514

22 June 2001 16:44



The mechanisms for mapping a regular file into memory have been placed in
filemap.c; the file acts on pretty low-level data structures within the memory man-
agement system. mpr otect and remap ar e implemented in two files of the same
names; memory locking appears in mlock.c.

When a process has several memory maps active, you need an efficient way to
look for free areas in its memory address space. To this end, all memory maps of a
pr ocess ar e laid out in an Adelson-Velski-Landis (AVL) tree. The software structur e
is implemented in mmap_avl.c.

Swap file initialization and removal (i.e., the swapon and swapof f system calls) are
in swapfile.c. The scope of swap_state.c is the swap cache, and page aging is in
swap.c. What is known as swapping is not defined here. Instead, it is part of man-
aging memory pages, implemented by the kswapd thr ead.

The lowest level of page-table management is implemented by the memory.c file,
which still carries the original notes by Linus when he implemented the first real
memory management features in December 1991. Everything that happens at
lower levels is part of architectur e-specific code (often hidden as macros in the
header files).

Code specific to high-memory management (the memory beyond that which can
be addressed directly by the kernel, especially used in the x86 world to accommo-
date more than 4 GB of RAM without abandoning the 32-bit architectur e) is in
highmem.c, as you may imagine.

vmscan.c implements the kswapd ker nel thr ead. This is the procedur e that looks
for unused and old pages in order to free them or send them to swap space, as
alr eady suggested. It’s a well-commented source file because fine-tuning these
algorithms is the key factor to overall system perfor mance. Every design choice in
this nontrivial and critical section needs to be well motivated, which explains the
good amount of comments.

The rest of the source files found in the mm dir ectory deal with minor but some-
times important details, like the oom_killer, a procedur e that elects which process
to kill when the system runs out of memory.

Inter estingly, the uClinux port of the Linux kernel to MMU-less processors intro-
duces a separate mmnommu dir ectory. It closely replicates the official mm while
leaving out any MMU-related code. The developers chose this path to avoid
adding a mess of conditional code in the mm source tree. Since uClinux is not
(yet) integrated with the mainstream kernel, you’ll need to download a uClinux
CVS tree or tar ball if you want to compare the two directories (both included in
the uClinux tr ee).

The mm Director y

515

22 June 2001 16:44



Chapter 16: Physical Layout of the Ker nel Sour ce

The net director y
The net dir ectory in the Linux file hierarchy is the repository for the socket
abstraction and the network protocols; these features account for a lot of code,
since Linux supports several differ ent network protocols. Each protocol (IP, IPX,
and so on) lives in its own subdirectory; the directory for IP is called ipv4 because
it repr esents version 4 of the protocol. The new standard (not yet in wide use as
we write this) is called ipv6 and is implemented in Linux as well. Unix-domain
sockets are treated as just another network protocol; their implementation can be
found in the unix subdir ectory.

The network implementation in Linux is based on the same file operations that act
on device files. This is natural, because network connections (sockets) are
described by normal file descriptors. The file socket.c is the locus of the socket file
operations. It dispatches the system calls to one of the network protocols via a
struct proto_ops structur e. This structure is defined by each network proto-
col to map system calls to its specific, low-level data handling operations.

Not every subdirectory of net is used to define a protocol family. There are a few
notable exceptions: cor e, bridge, ether net, sunrpc, and khttpd.

Files in cor e implement generic network features such as device handling, fire-
walls, multicasting, and aliases; this includes the handling of socket buffers
(cor e/skbuff.c) and socket operations that remain independent of the underlying
pr otocol (cor e/sock.c). The device-independent data management that sits near
device-specific code is defined in cor e/dev.c.

The ether net and bridge dir ectories ar e used to implement specific low-level func-
tionalities, specifically, the Ethernet-r elated helper functions described in Chapter
14, and bridging functionality.

sunrpc and khttpd ar e peculiar because they include kernel-level implementations
of tasks that are usually carried out in user space.

In sunrpc you can find support functions for the kernel-level NFS server (which is
an RPC-based service), while khttpd implements a kernel-space web server. Those
services have been brought to kernel space to avoid the overhead of system calls
and context switches during time-critical tasks. Both have demonstrated good per-
for mance in this mode. The khttpd subsystem, however, has already been ren-
der ed obsolete by TUX, which, as of this writing, holds the record for the world’s
fastest web server. TUX will likely be integrated into the 2.5 kernel series.

The two remaining source files within net ar e sysctl_net.c and netsyms.c. The for-
mer is the back end of the sysctl mechanism,* and the latter is just a list of

* sysctl has not been described in this book; interested readers can have a look at Alessan-
dr o’s description of this mechanism at http://www.linux.it/ker neldocs/sysctl.

516

22 June 2001 16:44



EXPORT_SYMBOL declarations. There are several such files all over the kernel,
usually one in each major directory.

ipc and lib
The smallest directories (in size) in the Linux source tree are ipc and lib. The for-
mer is an implementation of the System V interprocess communication primitives,
namely semaphores, message queues, and shared memory; they often get forgot-
ten, but many applications use them (especially shared memory). The latter direc-
tory includes generic support functions, similar to the ones available in the
standard C library.

The generic library functions are a very small subset of those available in user
space, but cover the indispensable things you generally need to write code: string
functions (including simple_atol to convert a string to a long integer with error
checking) and <ctype.h> functions. The most important file in this directory is
vsprintf.c; it implements the function by the same name, which sits at the core of
sprintf and printk. Another important file is inflate.c, which includes the decom-
pr essing code of gzip.

inc lude and arch
In a quick overview of the kernel source code, there’s little to say about headers
and architectur e-specific code. Header files have been introduced all over the
book, so their role (and the separation between include/linux and include/asm)
should already be clear.

Architectur e-specific code, on the other hand, has never been introduced in detail,
but it doesn’t easily lend itself to discussion. Inside each architectur e’s dir ectory
you usually find a file hierarchy similar to the top-level one (i.e., there are mm and
ker nel subdir ectories), but also boot-related code and assembly source files. The
most important assembly file within each supported architectur e is called ker-
nel/entry.S; it’s the back end of the system call mechanism (i.e., the place where
user processes enter kernel mode). Besides that, however, ther e’s little in common
acr oss the various architectur es, and describing them all would make no sense.

Dr iver s
Curr ent Linux kernels support a huge number of devices. Device drivers account
for half of the size of the source tree (actually two-thirds if you exclude architec-
tur e-specific code that you are not using). They account for almost 1500 C-lan-
guage files and more than 800 headers.

The drivers dir ectory itself doesn’t host any source file, only subdirectories (and,
obviously, a makefile).

Dr iver s

517

22 June 2001 16:44



Chapter 16: Physical Layout of the Ker nel Sour ce

Structuring the huge amount of source code is not easy, and the developers
haven’t followed any strict rules. The original division between drivers/char and
drivers/block is inefficient nowadays, and more dir ectories have been created
according to several differ ent requir ements. Still, the most generic char and block
drivers are found in drivers/char and drivers/block, so we’ll start by visiting those
two.

dr iver s/char
The drivers/char dir ectory is perhaps the most important in the drivers hierarchy,
because it hosts a lot of driver-independent code.

The generic tty layer (as well as line disciplines, tty software drivers, and similar
featur es) is implemented in this directory. console.c defines the linux ter minal
type (by implementing its specific escape sequences and keyboard encoding). vt.c
defines the virtual consoles, including code for switching from one virtual console
to another. Selection support (the cut-and-paste capability of the Linux text con-
sole) is implemented by selection.c; the default line discipline is implemented by
n_tty.c.

Ther e ar e other files that, despite what you might expect, are device independent.
lp.c implements a generic parallel port printer driver that includes a console-on-
line-printer capability. It remains device independent by using the parport device
driver to map operations to actual hardware (as seen in Figure 2-2). Similarly, key-
boar d.c implements the higher levels of keyboard handling; it exports the han-
dle_scancode function so that platform-specific keyboard drivers (like pc_keyb.c, in
the same directory) can benefit from generalized management. mem.c implements
/dev/mem, /dev/null, and /dev/zer o, basic resources you can’t do without.

Actually, since mem.c is never left out of the compilation process, it has been
elected as the home of chr_dev_init, which in turn initializes several other device
drivers if they have been selected for compilation.

Ther e ar e other device-independent and platform-independent source files in
drivers/char. If you are inter ested in looking at the role of each source file, the
best place to start is the makefile for this directory, an interesting and pretty much
self-explanatory file.

dr iver s/block
Like the preceding drivers/char dir ectory, drivers/block has been present in Linux
development for a long time. It used to host all block device drivers, and for this
reason it included some device-independent code that is still present.

The most important file is ll_rw_blk.c (low-level read-write block). It implements
all the request management functions that we described in Chapter 12.

518

22 June 2001 16:44



A relatively new entry in this directory is blkpg.c (added as of 2.3.3). The file
implements generic code for partition and geometry handling in block devices. Its
code, together with the fs/partitions dir ectory described earlier, replaces what was
earlier part of “generic hard disk” support. The file called genhd.c still exists, but
now includes only the generic initialization function for block drivers (similar to
the one for char drivers that is part of mem.c). One of the public functions
exported by blkpg.c is blk_ioctl, cover ed by “The ioctl Method” in Chapter 12.

The last device-independent file found in drivers/block is elevator.o. This file
implements the mechanism to change the elevator function associated with a
block device driver. The functionality can be exploited by means of ioctl com-
mands briefly introduced in “The ioctl Method.”

In addition to the hardware-dependent device drivers you would expect to find in
drivers/block, the directory also includes software device drivers that are inher ently
cr oss-platform, just like the sbull and spull drivers that we introduced in this book.
They are the RAM disk rd.c, the “network block device” nbd.c, and the loopback
block device loop.c. The loopback device is used to mount files as if they were
block devices. (See the manpage for mount, wher e it describes the -o loop option.)
The network block device can be used to access remote resources as block
devices (thus allowing, for example, a remote swap device).

Other files in the directory implement drivers for specific hardware, such as the
various differ ent floppy drives, the old-fashioned x86 XT disk controller, and a few
mor e. Most of the important families of block drivers have been moved to a sepa-
rate directory.

dr iver s/ide
The IDE family of device drivers used to live in drivers/block but has expanded to
the point where they were moved into a separate directory. As a matter of fact, the
IDE interface has been enhanced and extended over time in order to support
mor e than just conventional hard disks. For example, IDE tapes are now sup-
ported as well.

The drivers/ide dir ectory is a whole world of its own, with some generalized code
and its own programming interface. You’ll note in the directory some files that are
just a few kilobytes long; they include only the IDE controller detection code, and
rely on the generalized IDE driver for everything else. They are inter esting reading
if you are curious about IDE drivers.

dr iver s/md
This directory is concerned with implementing RAID functionality and the Logical
Volume Manager abstraction. The code registers its own char and block major

Dr iver s

519

22 June 2001 16:44



Chapter 16: Physical Layout of the Ker nel Sour ce

numbers, so it can be considered a driver just like those traditional drivers;
nonetheless, the code has been kept separate because it has nothing to do with
dir ect hardwar e management.

dr iver s/cdrom
This directory hosts the generic CD-ROM interface. Both the IDE and SCSI cdr om
drivers rely on drivers/cdr om/cdr om.c for some of their functionality. The main
entry points to the file are register_cdr om and unr egister_cdrom; the caller passes
them a pointer to struct cdrom_device_info as the main object involved in
CD-ROM management.

Other files in this directory are concer ned with specific hardware drives that are
neither IDE nor SCSI. Those devices are pretty rare nowadays, as they have been
made obsolete by modern IDE controllers.

dr iver s/scsi
Everything related to the SCSI bus has always been placed in this directory. This
includes both controller-independent support for specific devices (such as hard
drives and tapes) and drivers for specific SCSI controller boards.

Management of the SCSI bus interface is scattered in several files: scsi.c, hosts.c,
scsi_ioctl.c, and a dozen more. If you are inter ested in the whole list, you’d better
br owse the makefile, where scsi_mod-objs is defined. All public entry points
to this group of files have been collected in scsi_syms.c.

Code that supports a specific type of hardware drive plugs into the SCSI core sys-
tem by calling scsi_r egister_module with an argument of MODULE_SCSI_DEV.
This is how disk support is added to the core system by sd.c, CD-ROM support by
sr.c (which, internally, refers to the cdr om_ class of functions), tape support by
st.c, and generic devices by sg.c.

The “generic” driver is used to provide user-space programs with direct access to
SCSI devices. The underlying device can be virtually anything; currently both CD
bur ners and scanner programs rely on the SCSI generic device to access the hard-
war e they drive. By opening the /dev/sg devices, a user-space driver can do any-
thing it needs without specific support in the kernel.

Host adapters (i.e., SCSI controller hardware) can be plugged into the core system
by calling scsi_r egister_module with an argument of MODULE_SCSI_HA. Most
drivers currently do that by using the scsi_module.c facility to register themselves:
the driver’s source file defines its (static) data structures and then includes
scsi_module.c. This file defines standard initialization and cleanup functions, based
on <linux/init.h> and the init calls mechanisms. This technique allows
drivers to serve as either modules or compiled-in functions without any #ifdef
lines.

520

22 June 2001 16:44



Inter estingly, one of the host adapters supported in drivers/scsi is the IDE SCSI
emulation code, a software host adapter that maps to IDE devices. It is used, as an
example, for CD mastering: the system sees all of the drives as SCSI devices, and
the user-space program need only be SCSI aware.

Please note that several SCSI drivers have been contributed to Linux by the manu-
factur ers rather than by your preferr ed hacker community; therefor e not all of
them are fun reading.

dr iver s/net
As you might expect, this directory is the home for most interface adapters. Unlike
drivers/scsi, this directory doesn’t include the actual communication protocols,
which live in the top-level net dir ectory tr ee. Nonetheless, there’s still some bit of
softwar e abstraction implemented in drivers/net, namely, the implementation of
the various line disciplines used by serial-based network communication.

The line discipline is the software layer responsible for the data that traverses the
communication line. Every tty device has a line discipline attached. Each line disci-
pline is identified by a number, and the number, as usual, is specified using a sym-
bolic name. The default Linux line discipline is N_TTY, that is, the normal tty
management routines, defined in drivers/char/n_tty.c.

When PPP, SLIP, or other communication protocols are concer ned, however, the
default line discipline must be replaced. User-space programs switch the discipline
to N_PPP or N_SLIP, and the default will be restor ed when the device is finally
closed. The reason that pppd and slattach don’t exit, after setting up the communi-
cation link is just this: as soon as they exit, the device is closed and the default
line discipline gets restor ed.

The job of initializing network drivers hasn’t yet been transferred to the init calls
mechanism, because some subtle technical details prevent the switch. Initialization
is therefor e still perfor med the old way: the Space.c file perfor ms the initialization
by scanning a list of known hardware and probing for it. The list is controlled by
#ifdef dir ectives that select which devices are actually included at compile time.

dr iver s/sound
Like drivers/scsi and drivers/net, this directory includes all the drivers for sound
cards. The contents of the directory are somewhat similar to the SCSI directory: a
few files make up the core sound system, and individual device drivers stack on
top of it. The core sound system is in charge of requesting the major number
SOUND_MAJOR and dispatching any use of it to the underlying device drivers. A
hardwar e driver plugs into the core by calling sound_install_audiodrv, declar ed in
dev_table.c.

Dr iver s

521

22 June 2001 16:44



Chapter 16: Physical Layout of the Ker nel Sour ce

The list of device-independent files in this directory is pretty long, since it includes
generic support for mixers, generic support for sequencers, and so on. To those
who want to probe further, we suggest using the makefile as a refer ence to what is
what.

dr iver s/video
Her e you find all the frame buffer video devices. The directory is concerned with
video output, not video input. Like /drivers/sound, the whole directory implements
a single char device driver; a core frame buffer system dispatches actual access to
the various frame buffers available on the computer.

The entry point to /dev/fb devices is in fbmem.c. The file registers the major num-
ber and maintains an internal list of which frame buffer device is in charge of each
minor number. A hardwar e driver registers itself by calling register_framebuf fer,
passing a pointer to struct fb_info. The data structure includes everything
that’s needed for specific device management. It includes the open and release
methods, but no read, write, or mmap; these methods are implemented in a gen-
eralized way in fbmem.c itself.

In addition to frame buffer memory, this directory is in charge of frame buffer con-
soles. Because the layout of pixels in frame buffer memory is standardized to
some extent, kernel developers have been able to implement generic console sup-
port for the various layouts of display memory. Once a hardware driver registers
its own struct fb_info, it automatically gets a text console attached to it,
according to its declared layout of video memory.

Unfortunately, there is no real standardization in this area, so the kernel currently
supports 17 differ ent scr een layouts; they range from the fairly standard 16-bit and
32-bit color displays to the hairy VGA and Mac pixel placements. The files con-
cer ned with placing text on frame buffers are called fbcon-name.c.

When the first frame buffer device is register ed, the function register_framebuf fer
calls take_over_console (exported by drivers/char/console.c) in order to actually set
up the current frame buffer as the system console. At boot time, before frame
buf fer initialization, the console is either the native text screen or, if none is there,
the first serial port. The command line starting the kernel, of course, can override
the default by selecting a specific console device. Kernel developers created
take_over_console to add support for frame buffer consoles without complicating
the boot code. (Usually frame buffer drivers depend on PCI or equivalent support,
so they can’t be active too early during the boot process.) The take_over_console
featur e, however, is not limited to frame buffers; it’s available to any code involv-
ing any hardware. If you want to transmit kernel messages using a Morse beeper
or UDP network packets, you can do that by calling take_over_console fr om your
ker nel module.

522

22 June 2001 16:44



dr iver s/input
Input management is another facility meant to simplify and standardize activities
that are common to several drivers, and to offer a unified interface to user space.
The core file here is called input.c. It registers itself as a char driver using
INPUT_MAJOR as its major number. Its role is collecting events from low-level
device drivers and dispatching them to higher layers.

The input interface is defined in <linux/input.h>. Each low-level driver regis-
ters itself by calling input_r egister_device. After registration, users are able to feed
new events to the system by calling input_event.

Higher-level modules can register with input.c by calling input_r egister_handler
and specifying what kind of events they are inter ested in. This is, for example,
how keybdev.c expr esses its interest in keyboard events (which it ultimately feeds
to driver/char/keyboar d.c).

A high-level module can also register its own minor numbers so it can use its own
file operations and become the owner of an input-related special file in /dev. Cur-
rently, however, third-party modules can’t easily register minor numbers, and the
featur e can be used reliably only by the files in drivers/input. Minor numbers can
curr ently be used to support mice, joysticks, and generic even channels in user
space.

dr iver s/media
This directory, introduced as of version 2.4.0-test7, collects other communication
media, currently radio and video input devices. Both the media/radio and
media/video drivers currently stack on video/videodev.c, which implements the
“Video For Linux” API.

video/videodev.c is a generic container. It requests a major number and makes it
available to hardware drivers. Individual low-level drivers register by calling
video_r egister_device. They pass a pointer to their own struct video_device
and an integer that specifies the type of device. Supported devices are frame grab-
bers (VFL_TYPE_GRABBER), radios (VFL_TYPE_RADIO), teletext devices
(VFL_TYPE_VTX), and undecoded vertical-blank information (VFL_TYPE_VBI).

Bus-Specific Director ies
Some of the subdirectories of drivers ar e specific to devices that plug into a partic-
ular bus architectur e. They have been separated from the generic char and block
dir ectories because quite a good deal of code is generic to the bus architectur e (as
opposed to specific to the hardware device).

Dr iver s

523

22 June 2001 16:44



Chapter 16: Physical Layout of the Ker nel Sour ce

The least populated of these directories is drivers/pci. It contains only code that
talks with PCI controllers (or to system BIOS), whereas PCI hardware drivers are
scatter ed all over the place. The PCI interface is so widespread that it makes no
sense to relegate PCI cards to a specific place.

If you are wondering whether ISA has a specific directory, the answer is no. There
ar e no specific ISA support files because the bus offers no resource management
or standardization to build a software layer over it. ISA hardware drivers fit best in
drivers/char or drivers/sound or elsewhere.

Other bus-specific directories range from less known internal computer buses to
widely used external interface standards.

The former class includes drivers/sbus, drivers/nubus, drivers/zorr o (the bus used
in Amiga computers), drivers/dio (the bus of the HP300 class of computers), and
drivers/tc (Turbo Channel, used in MIPS DECstations). Whereas sbus includes both
SBus support functions and drivers for some SBus devices, the others include only
support functions. Hardware drivers based on all of these buses live in drivers/net,
drivers/scsi, or wher ever is appropriate for the actual hardware (with the exception
of a few SBus drivers, as noted). A few of these buses are curr ently used by just
one driver.

Dir ectories devoted to external buses include drivers/usb, drivers/pcmcia,
drivers/parport (generic cross-platfor m parallel port support, which defines a
whole new class of device drivers), drivers/isdn (all ISDN controllers supported by
Linux and their common support functions), drivers/atm (the same, for ATM net-
work connections), and drivers/ieee1394 (Fir eWir e).

Platfor m-Specific Director ies
Sometimes, a computer platform has its own directory tree in the drivers hierarchy.
This has tended to happen when kernel development for that platform has pro-
ceeded alongside the main source tree without being merged for a while. In these
cases, keeping the directory tree separate helped in maintaining the code. Exam-
ples include drivers/acor n (old ARM-based computers), drivers/macintosh,
drivers/sgi (Silicon Graphics workstations), and drivers/s390 (IBM mainframes).
Ther e is little of value, usually, in looking at that code, unless you are inter ested in
the specific platform.

Other Subdirector ies
Ther e ar e other subdirectories in drivers, but they are, in our opinion, currently of
minor interest and very specific use. drivers/mtd implements a Memory Technol-
ogy Device layer, which is used to manage solid-state disks (flash memories and
other kinds of EEPROM). drivers/i2c of fers an implementation of the i2c protocol,

524

22 June 2001 16:44



which is the “Inter Integrated Circuit” two-wire bus used internally by several
moder n peripherals, especially frame grabbers. drivers/i2o, similarly, handles I2O
devices (a proprietary high-speed communication standard for certain PCI devices,
which has been unveiled under pressur e fr om the free software community).
drivers/pnp is a collection of common ISA Plug-and-Play code from various
drivers, but fortunately the PnP hack is not really used nowadays by manufactur-
ers.

Under drivers/ you also find initial support for new device classes that are cur-
rently implemented by a very small range of devices.

That’s the case for fiber channel support (drivers/fc4) and drivers/telephony.
Ther e’s even an empty directory drivers/misc, which claims to be “for misc devices
that really don’t fit anywhere else.” The directory is empty of code, but hosts an
(empty) makefile with the comment just quoted.

The Linux kernel is so huge that it’s impossible to cover it all in a few pages.
Mor eover, it is a moving target, and once you think you are finished, you find that
the new patch released by your preferr ed hackers includes a whole lot of new
material. It may well be that the misc dir ectory in 2.4 is not empty anymore as you
read this.

Although we consider it unlikely, it may even happen that 2.6 or 3.0 will turn out
to be pretty differ ent fr om 2.4; unfortunately, this edition of the book won’t auto-
matically update itself to cover the new releases and will become obsolete over
time. Despite our best efforts to cover the current version of the kernel, both in
this chapter and in the whole book, there’s no substitute for direct refer ence to the
source code.

Dr iver s

525

22 June 2001 16:44


