
CHAPTER THIRTEEN

MMAP AND DMA

This chapter delves into the area of Linux memory management, with an emphasis
on techniques that are useful to the device driver writer. The material in this chap-
ter is somewhat advanced, and not everybody will need a grasp of it. Nonetheless,
many tasks can only be done through digging more deeply into the memory man-
agement subsystem; it also provides an interesting look into how an important part
of the kernel works.

The material in this chapter is divided into three sections. The first covers the
implementation of the mmap system call, which allows the mapping of device
memory directly into a user process’s address space. We then cover the kernel
kiobuf mechanism, which provides direct access to user memory from kernel
space. The kiobuf system may be used to implement ‘‘raw I/O’’ for certain kinds
of devices. The final section covers direct memory access (DMA) I/O operations,
which essentially provide peripherals with direct access to system memory.

Of course, all of these techniques requir e an understanding of how Linux memory
management works, so we start with an overview of that subsystem.

Memor y Management in Linux
Rather than describing the theory of memory management in operating systems,
this section tries to pinpoint the main features of the Linux implementation of the
theory. Although you do not need to be a Linux virtual memory guru to imple-
ment mmap, a basic overview of how things work is useful. What follows is a
fairly lengthy description of the data structures used by the kernel to manage
memory. Once the necessary background has been covered, we can get into
working with these structures.

370

22 June 2001 16:42

Address Types
Linux is, of course, a virtual memory system, meaning that the addresses seen by
user programs do not directly correspond to the physical addresses used by the
hardwar e. Virtual memory introduces a layer of indirection, which allows a num-
ber of nice things. With virtual memory, programs running on the system can allo-
cate far more memory than is physically available; indeed, even a single process
can have a virtual address space larger than the system’s physical memory. Virtual
memory also allows playing a number of tricks with the process’s address space,
including mapping in device memory.

Thus far, we have talked about virtual and physical addresses, but a number of the
details have been glossed over. The Linux system deals with several types of
addr esses, each with its own semantics. Unfortunately, the kernel code is not
always very clear on exactly which type of address is being used in each situation,
so the programmer must be careful.

kernel virtual
addresses

kernel logical
addresses

high memory

low memoryuser process

user process

Key

physical memory address space page mapping

Figur e 13-1. Address types used in Linux

The following is a list of address types used in Linux. Figure 13-1 shows how
these address types relate to physical memory.

User virtual addresses
These are the regular addresses seen by user-space programs. User addresses
ar e either 32 or 64 bits in length, depending on the underlying hardware
architectur e, and each process has its own virtual address space.

Memor y Management in Linux

371

22 June 2001 16:42

Chapter 13: mmap and DMA

Physical addresses
The addresses used between the processor and the system’s memory. Physical
addr esses ar e 32- or 64-bit quantities; even 32-bit systems can use 64-bit physi-
cal addresses in some situations.

Bus addresses
The addresses used between peripheral buses and memory. Often they are the
same as the physical addresses used by the processor, but that is not necessar-
ily the case. Bus addresses are highly architectur e dependent, of course.

Ker nel logical addresses
These make up the normal address space of the kernel. These addresses map
most or all of main memory, and are often treated as if they were physical
addr esses. On most architectur es, logical addresses and their associated physi-
cal addresses differ only by a constant offset. Logical addresses use the hard-
war e’s native pointer size, and thus may be unable to address all of physical
memory on heavily equipped 32-bit systems. Logical addresses are usually
stor ed in variables of type unsigned long or void *. Memory retur ned
fr om kmalloc has a logical address.

Ker nel virtual addresses
These differ from logical addresses in that they do not necessarily have a
dir ect mapping to physical addresses. All logical addresses are ker nel virtual
addr esses; memory allocated by vmalloc also has a virtual address (but no
dir ect physical mapping). The function kmap, described later in this chapter,
also retur ns virtual addresses. Virtual addresses are usually stored in pointer
variables.

If you have a logical address, the macro _ _pa() (defined in <asm/page.h>) will
retur n its associated physical address. Physical addresses can be mapped back to
logical addresses with _ _va(), but only for low-memory pages.

Dif ferent kernel functions requir e dif ferent types of addresses. It would be nice if
ther e wer e dif ferent C types defined so that the requir ed addr ess type were
explicit, but we have no such luck. In this chapter, we will be clear on which
types of addresses are used where.

High and Low Memor y
The differ ence between logical and kernel virtual addresses is highlighted on
32-bit systems that are equipped with large amounts of memory. With 32 bits, it is
possible to address 4 GB of memory. Linux on 32-bit systems has, until recently,
been limited to substantially less memory than that, however, because of the way
it sets up the virtual address space. The system was unable to handle more mem-
ory than it could set up logical addresses for, since it needed directly mapped ker-
nel addresses for all memory.

372

22 June 2001 16:42

Recent developments have eliminated the limitations on memory, and 32-bit sys-
tems can now work with well over 4 GB of system memory (assuming, of course,
that the processor itself can address that much memory). The limitation on how
much memory can be directly mapped with logical addresses remains, however.
Only the lowest portion of memory (up to 1 or 2 GB, depending on the hardware
and the kernel configuration) has logical addresses; the rest (high memory) does
not. High memory can requir e 64-bit physical addresses, and the kernel must set
up explicit virtual address mappings to manipulate it. Thus, many kernel functions
ar e limited to low memory only; high memory tends to be reserved for user-space
pr ocess pages.

The term “high memory” can be confusing to some, especially since it has other
meanings in the PC world. So, to make things clear, we’ll define the terms here:

Low memory
Memory for which logical addresses exist in kernel space. On almost every
system you will likely encounter, all memory is low memory.

High memory
Memory for which logical addresses do not exist, because the system contains
mor e physical memory than can be addressed with 32 bits.

On i386 systems, the boundary between low and high memory is usually set at just
under 1 GB. This boundary is not related in any way to the old 640 KB limit found
on the original PC. It is, instead, a limit set by the kernel itself as it splits the 32-bit
addr ess space between kernel and user space.

We will point out high-memory limitations as we come to them in this chapter.

The Memor y Map and struct page
Historically, the kernel has used logical addresses to refer to explicit pages of
memory. The addition of high-memory support, however, has exposed an obvious
pr oblem with that approach — logical addr esses ar e not available for high memory.
Thus kernel functions that deal with memory are incr easingly using pointers to
struct page instead. This data structure is used to keep track of just about
everything the kernel needs to know about physical memory; there is one
struct page for each physical page on the system. Some of the fields of this
structur e include the following:

atomic_t count;
The number of refer ences ther e ar e to this page. When the count drops to
zer o, the page is retur ned to the free list.

Memor y Management in Linux

373

22 June 2001 16:42

Chapter 13: mmap and DMA

wait_queue_head_t wait;
A list of processes waiting on this page. Processes can wait on a page when a
ker nel function has locked it for some reason; drivers need not normally
worry about waiting on pages, though.

void *virtual;
The kernel virtual address of the page, if it is mapped; NULL, otherwise. Low-
memory pages are always mapped; high-memory pages usually are not.

unsigned long flags;
A set of bit flags describing the status of the page. These include PG_locked,
which indicates that the page has been locked in memory, and
PG_reserved, which prevents the memory management system from work-
ing with the page at all.

Ther e is much more infor mation within struct page, but it is part of the deeper
black magic of memory management and is not of concern to driver writers.

The kernel maintains one or more arrays of struct page entries, which track all
of the physical memory on the system. On most systems, there is a single array,
called mem_map. On some systems, however, the situation is more complicated.
Nonunifor m memory access (NUMA) systems and those with widely discontiguous
physical memory may have more than one memory map array, so code that is
meant to be portable should avoid direct access to the array whenever possible.
Fortunately, it is usually quite easy to just work with struct page pointers with-
out worrying about where they come from.

Some functions and macros are defined for translating between struct page
pointers and virtual addresses:

struct page *virt_to_page(void *kaddr);
This macro, defined in <asm/page.h>, takes a kernel logical address and
retur ns its associated struct page pointer. Since it requir es a logical
addr ess, it will not work with memory from vmalloc or high memory.

void *page_address(struct page *page);
Retur ns the kernel virtual address of this page, if such an address exists. For
high memory, that address exists only if the page has been mapped.

#include <linux/highmem.h>
void *kmap(struct page *page);
void kunmap(struct page *page);

kmap retur ns a ker nel virtual address for any page in the system. For low-
memory pages, it just retur ns the logical address of the page; for high-memory
pages, kmap cr eates a special mapping. Mappings created with kmap should
always be freed with kunmap; a limited number of such mappings is avail-
able, so it is better not to hold on to them for too long. kmap calls are

374

22 June 2001 16:42

additive, so if two or more functions both call kmap on the same page the
right thing happens. Note also that kmap can sleep if no mappings are avail-
able.

We will see some uses of these functions when we get into the example code later
in this chapter.

Page Tables
When a program looks up a virtual address, the CPU must convert the address to a
physical address in order to access physical memory. The step is usually per-
for med by splitting the address into bitfields. Each bitfield is used as an index into
an array, called a page table, to retrieve either the address of the next table or the
addr ess of the physical page that holds the virtual address.

The Linux kernel manages three levels of page tables in order to map virtual
addr esses to physical addresses. The multiple levels allow the memory range to be
sparsely populated; modern systems will spread a process out across a large range
of virtual memory. It makes sense to do things that way; it allows for runtime flexi-
bility in how things are laid out.

Note that Linux uses a three-level system even on hardware that only supports two
levels of page tables or hardware that uses a differ ent way to map virtual
addr esses to physical ones. The use of three levels in a processor-independent
implementation allows Linux to support both two-level and three-level processors
without clobbering the code with a lot of #ifdef statements. This kind of conser-
vative coding doesn’t lead to additional overhead when the kernel runs on two-
level processors, because the compiler actually optimizes out the unused level.

It is time to take a look at the data structures used to implement the paging sys-
tem. The following list summarizes the implementation of the three levels in Linux,
and Figure 13-2 depicts them.

Page Directory (PGD)
The top-level page table. The PGD is an array of pgd_t items, each of which
points to a second-level page table. Each process has its own page directory,
and there is one for kernel space as well. You can think of the page directory
as a page-aligned array of pgd_ts.

Page mid-level Directory (PMD)
The second-level table. The PMD is a page-aligned array of pmd_t items. A
pmd_t is a pointer to the third-level page table. Two-level processors have no
physical PMD; they declare their PMD as an array with a single element,
whose value is the PMD itself—we’ll see in a while how this is handled in C
and how the compiler optimizes this level away.

Memor y Management in Linux

375

22 June 2001 16:42

Chapter 13: mmap and DMA

pgd_t
pgd_t
pgd_t
pgd_t
pgd_t
pgd_t
pgd_t
pgd_t
pgd_t
pgd_t
pgd_t
pgd_t

PGD

pmd_t
pmd_t
pmd_t
pmd_t
pmd_t
pmd_t
pmd_t
pmd_t
pmd_t
pmd_t
pmd_t
pmd_t

PMD

pte_t
pte_t
pte_t
pte_t
pte_t
pte_t
pte_t
pte_t
pte_t
pte_t
pte_t
pte_t

PTE
physical page

00111010110110011001101110110101111

Virtual Address (addr)

pgd part pmd part pte part offset

struct page

page.virtual
pte_page(pte_t);
pte_offset(pmd_t, addr);
pmd_offset(pgd_t, addr);
pgd_offset(mm_struct, addr); pgd_val(pgd);

pmd_val(pmd);
pte_val(pte);

Software relationships Hardware relationships

struct mm_struct

Figur e 13-2. The thr ee levels of Linux page tables

Page Table
A page-aligned array of items, each of which is called a Page Table Entry. The
ker nel uses the pte_t type for the items. A pte_t contains the physical
addr ess of the data page.

The types introduced in this list are defined in <asm/page.h>, which must be
included by every source file that plays with paging.

The kernel doesn’t need to worry about doing page-table lookups during normal
pr ogram execution, because they are done by the hardware. Nonetheless, the ker-
nel must arrange things so that the hardware can do its work. It must build the
page tables and look them up whenever the processor reports a page fault, that is,

376

22 June 2001 16:42

whenever the page associated with a virtual address needed by the processor is
not present in memory. Device drivers, too, must be able to build page tables and
handle faults when implementing mmap.

It’s interesting to note how software memory management exploits the same page
tables that are used by the CPU itself. Whenever a CPU doesn’t implement page
tables, the differ ence is only hidden in the lowest levels of architectur e-specific
code. In Linux memory management, therefor e, you always talk about three-level
page tables irrespective of whether they are known to the hardware or not. An
example of a CPU family that doesn’t use page tables is the PowerPC. PowerPC
designers implemented a hash algorithm that maps virtual addresses into a one-
level page table. When accessing a page that is already in memory but whose
physical address has expired from the CPU caches, the CPU needs to read memory
only once, as opposed to the two or three accesses requir ed by a multilevel page
table approach. The hash algorithm, like multilevel tables, makes it possible to
reduce use of memory in mapping virtual addresses to physical ones.

Irr espective of the mechanisms used by the CPU, the Linux software implementa-
tion is based on three-level page tables, and the following symbols are used to
access them. Both <asm/page.h> and <asm/pgtable.h> must be included for
all of them to be accessible.

PTRS_PER_PGD
PTRS_PER_PMD
PTRS_PER_PTE

The size of each table. Two-level processors set PTRS_PER_PMD to 1, to
avoid dealing with the middle level.

unsigned pgd_val(pgd_t pgd)
unsigned pmd_val(pmd_t pmd)
unsigned pte_val(pte_t pte)

These three macros are used to retrieve the unsigned value from the typed
data item. The actual type used varies depending on the underlying architec-
tur e and kernel configuration options; it is usually either unsigned long or,
on 32-bit processors supporting high memory, unsigned long long.
SPARC64 processors use unsigned int. The macros help in using strict data
typing in source code without introducing computational overhead.

pgd_t * pgd_offset(struct mm_struct * mm, unsigned long
address)

pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
pte_t * pte_offset(pmd_t * dir, unsigned long address)

These inline functions* ar e used to retrieve the pgd, pmd, and pte entries

* On 32-bit SPARC processors, the functions are not inline but rather real extern func-
tions, which are not exported to modularized code. Therefor e you won’t be able to use
these functions in a module running on the SPARC, but you won’t usually need to.

Memor y Management in Linux

377

22 June 2001 16:42

Chapter 13: mmap and DMA

associated with address. Page-table lookup begins with a pointer to struct
mm_struct. The pointer associated with the memory map of the current pro-
cess is current->mm, while the pointer to kernel space is described by
&init_mm. Two-level processors define pmd_offset(dir,add) as
(pmd_t *)dir, thus folding the pmd over the pgd. Functions that scan page
tables are always declared as inline, and the compiler optimizes out any
pmd lookup.

struct page *pte_page(pte_t pte)
This function retur ns a pointer to the struct page entry for the page in this
page-table entry. Code that deals with page-tables will generally want to use
pte_ page rather than pte_val, since pte_ page deals with the processor-depen-
dent format of the page-table entry and retur ns the struct page pointer,
which is usually what’s needed.

pte_present(pte_t pte)
This macro retur ns a boolean value that indicates whether the data page is
curr ently in memory. This is the most used of several functions that access the
low bits in the pte—the bits that are discarded by pte_ page. Pages may be
absent, of course, if the kernel has swapped them to disk (or if they have
never been loaded). The page tables themselves, however, are always present
in the current Linux implementation. Keeping page tables in memory simpli-
fies the kernel code because pgd_of fset and friends never fail; on the other
hand, even a process with a ‘‘resident storage size’’ of zero keeps its page
tables in real RAM, wasting some memory that might be better used else-
wher e.

Each process in the system has a struct mm_struct structur e, which contains
its page tables and a great many other things. It also contains a spinlock called
page_table_lock, which should be held while traversing or modifying the
page tables.

Just seeing the list of these functions is not enough for you to be proficient in the
Linux memory management algorithms; real memory management is much more
complex and must deal with other complications, like cache coherence. The previ-
ous list should nonetheless be sufficient to give you a feel for how page manage-
ment is implemented; it is also about all that you will need to know, as a device
driver writer, to work occasionally with page tables. You can get more infor mation
fr om the include/asm and mm subtr ees of the kernel source.

Virtual Memory Areas
Although paging sits at the lowest level of memory management, something more
is necessary before you can use the computer’s resources efficiently. The kernel
needs a higher-level mechanism to handle the way a process sees its memory.
This mechanism is implemented in Linux by means of virtual memory areas, which
ar e typically referr ed to as areas or VMAs.

378

22 June 2001 16:42

An area is a homogeneous region in the virtual memory of a process, a contiguous
range of addresses with the same permission flags. It corresponds loosely to the
concept of a ‘‘segment,’’ although it is better described as ‘‘a memory object with
its own properties.’’ The memory map of a process is made up of the following:

• An area for the program’s executable code (often called text).

• One area each for data, including initialized data (that which has an explicitly
assigned value at the beginning of execution), uninitialized data (BSS),* and
the program stack.

• One area for each active memory mapping.

The memory areas of a process can be seen by looking in /pr oc/pid/maps (wher e
pid, of course, is replaced by a process ID). /pr oc/self is a special case of
/pr oc/pid, because it always refers to the current process. As an example, here are
a couple of memory maps, to which we have added short comments after a sharp
sign:

morgana.root# cat /proc/1/maps # look at init
08048000-0804e000 r-xp 00000000 08:01 51297 /sbin/init # text
0804e000-08050000 rw-p 00005000 08:01 51297 /sbin/init # data
08050000-08054000 rwxp 00000000 00:00 0 # zero-mapped bss
40000000-40013000 r-xp 00000000 08:01 39003 /lib/ld-2.1.3.so # text
40013000-40014000 rw-p 00012000 08:01 39003 /lib/ld-2.1.3.so # data
40014000-40015000 rw-p 00000000 00:00 0 # bss for ld.so
4001b000-40108000 r-xp 00000000 08:01 39006 /lib/libc-2.1.3.so # text
40108000-4010c000 rw-p 000ec000 08:01 39006 /lib/libc-2.1.3.so # data
4010c000-40110000 rw-p 00000000 00:00 0 # bss for libc.so
bfffe000-c0000000 rwxp fffff000 00:00 0 # zero-mapped stack

morgana.root# rsh wolf head /proc/self/maps #### alpha-axp: static ecoff
000000011fffe000-0000000120000000 rwxp 0000000000000000 00:00 0 # stack
0000000120000000-0000000120014000 r-xp 0000000000000000 08:03 2844 # text
0000000140000000-0000000140002000 rwxp 0000000000014000 08:03 2844 # data
0000000140002000-0000000140008000 rwxp 0000000000000000 00:00 0 # bss

The fields in each line are as follows:

start-end perm offset major:minor inode image.

Each field in /pr oc/*/maps (except the image name) corresponds to a field in
struct vm_area_struct, and is described in the following list.

start
end

The beginning and ending virtual addresses for this memory area.

* The name BSS is a historical relic, from an old assembly operator meaning ‘‘Block started
by symbol.’’ The BSS segment of executable files isn’t stored on disk, and the kernel
maps the zero page to the BSS address range.

Memor y Management in Linux

379

22 June 2001 16:42

Chapter 13: mmap and DMA

perm
A bit mask with the memory area’s read, write, and execute permissions. This
field describes what the process is allowed to do with pages belonging to the
ar ea. The last character in the field is either p for ‘‘private’’ or s for ‘‘shared.’’

offset
Wher e the memory area begins in the file that it is mapped to. An offset of
zer o, of course, means that the first page of the memory area corresponds to
the first page of the file.

major
minor

The major and minor numbers of the device holding the file that has been
mapped. Confusingly, for device mappings, the major and minor numbers
refer to the disk partition holding the device special file that was opened by
the user, and not the device itself.

inode
The inode number of the mapped file.

image
The name of the file (usually an executable image) that has been mapped.

A driver that implements the mmap method needs to fill a VMA structure in the
addr ess space of the process mapping the device. The driver writer should there-
for e have at least a minimal understanding of VMAs in order to use them.

Let’s look at the most important fields in struct vm_area_struct (defined in
<linux/mm.h>). These fields may be used by device drivers in their mmap
implementation. Note that the kernel maintains lists and trees of VMAs to optimize
ar ea lookup, and several fields of vm_area_struct ar e used to maintain this
organization. VMAs thus can’t be created at will by a driver, or the structures will
br eak. The main fields of VMAs are as follows (note the similarity between these
fields and the /pr oc output we just saw):

unsigned long vm_start;
unsigned long vm_end;

The virtual address range covered by this VMA. These fields are the first two
fields shown in /pr oc/*/maps.

struct file *vm_file;
A pointer to the struct file structur e associated with this area (if any).

unsigned long vm_pgoff;
The offset of the area in the file, in pages. When a file or device is mapped,
this is the file position of the first page mapped in this area.

380

22 June 2001 16:42

unsigned long vm_flags;
A set of flags describing this area. The flags of the most interest to device
driver writers are VM_IO and VM_RESERVED. VM_IO marks a VMA as being a
memory-mapped I/O region. Among other things, the VM_IO flag will prevent
the region from being included in process core dumps. VM_RESERVED tells
the memory management system not to attempt to swap out this VMA; it
should be set in most device mappings.

struct vm_operations_struct *vm_ops;
A set of functions that the kernel may invoke to operate on this memory area.
Its presence indicates that the memory area is a kernel ‘‘object’’ like the
struct file we have been using throughout the book.

void *vm_private_data;
A field that may be used by the driver to store its own information.

Like struct vm_area_struct, the vm_operations_struct is defined in
<linux/mm.h>; it includes the operations listed next. These operations are the
only ones needed to handle the process’s memory needs, and they are listed in
the order they are declar ed. Later in this chapter, some of these functions will be
implemented; they will be described more completely at that point.

void (*open)(struct vm_area_struct *vma);
The open method is called by the kernel to allow the subsystem implementing
the VMA to initialize the area, adjust refer ence counts, and so forth. This
method will be invoked any time that a new refer ence to the VMA is made
(when a process forks, for example). The one exception happens when the
VMA is first created by mmap; in this case, the driver’s mmap method is called
instead.

void (*close)(struct vm_area_struct *vma);
When an area is destroyed, the kernel calls its close operation. Note that
ther e’s no usage count associated with VMAs; the area is opened and closed
exactly once by each process that uses it.

void (*unmap)(struct vm_area_struct *vma, unsigned long
addr, size_t len);

The kernel calls this method to ‘‘unmap’’ part or all of an area. If the entire
ar ea is unmapped, then the kernel calls vm_ops->close as soon as
vm_ops->unmap retur ns.

void (*protect)(struct vm_area_struct *vma, unsigned long,
size_t, unsigned int newprot);

This method is intended to change the protection on a memory area, but is
curr ently not used. Memory protection is handled by the page tables, and the
ker nel sets up the page-table entries separately.

Memor y Management in Linux

381

22 June 2001 16:42

Chapter 13: mmap and DMA

int (*sync)(struct vm_area_struct *vma, unsigned long,
size_t, unsigned int flags);

This method is called by the msync system call to save a dirty memory region
to the storage medium. The retur n value is expected to be 0 to indicate suc-
cess and negative if there was an error.

struct page *(*nopage)(struct vm_area_struct *vma, unsigned
long address, int write_access);

When a process tries to access a page that belongs to a valid VMA, but that is
curr ently not in memory, the nopage method is called (if it is defined) for the
related area. The method retur ns the struct page pointer for the physical
page, after, perhaps, having read it in from secondary storage. If the nopage
method isn’t defined for the area, an empty page is allocated by the kernel.
The third argument, write_access, counts as ‘‘no-share’’: a nonzero value
means the page must be owned by the current process, whereas 0 means that
sharing is possible.

struct page *(*wppage)(struct vm_area_struct *vma, unsigned
long address, struct page *page);

This method handles write-protected page faults but is currently unused. The
ker nel handles attempts to write over a protected page without invoking the
ar ea-specific callback. Write-pr otect faults are used to implement copy-on-
write. A private page can be shared across processes until one process writes
to it. When that happens, the page is cloned, and the process writes on its
own copy of the page. If the whole area is marked as read-only, a SIGSEGV
is sent to the process, and the copy-on-write is not perfor med.

int (*swapout)(struct page *page, struct file *file);
This method is called when a page is selected to be swapped out. A retur n
value of 0 signals success; any other value signals an error. In case of error,
the process owning the page is sent a SIGBUS. It is highly unlikely that a
driver will ever need to implement swapout; device mappings are not some-
thing that the kernel can just write to disk.

That concludes our overview of Linux memory management data structures. With
that out of the way, we can now proceed to the implementation of the mmap sys-
tem call.

The mmap Device Operation
Memory mapping is one of the most interesting features of modern Unix systems.
As far as drivers are concer ned, memory mapping can be used to provide user
pr ograms with direct access to device memory.

A definitive example of mmap usage can be seen by looking at a subset of the vir-
tual memory areas for the X Window System server:

382

22 June 2001 16:42

cat /proc/731/maps
08048000-08327000 r-xp 00000000 08:01 55505 /usr/X11R6/bin/XF86_SVGA
08327000-08369000 rw-p 002de000 08:01 55505 /usr/X11R6/bin/XF86_SVGA
40015000-40019000 rw-s fe2fc000 08:01 10778 /dev/mem
40131000-40141000 rw-s 000a0000 08:01 10778 /dev/mem
40141000-40941000 rw-s f4000000 08:01 10778 /dev/mem

...

The full list of the X server’s VMAs is lengthy, but most of the entries are not of
inter est her e. We do see, however, thr ee separate mappings of /dev/mem, which
give some insight into how the X server works with the video card. The first map-
ping shows a 16 KB region mapped at fe2fc000. This address is far above the
highest RAM address on the system; it is, instead, a region of memory on a PCI
peripheral (the video card). It will be a control region for that card. The middle
mapping is at a0000, which is the standard location for video RAM in the 640 KB
ISA hole. The last /dev/mem mapping is a rather larger one at f4000000 and is
the video memory itself. These regions can also be seen in /pr oc/iomem:

000a0000-000bffff : Video RAM area
f4000000-f4ffffff : Matrox Graphics, Inc. MGA G200 AGP
fe2fc000-fe2fffff : Matrox Graphics, Inc. MGA G200 AGP

Mapping a device means associating a range of user-space addresses to device
memory. Whenever the program reads or writes in the assigned address range, it
is actually accessing the device. In the X server example, using mmap allows
quick and easy access to the video card’s memory. For a perfor mance-critical
application like this, direct access makes a large differ ence.

As you might suspect, not every device lends itself to the mmap abstraction; it
makes no sense, for instance, for serial ports and other stream-oriented devices.
Another limitation of mmap is that mapping is PAGE_SIZE grained. The kernel
can dispose of virtual addresses only at the level of page tables; therefor e, the
mapped area must be a multiple of PAGE_SIZE and must live in physical memory
starting at an address that is a multiple of PAGE_SIZE. The kernel accommodates
for size granularity by making a region slightly bigger if its size isn’t a multiple of
the page size.

These limits are not a big constraint for drivers, because the program accessing the
device is device dependent anyway. It needs to know how to make sense of the
memory region being mapped, so the PAGE_SIZE alignment is not a problem. A
bigger constraint exists when ISA devices are used on some non-x86 platforms,
because their hardware view of ISA may not be contiguous. For example, some
Alpha computers see ISA memory as a scattered set of 8-bit, 16-bit, or 32-bit items,
with no direct mapping. In such cases, you can’t use mmap at all. The inability to
per form dir ect mapping of ISA addresses to Alpha addresses is due to the incom-
patible data transfer specifications of the two systems. Whereas early Alpha pro-
cessors could issue only 32-bit and 64-bit memory accesses, ISA can do only 8-bit
and 16-bit transfers, and there’s no way to transparently map one protocol onto
the other.

The mmap Device Operation

383

22 June 2001 16:42

Chapter 13: mmap and DMA

Ther e ar e sound advantages to using mmap when it’s feasible to do so. For
instance, we have already looked at the X server, which transfers a lot of data to
and from video memory; mapping the graphic display to user space dramatically
impr oves the throughput, as opposed to an lseek/write implementation. Another
typical example is a program controlling a PCI device. Most PCI peripherals map
their control registers to a memory address, and a demanding application might
pr efer to have direct access to the registers instead of repeatedly having to call
ioctl to get its work done.

The mmap method is part of the file_operations structur e and is invoked
when the mmap system call is issued. With mmap, the kernel perfor ms a good
deal of work before the actual method is invoked, and therefor e the prototype of
the method is quite differ ent fr om that of the system call. This is unlike calls such
as ioctl and poll, wher e the kernel does not do much before calling the method.

The system call is declared as follows (as described in the mmap(2) manual page):

mmap (caddr_t addr, size_t len, int prot, int flags, int fd,
off_t offset)

On the other hand, the file operation is declared as

int (*mmap) (struct file *filp, struct vm_area_struct *vma);

The filp argument in the method is the same as that introduced in Chapter 3,
while vma contains the information about the virtual address range that is used to
access the device. Much of the work has thus been done by the kernel; to imple-
ment mmap, the driver only has to build suitable page tables for the address range
and, if necessary, replace vma->vm_ops with a new set of operations.

Ther e ar e two ways of building the page tables: doing it all at once with a func-
tion called remap_ page_range, or doing it a page at a time via the nopage VMA
method. Both methods have their advantages. We’ll start with the ‘‘all at once’’
appr oach, which is simpler. From ther e we will start adding the complications
needed for a real-world implementation.

Using remap_page_range
The job of building new page tables to map a range of physical addresses is han-
dled by remap_ page_range, which has the following prototype:

int remap_page_range(unsigned long virt_add, unsigned long phys_add,
unsigned long size, pgprot_t prot);

The value retur ned by the function is the usual 0 or a negative error code. Let’s
look at the exact meaning of the function’s arguments:

384

22 June 2001 16:42

virt_add
The user virtual address where remapping should begin. The function builds
page tables for the virtual address range between virt_add and
virt_add+size.

phys_add
The physical address to which the virtual address should be mapped. The
function affects physical addresses from phys_add to phys_add+size.

size
The dimension, in bytes, of the area being remapped.

prot
The ‘‘protection’’ requested for the new VMA. The driver can (and should) use
the value found in vma->vm_page_prot.

The arguments to remap_ page_range ar e fairly straightforward, and most of them
ar e alr eady pr ovided to you in the VMA when your mmap method is called. The
one complication has to do with caching: usually, refer ences to device memory
should not be cached by the processor. Often the system BIOS will set things up
pr operly, but it is also possible to disable caching of specific VMAs via the protec-
tion field. Unfortunately, disabling caching at this level is highly processor depen-
dent. The curious reader may wish to look at the function pgpr ot_noncached fr om
drivers/char/mem.c to see what’s involved. We won’t discuss the topic further
her e.

A Simple Implementation
If your driver needs to do a simple, linear mapping of device memory into a user
addr ess space, remap_ page_range is almost all you really need to do the job. The
following code comes from drivers/char/mem.c and shows how this task is per-
for med in a typical module called simple (Simple Implementation Mapping Pages
with Little Enthusiasm):

#include <linux/mm.h>

int simple_mmap(struct file *filp, struct vm_area_struct *vma)
{

unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;

if (offset >= _ _pa(high_memory) || (filp->f_flags & O_SYNC))
vma->vm_flags |= VM_IO;

vma->vm_flags |= VM_RESERVED;

if (remap_page_range(vma->vm_start, offset,
vma->vm_end-vma->vm_start, vma->vm_page_prot))

return -EAGAIN;
return 0;

}

The mmap Device Operation

385

22 June 2001 16:42

Chapter 13: mmap and DMA

The /dev/mem code checks to see if the requested offset (stored in
vma->vm_pgoff) is beyond physical memory; if so, the VM_IO VMA flag is set to
mark the area as being I/O memory. The VM_RESERVED flag is always set to keep
the system from trying to swap this area out. Then it is just a matter of calling
remap_ page_range to create the necessary page tables.

Adding VMA Operations
As we have seen, the vm_area_struct structur e contains a set of operations
that may be applied to the VMA. Now we’ll look at providing those operations in
a simple way; a more detailed example will follow later on.

Her e, we will provide open and close operations for our VMA. These operations
will be called anytime a process opens or closes the VMA; in particular, the open
method will be invoked anytime a process forks and creates a new refer ence to
the VMA. The open and close VMA methods are called in addition to the process-
ing perfor med by the kernel, so they need not reimplement any of the work done
ther e. They exist as a way for drivers to do any additional processing that they
may requir e.

We’ll use these methods to increment the module usage count whenever the VMA
is opened, and to decrement it when it’s closed. In modern ker nels, this work is
not strictly necessary; the kernel will not call the driver’s release method as long as
a VMA remains open, so the usage count will not drop to zero until all refer ences
to the VMA are closed. The 2.0 kernel, however, did not perfor m this tracking, so
portable code will still want to be able to maintain the usage count.

So, we will override the default vma->vm_ops with operations that keep track of
the usage count. The code is quite simple—a complete mmap implementation for
a modularized /dev/mem looks like the following:

void simple_vma_open(struct vm_area_struct *vma)
{ MOD_INC_USE_COUNT; }

void simple_vma_close(struct vm_area_struct *vma)
{ MOD_DEC_USE_COUNT; }

static struct vm_operations_struct simple_remap_vm_ops = {
open: simple_vma_open,
close: simple_vma_close,

};

int simple_remap_mmap(struct file *filp, struct vm_area_struct *vma)
{

unsigned long offset = VMA_OFFSET(vma);

if (offset >= __pa(high_memory) || (filp->f_flags & O_SYNC))
vma->vm_flags |= VM_IO;

vma->vm_flags |= VM_RESERVED;

386

22 June 2001 16:42

if (remap_page_range(vma->vm_start, offset, vma->vm_end-vma->vm_start,
vma->vm_page_prot))

return -EAGAIN;

vma->vm_ops = &simple_remap_vm_ops;
simple_vma_open(vma);
return 0;

}

This code relies on the fact that the kernel initializes to NULL the vm_ops field in
the newly created area before calling f_op->mmap. The code just shown checks
the current value of the pointer as a safety measure, should something change in
futur e ker nels.

The strange VMA_OFFSET macr o that appears in this code is used to hide a differ-
ence in the vma structur e acr oss ker nel versions. Since the offset is a number of
pages in 2.4 and a number of bytes in 2.2 and earlier kernels, <sysdep.h>
declar es the macro to make the differ ence transpar ent (and the result is expressed
in bytes).

Mapping Memory with nopage
Although remap_ page_range works well for many, if not most, driver mmap
implementations, sometimes it is necessary to be a little more flexible. In such situ-
ations, an implementation using the nopage VMA method may be called for.

The nopage method, remember, has the following prototype:

struct page (*nopage)(struct vm_area_struct *vma,
unsigned long address, int write_access);

When a user process attempts to access a page in a VMA that is not present in
memory, the associated nopage function is called. The address parameter will
contain the virtual address that caused the fault, rounded down to the beginning
of the page. The nopage function must locate and retur n the struct page
pointer that refers to the page the user wanted. This function must also take care
to increment the usage count for the page it retur ns by calling the get_ page macr o:

get_page(struct page *pageptr);

This step is necessary to keep the refer ence counts correct on the mapped pages.
The kernel maintains this count for every page; when the count goes to zero, the
ker nel knows that the page may be placed on the free list. When a VMA is
unmapped, the kernel will decrement the usage count for every page in the area.
If your driver does not increment the count when adding a page to the area, the
usage count will become zero prematur ely and the integrity of the system will be
compr omised.

The mmap Device Operation

387

22 June 2001 16:42

Chapter 13: mmap and DMA

One situation in which the nopage appr oach is useful can be brought about by the
mr emap system call, which is used by applications to change the bounding
addr esses of a mapped region. If the driver wants to be able to deal with mr emap,
the previous implementation won’t work correctly, because there’s no way for the
driver to know that the mapped region has changed.

The Linux implementation of mr emap doesn’t notify the driver of changes in the
mapped area. Actually, it does notify the driver if the size of the area is reduced
via the unmap method, but no callback is issued if the area increases in size.

The basic idea behind notifying the driver of a reduction is that the driver (or the
filesystem mapping a regular file to memory) needs to know when a region is
unmapped in order to take the proper action, such as flushing pages to disk.
Gr owth of the mapped region, on the other hand, isn’t really meaningful for the
driver until the program invoking mr emap accesses the new virtual addresses. In
real life, it’s quite common to map regions that are never used (unused sections of
pr ogram code, for example). The Linux kernel, therefor e, doesn’t notify the driver
if the mapped region grows, because the nopage method will take care of pages
one at a time as they are actually accessed.

In other words, the driver isn’t notified when a mapping grows because nopage
will do it later, without having to use memory before it is actually needed. This
optimization is mostly aimed at regular files, whose mapping uses real RAM.

The nopage method, therefor e, must be implemented if you want to support the
mr emap system call. But once you have nopage, you can choose to use it exten-
sively, with some limitations (described later). This method is shown in the next
code fragment. In this implementation of mmap, the device method only replaces
vma->vm_ops. The nopage method takes care of ‘‘r emapping’’ one page at a time
and retur ning the address of its struct page structur e. Because we are just
implementing a window onto physical memory here, the remapping step is sim-
ple — we need only locate and retur n a pointer to the struct page for the
desir ed addr ess.

An implementation of /dev/mem using nopage looks like the following:

struct page *simple_vma_nopage(struct vm_area_struct *vma,
unsigned long address, int write_access)

{
struct page *pageptr;
unsigned long physaddr = address - vma->vm_start + VMA_OFFSET(vma);
pageptr = virt_to_page(__va(physaddr));
get_page(pageptr);
return pageptr;

}

int simple_nopage_mmap(struct file *filp, struct vm_area_struct *vma)
{

unsigned long offset = VMA_OFFSET(vma);

388

22 June 2001 16:42

if (offset >= __pa(high_memory) || (filp->f_flags & O_SYNC))
vma->vm_flags |= VM_IO;

vma->vm_flags |= VM_RESERVED;

vma->vm_ops = &simple_nopage_vm_ops;
simple_vma_open(vma);
return 0;

}

Since, once again, we are simply mapping main memory here, the nopage func-
tion need only find the correct struct page for the faulting address and incre-
ment its refer ence count. The requir ed sequence of events is thus to calculate the
desir ed physical address, turn it into a logical address with _ _va, and then finally
to turn it into a struct page with virt_to_ page. It would be possible, in general,
to go directly from the physical address to the struct page, but such code
would be difficult to make portable across architectur es. Such code might be nec-
essary, however, if one were trying to map high memory, which, remember, has
no logical addresses. simple, being simple, does not worry about that (rare) case.

If the nopage method is left NULL, ker nel code that handles page faults maps the
zer o page to the faulting virtual address. The zero page is a copy-on-write page
that reads as zero and that is used, for example, to map the BSS segment. There-
for e, if a process extends a mapped region by calling mr emap, and the driver
hasn’t implemented nopage, it will end up with zero pages instead of a segmenta-
tion fault.

The nopage method normally retur ns a pointer to a struct page. If, for some
reason, a normal page cannot be retur ned (e.g., the requested address is beyond
the device’s memory region), NOPAGE_SIGBUS can be retur ned to signal the
err or. nopage can also retur n NOPAGE_OOM to indicate failures caused by resource
limitations.

Note that this implementation will work for ISA memory regions but not for those
on the PCI bus. PCI memory is mapped above the highest system memory, and
ther e ar e no entries in the system memory map for those addresses. Because there
is thus no struct page to retur n a pointer to, nopage cannot be used in these
situations; you must, instead, use remap_ page_range.

Remapping Specific I/O Regions
All the examples we’ve seen so far are reimplementations of /dev/mem; they
remap physical addresses into user space. The typical driver, however, wants to
map only the small address range that applies to its peripheral device, not all of
memory. In order to map to user space only a subset of the whole memory range,
the driver needs only to play with the offsets. The following lines will do the trick
for a driver mapping a region of simple_region_size bytes, beginning at
physical address simple_region_start (which should be page aligned).

The mmap Device Operation

389

22 June 2001 16:42

Chapter 13: mmap and DMA

unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
unsigned long physical = simple_region_start + off;
unsigned long vsize = vma->vm_end - vma->vm_start;
unsigned long psize = simple_region_size - off;

if (vsize > psize)
return -EINVAL; /* spans too high */

remap_page_range(vma_>vm_start, physical, vsize, vma->vm_page_prot);

In addition to calculating the offsets, this code introduces a check that reports an
err or when the program tries to map more memory than is available in the I/O
region of the target device. In this code, psize is the physical I/O size that is left
after the offset has been specified, and vsize is the requested size of virtual
memory; the function refuses to map addresses that extend beyond the allowed
memory range.

Note that the user process can always use mr emap to extend its mapping, possibly
past the end of the physical device area. If your driver has no nopage method, it
will never be notified of this extension, and the additional area will map to the
zer o page. As a driver writer, you may well want to prevent this sort of behavior;
mapping the zero page onto the end of your region is not an explicitly bad thing
to do, but it is highly unlikely that the programmer wanted that to happen.

The simplest way to prevent extension of the mapping is to implement a simple
nopage method that always causes a bus signal to be sent to the faulting process.
Such a method would look like this:

struct page *simple_nopage(struct vm_area_struct *vma,
unsigned long address, int write_access);

{ return NOPAGE_SIGBUS; /* send a SIGBUS */}

Remapping RAM
Of course, a more thor ough implementation could check to see if the faulting
addr ess is within the device area, and perfor m the remapping if that is the case.
Once again, however, nopage will not work with PCI memory areas, so extension
of PCI mappings is not possible. In Linux, a page of physical addresses is marked
as ‘‘reserved’’ in the memory map to indicate that it is not available for memory
management. On the PC, for example, the range between 640 KB and 1 MB is
marked as reserved, as are the pages that host the kernel code itself.

An interesting limitation of remap_ page_range is that it gives access only to
reserved pages and physical addresses above the top of physical memory.
Reserved pages are locked in memory and are the only ones that can be safely
mapped to user space; this limitation is a basic requir ement for system stability.

390

22 June 2001 16:42

Ther efor e, remap_ page_range won’t allow you to remap conventional
addr esses—which include the ones you obtain by calling get_fr ee_page. Instead, it
will map in the zero page. Nonetheless, the function does everything that most
hardwar e drivers need it to, because it can remap high PCI buffers and ISA mem-
ory.

The limitations of remap_ page_range can be seen by running mapper, one of the
sample programs in misc-pr ogs in the files provided on the O’Reilly FTP site. map-
per is a simple tool that can be used to quickly test the mmap system call; it maps
read-only parts of a file based on the command-line options and dumps the
mapped region to standard output. The following session, for instance, shows that
/dev/mem doesn’t map the physical page located at address 64 KB—instead we
see a page full of zeros (the host computer in this examples is a PC, but the result
would be the same on other platforms):

morgana.root# ./mapper /dev/mem 0x10000 0x1000 | od -Ax -t x1
mapped "/dev/mem" from 65536 to 69632
000000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
*
001000

The inability of remap_ page_range to deal with RAM suggests that a device like
scullp can’t easily implement mmap, because its device memory is conventional
RAM, not I/O memory. Fortunately, a relatively easy workaround is available to
any driver that needs to map RAM into user space; it uses the nopage method that
we have seen earlier.

Remapping RAM with the nopage method

The way to map real RAM to user space is to use vm_ops->nopage to deal with
page faults one at a time. A sample implementation is part of the scullp module,
intr oduced in Chapter 7.

scullp is the page oriented char device. Because it is page oriented, it can imple-
ment mmap on its memory. The code implementing memory mapping uses some
of the concepts introduced earlier in ‘‘Memory Management in Linux.’’

Befor e examining the code, let’s look at the design choices that affect the mmap
implementation in scullp.

• scullp doesn’t release device memory as long as the device is mapped. This is
a matter of policy rather than a requir ement, and it is differ ent fr om the behav-
ior of scull and similar devices, which are truncated to a length of zero when
opened for writing. Refusing to free a mapped scullp device allows a process
to overwrite regions actively mapped by another process, so you can test and
see how processes and device memory interact. To avoid releasing a mapped
device, the driver must keep a count of active mappings; the vmas field in the
device structure is used for this purpose.

The mmap Device Operation

391

22 June 2001 16:42

Chapter 13: mmap and DMA

• Memory mapping is perfor med only when the scullp order parameter is 0.
The parameter controls how get_fr ee_pages is invoked (see Chapter 7,
“get_fr ee_page and Friends”). This choice is dictated by the internals of
get_fr ee_pages, the allocation engine exploited by scullp. To maximize alloca-
tion perfor mance, the Linux kernel maintains a list of free pages for each allo-
cation order, and only the page count of the first page in a cluster is incre-
mented by get_fr ee_pages and decremented by fr ee_pages. The mmap method
is disabled for a scullp device if the allocation order is greater than zero,
because nopage deals with single pages rather than clusters of pages. (Return
to “A scull Using Whole Pages: scullp” in Chapter 7 if you need a refr esher on
scullp and the memory allocation order value.)

The last choice is mostly intended to keep the code simple. It is possible to cor-
rectly implement mmap for multipage allocations by playing with the usage count
of the pages, but it would only add to the complexity of the example without
intr oducing any interesting information.

Code that is intended to map RAM according to the rules just outlined needs to
implement open, close, and nopage; it also needs to access the memory map to
adjust the page usage counts.

This implementation of scullp_mmap is very short, because it relies on the nopage
function to do all the interesting work:

int scullp_mmap(struct file *filp, struct vm_area_struct *vma)
{

struct inode *inode = INODE_FROM_F(filp);

/* refuse to map if order is not 0 */
if (scullp_devices[MINOR(inode->i_rdev)].order)

return -ENODEV;

/* don’t do anything here: "nopage" will fill the holes */
vma->vm_ops = &scullp_vm_ops;
vma->vm_flags |= VM_RESERVED;
vma->vm_private_data = scullp_devices + MINOR(inode->i_rdev);
scullp_vma_open(vma);
return 0;

}

The purpose of the leading conditional is to avoid mapping devices whose alloca-
tion order is not 0. scullp’s operations are stor ed in the vm_ops field, and a
pointer to the device structure is stashed in the vm_private_data field. At the
end, vm_ops->open is called to update the usage count for the module and the
count of active mappings for the device.

open and close simply keep track of these counts and are defined as follows:

392

22 June 2001 16:42

void scullp_vma_open(struct vm_area_struct *vma)
{

ScullP_Dev *dev = scullp_vma_to_dev(vma);

dev->vmas++;
MOD_INC_USE_COUNT;

}

void scullp_vma_close(struct vm_area_struct *vma)
{

ScullP_Dev *dev = scullp_vma_to_dev(vma);

dev->vmas--;
MOD_DEC_USE_COUNT;

}

The function sculls_vma_to_dev simply retur ns the contents of the vm_pri-
vate_data field. It exists as a separate function because kernel versions prior to
2.4 lacked that field, requiring that other means be used to get that pointer. See
“Backward Compatibility” at the end of this chapter for details.

Most of the work is then perfor med by nopage. In the scullp implementation, the
address parameter to nopage is used to calculate an offset into the device; the
of fset is then used to look up the correct page in the scullp memory tree.

struct page *scullp_vma_nopage(struct vm_area_struct *vma,
unsigned long address, int write)

{
unsigned long offset;
ScullP_Dev *ptr, *dev = scullp_vma_to_dev(vma);
struct page *page = NOPAGE_SIGBUS;
void *pageptr = NULL; /* default to "missing" */

down(&dev->sem);
offset = (address - vma->vm_start) + VMA_OFFSET(vma);
if (offset >= dev->size) goto out; /* out of range */

/*
* Now retrieve the scullp device from the list, then the page.
* If the device has holes, the process receives a SIGBUS when
* accessing the hole.
*/

offset >>= PAGE_SHIFT; /* offset is a number of pages */
for (ptr = dev; ptr && offset >= dev->qset;) {

ptr = ptr->next;
offset -= dev->qset;

}
if (ptr && ptr->data) pageptr = ptr->data[offset];
if (!pageptr) goto out; /* hole or end-of-file */
page = virt_to_page(pageptr);

/* got it, now increment the count */

The mmap Device Operation

393

22 June 2001 16:42

Chapter 13: mmap and DMA

get_page(page);
out:

up(&dev->sem);
return page;

}

scullp uses memory obtained with get_fr ee_pages. That memory is addressed using
logical addresses, so all scullp_nopage has to do to get a struct page pointer is
to call virt_to_ page.

The scullp device now works as expected, as you can see in this sample output
fr om the mapper utility. Here we send a directory listing of /dev (which is long) to
the scullp device, and then use the mapper utility to look at pieces of that listing
with mmap.

morgana% ls -l /dev > /dev/scullp
morgana% ./mapper /dev/scullp 0 140
mapped "/dev/scullp" from 0 to 140
total 77
-rwxr-xr-x 1 root root 26689 Mar 2 2000 MAKEDEV
crw-rw-rw- 1 root root 14, 14 Aug 10 20:55 admmidi0
morgana% ./mapper /dev/scullp 8192 200
mapped "/dev/scullp" from 8192 to 8392
0
crw ———- 1 root root 113, 1 Mar 26 1999 cum1
crw ———- 1 root root 113, 2 Mar 26 1999 cum2
crw ———- 1 root root 113, 3 Mar 26 1999 cum3

Remapping Vir tual Addresses
Although it’s rarely necessary, it’s interesting to see how a driver can map a virtual
addr ess to user space using mmap. A true virtual address, remember, is an addr ess
retur ned by a function like vmalloc or kmap—that is, a virtual address mapped in
the kernel page tables. The code in this section is taken from scullv, which is the
module that works like scullp but allocates its storage through vmalloc.

Most of the scullv implementation is like the one we’ve just seen for scullp, except
that there is no need to check the order parameter that controls memory alloca-
tion. The reason for this is that vmalloc allocates its pages one at a time, because
single-page allocations are far more likely to succeed than multipage allocations.
Ther efor e, the allocation order problem doesn’t apply to vmalloced space.

Most of the work of vmalloc is building page tables to access allocated pages as a
continuous address range. The nopage method, instead, must pull the page tables
back apart in order to retur n a struct page pointer to the caller. Ther efor e, the
nopage implementation for scullv must scan the page tables to retrieve the page
map entry associated with the page.

394

22 June 2001 16:42

The function is similar to the one we saw for scullp, except at the end. This code
excerpt only includes the part of nopage that differs from scullp:

pgd_t *pgd; pmd_t *pmd; pte_t *pte;
unsigned long lpage;

/*
* After scullv lookup, "page" is now the address of the page
* needed by the current process. Since it’s a vmalloc address,
* first retrieve the unsigned long value to be looked up
* in page tables.
*/

lpage = VMALLOC_VMADDR(pageptr);
spin_lock(&init_mm.page_table_lock);
pgd = pgd_offset(&init_mm, lpage);
pmd = pmd_offset(pgd, lpage);
pte = pte_offset(pmd, lpage);
page = pte_page(*pte);
spin_unlock(&init_mm.page_table_lock);

/* got it, now increment the count */
get_page(page);
out:
up(&dev->sem);
return page;

The page tables are looked up using the functions introduced at the beginning of
this chapter. The page directory used for this purpose is stored in the memory
structur e for kernel space, init_mm. Note that scullv obtains the
page_table_lock prior to traversing the page tables. If that lock were not held,
another processor could make a change to the page table while scullv was
halfway through the lookup process, leading to erroneous results.

The macro VMALLOC_VMADDR(pageptr) retur ns the correct unsigned long
value to be used in a page-table lookup from a vmalloc addr ess. A simple cast of
the value wouldn’t work on the x86 with kernels older than 2.1, because of a
glitch in memory management. Memory management for the x86 changed in ver-
sion 2.1.1, and VMALLOC_VMADDR is now defined as the identity function, as it
has always been for the other platforms. Its use is still suggested, however, as a
way of writing portable code.

Based on this discussion, you might also want to map addresses retur ned by
ior emap to user space. This mapping is easily accomplished because you can use
remap_ page_range dir ectly, without implementing methods for virtual memory
ar eas. In other words, remap_ page_range is already usable for building new page
tables that map I/O memory to user space; there’s no need to look in the kernel
page tables built by vr emap as we did in scullv.

The mmap Device Operation

395

22 June 2001 16:42

Chapter 13: mmap and DMA

The kiobuf Interface
As of version 2.3.12, the Linux kernel supports an I/O abstraction called the ker nel
I/O buffer, or kiobuf. The kiobuf interface is intended to hide much of the com-
plexity of the virtual memory system from device drivers (and other parts of the
system that do I/O). Many features are planned for kiobufs, but their primary use
in the 2.4 kernel is to facilitate the mapping of user-space buffers into the kernel.

The kiobuf Structure
Any code that works with kiobufs must include <linux/iobuf.h>. This file
defines struct kiobuf, which is the heart of the kiobuf interface. This structure
describes an array of pages that make up an I/O operation; its fields include the
following:

int nr_pages;
The number of pages in this kiobuf

int length;
The number of bytes of data in the buffer

int offset;
The offset to the first valid byte in the buffer

struct page **maplist;
An array of page structur es, one for each page of data in the kiobuf

The key to the kiobuf interface is the maplist array. Functions that operate on
pages stored in a kiobuf deal directly with the page structur es—all of the virtual
memory system overhead has been moved out of the way. This implementation
allows drivers to function independent of the complexities of memory manage-
ment, and in general simplifies life greatly.

Prior to use, a kiobuf must be initialized. It is rare to initialize a single kiobuf in
isolation, but, if need be, this initialization can be perfor med with kiobuf_init:

void kiobuf_init(struct kiobuf *iobuf);

Usually kiobufs are allocated in groups as part of a ker nel I/O vector, or kiovec. A
kiovec can be allocated and initialized in one step with a call to alloc_kiovec:

int alloc_kiovec(int nr, struct kiobuf **iovec);

The retur n value is 0 or an error code, as usual. When your code has finished with
the kiovec structure, it should, of course, retur n it to the system:

void free_kiovec(int nr, struct kiobuf **);

The kernel provides a pair of functions for locking and unlocking the pages
mapped in a kiovec:

396

22 June 2001 16:42

int lock_kiovec(int nr, struct kiobuf *iovec[], int wait);
int unlock_kiovec(int nr, struct kiobuf *iovec[]);

Locking a kiovec in this manner is unnecessary, however, for most applications of
kiobufs seen in device drivers.

Mapping User-Space Buffers and Raw I/O
Unix systems have long provided a ‘‘raw’’ interface to some devices—block
devices in particular—which perfor ms I/O directly from a user-space buffer and
avoids copying data through the kernel. In some cases much improved perfor-
mance can be had in this manner, especially if the data being transferred will not
be used again in the near future. For example, disk backups typically read a great
deal of data from the disk exactly once, then forget about it. Running the backup
via a raw interface will avoid filling the system buffer cache with useless data.

The Linux kernel has traditionally not provided a raw interface, for a number of
reasons. As the system gains in popularity, however, mor e applications that expect
to be able to do raw I/O (such as large database management systems) are being
ported. So the 2.3 development series finally added raw I/O; the driving force
behind the kiobuf interface was the need to provide this capability.

Raw I/O is not always the great perfor mance boost that some people think it
should be, and driver writers should not rush out to add the capability just
because they can. The overhead of setting up a raw transfer can be significant,
and the advantages of buffering data in the kernel are lost. For example, note that
raw I/O operations almost always must be synchronous — the write system call
cannot retur n until the operation is complete. Linux currently lacks the mecha-
nisms that user programs need to be able to safely perfor m asynchr onous raw I/O
on a user buffer.

In this section, we add a raw I/O capability to the sbull sample block driver. When
kiobufs are available, sbull actually registers two devices. The block sbull device
was examined in detail in Chapter 12. What we didn’t see in that chapter was a
second, char device (called sbullr), which provides raw access to the RAM-disk
device. Thus, /dev/sbull0 and /dev/sbullr0 access the same memory; the former
using the traditional, buffer ed mode and the second providing raw access via the
kiobuf mechanism.

It is worth noting that in Linux systems, there is no need for block drivers to pro-
vide this sort of interface. The raw device, in drivers/char/raw.c, provides this
capability in an elegant, general way for all block devices. The block drivers need
not even know they are doing raw I/O. The raw I/O code in sbull is essentially a
simplification of the raw device code for demonstration purposes.

The kiobuf Interface

397

22 June 2001 16:42

Chapter 13: mmap and DMA

Raw I/O to a block device must always be sector aligned, and its length must be a
multiple of the sector size. Other kinds of devices, such as tape drives, may not
have the same constraints. sbullr behaves like a block device and enforces the
alignment and length requir ements. To that end, it defines a few symbols:

define SBULLR_SECTOR 512 /* insist on this */
define SBULLR_SECTOR_MASK (SBULLR_SECTOR - 1)
define SBULLR_SECTOR_SHIFT 9

The sbullr raw device will be register ed only if the hard-sector size is equal to
SBULLR_SECTOR. Ther e is no real reason why a larger hard-sector size could not
be supported, but it would complicate the sample code unnecessarily.

The sbullr implementation adds little to the existing sbull code. In particular, the
open and close methods from sbull ar e used without modification. Since sbullr is a
char device, however, it needs read and write methods. Both are defined to use a
single transfer function as follows:

ssize_t sbullr_read(struct file *filp, char *buf, size_t size,
loff_t *off)

{
Sbull_Dev *dev = sbull_devices +

MINOR(filp->f_dentry->d_inode->i_rdev);
return sbullr_transfer(dev, buf, size, off, READ);

}

ssize_t sbullr_write(struct file *filp, const char *buf, size_t size,
loff_t *off)

{
Sbull_Dev *dev = sbull_devices +

MINOR(filp->f_dentry->d_inode->i_rdev);
return sbullr_transfer(dev, (char *) buf, size, off, WRITE);

}

The sbullr_transfer function handles all of the setup and teardown work, while
passing off the actual transfer of data to yet another function. It is written as fol-
lows:

static int sbullr_transfer (Sbull_Dev *dev, char *buf, size_t count,
loff_t *offset, int rw)

{
struct kiobuf *iobuf;
int result;

/* Only block alignment and size allowed */
if ((*offset & SBULLR_SECTOR_MASK) || (count & SBULLR_SECTOR_MASK))

return -EINVAL;
if ((unsigned long) buf & SBULLR_SECTOR_MASK)

return -EINVAL;

/* Allocate an I/O vector */
result = alloc_kiovec(1, &iobuf);

398

22 June 2001 16:42

if (result)
return result;

/* Map the user I/O buffer and do the I/O. */
result = map_user_kiobuf(rw, iobuf, (unsigned long) buf, count);
if (result) {

free_kiovec(1, &iobuf);
return result;

}
spin_lock(&dev->lock);
result = sbullr_rw_iovec(dev, iobuf, rw,

*offset >> SBULLR_SECTOR_SHIFT,
count >> SBULLR_SECTOR_SHIFT);

spin_unlock(&dev->lock);

/* Clean up and return. */
unmap_kiobuf(iobuf);
free_kiovec(1, &iobuf);
if (result > 0)

*offset += result << SBULLR_SECTOR_SHIFT;
return result << SBULLR_SECTOR_SHIFT;

}

After doing a couple of sanity checks, the code creates a kiovec (containing a sin-
gle kiobuf) with alloc_kiovec. It then uses that kiovec to map in the user buffer by
calling map_user_kiobuf:

int map_user_kiobuf(int rw, struct kiobuf *iobuf,
unsigned long address, size_t len);

The result of this call, if all goes well, is that the buffer at the given (user virtual)
address with length len is mapped into the given iobuf. This operation can
sleep, since it is possible that part of the user buffer will need to be faulted into
memory.

A kiobuf that has been mapped in this manner must eventually be unmapped, of
course, to keep the refer ence counts on the pages straight. This unmapping is
accomplished, as can be seen in the code, by passing the kiobuf to
unmap_kiobuf.

So far, we have seen how to prepar e a kiobuf for I/O, but not how to actually per-
for m that I/O. The last step involves going through each page in the kiobuf and
doing the requir ed transfers; in sbullr, this task is handled by sbullr_rw_iovec.
Essentially, this function passes through each page, breaks it up into sector-sized
pieces, and passes them to sbull_transfer via a fake request structur e:

static int sbullr_rw_iovec(Sbull_Dev *dev, struct kiobuf *iobuf, int rw,
int sector, int nsectors)

{
struct request fakereq;
struct page *page;
int offset = iobuf->offset, ndone = 0, pageno, result;

The kiobuf Interface

399

22 June 2001 16:42

Chapter 13: mmap and DMA

/* Perform I/O on each sector */
fakereq.sector = sector;
fakereq.current_nr_sectors = 1;
fakereq.cmd = rw;

for (pageno = 0; pageno < iobuf->nr_pages; pageno++) {
page = iobuf->maplist[pageno];
while (ndone < nsectors) {

/* Fake up a request structure for the operation */
fakereq.buffer = (void *) (kmap(page) + offset);
result = sbull_transfer(dev, &fakereq);
kunmap(page);
if (result == 0)

return ndone;
/* Move on to the next one */
ndone++;
fakereq.sector++;
offset += SBULLR_SECTOR;
if (offset >= PAGE_SIZE) {

offset = 0;
break;

}
}

}
return ndone;

}

Her e, the nr_pages member of the kiobuf structur e tells us how many pages
need to be transferred, and the maplist array gives us access to each page. Thus
it is just a matter of stepping through them all. Note, however, that kmap is used
to get a kernel virtual address for each page; in this way, the function will work
even if the user buffer is in high memory.

Some quick tests copying data show that a copy to or from an sbullr device takes
roughly two-thirds the system time as the same copy to the block sbull device. The
savings is gained by avoiding the extra copy through the buffer cache. Note that if
the same data is read several times over, that savings will evaporate—especially
for a real hardware device. Raw device access is often not the best approach, but
for some applications it can be a major improvement.

Although kiobufs remain controversial in the kernel development community,
ther e is interest in using them in a wider range of contexts. There is, for example,
a patch that implements Unix pipes with kiobufs—data is copied directly from
one process’s address space to the other with no buffering in the kernel at all. A
patch also exists that makes it easy to use a kiobuf to map kernel virtual memory
into a process’s address space, thus eliminating the need for a nopage implementa-
tion as shown earlier.

400

22 June 2001 16:42

Direct Memory Access and
Bus Mastering
Dir ect memory access, or DMA, is the advanced topic that completes our overview
of memory issues. DMA is the hardware mechanism that allows peripheral compo-
nents to transfer their I/O data directly to and from main memory without the
need for the system processor to be involved in the transfer. Use of this mecha-
nism can greatly increase throughput to and from a device, because a great deal of
computational overhead is eliminated.

To exploit the DMA capabilities of its hardware, the device driver needs to be able
to correctly set up the DMA transfer and synchronize with the hardware. Unfortu-
nately, because of its hardware natur e, DMA is very system dependent. Each archi-
tectur e has its own techniques to manage DMA transfers, and the programming
inter face is differ ent for each. The kernel can’t offer a unified interface, either,
because a driver can’t abstract too much from the underlying hardware mecha-
nisms. Some steps have been made in that direction, however, in recent kernels.

This chapter concentrates mainly on the PCI bus, since it is currently the most
popular peripheral bus available. Many of the concepts are mor e widely applica-
ble, though. We also touch on how some other buses, such as ISA and SBus, han-
dle DMA.

Over view of a DMA Data Transfer
Befor e intr oducing the programming details, let’s review how a DMA transfer takes
place, considering only input transfers to simplify the discussion.

Data transfer can be triggered in two ways: either the software asks for data (via a
function such as read) or the hardware asynchr onously pushes data to the system.

In the first case, the steps involved can be summarized as follows:

1. When a process calls read, the driver method allocates a DMA buffer and
instructs the hardware to transfer its data. The process is put to sleep.

2. The hardwar e writes data to the DMA buffer and raises an interrupt when it’s
done.

3. The interrupt handler gets the input data, acknowledges the interrupt, and
awakens the process, which is now able to read data.

The second case comes about when DMA is used asynchronously. This happens,
for example, with data acquisition devices that go on pushing data even if nobody
is reading them. In this case, the driver should maintain a buffer so that a subse-
quent read call will retur n all the accumulated data to user space. The steps
involved in this kind of transfer are slightly differ ent:

Direct Memory Access and Bus Mastering

401

22 June 2001 16:42

Chapter 13: mmap and DMA

1. The hardwar e raises an interrupt to announce that new data has arrived.

2. The interrupt handler allocates a buffer and tells the hardware wher e to trans-
fer its data.

3. The peripheral device writes the data to the buffer and raises another interrupt
when it’s done.

4. The handler dispatches the new data, wakes any relevant process, and takes
car e of housekeeping.

A variant of the asynchronous approach is often seen with network cards. These
cards often expect to see a circular buffer (often called a DMA ring buffer) estab-
lished in memory shared with the processor; each incoming packet is placed in
the next available buffer in the ring, and an interrupt is signaled. The driver then
passes the network packets to the rest of the kernel, and places a new DMA buffer
in the ring.

The processing steps in all of these cases emphasize that efficient DMA handling
relies on interrupt reporting. While it is possible to implement DMA with a polling
driver, it wouldn’t make sense, because a polling driver would waste the perfor-
mance benefits that DMA offers over the easier processor-driven I/O.

Another relevant item introduced here is the DMA buffer. To exploit direct mem-
ory access, the device driver must be able to allocate one or more special buffers,
suited to DMA. Note that many drivers allocate their buffers at initialization time
and use them until shutdown—the word allocate in the previous lists therefor e
means ‘‘get hold of a previously allocated buffer.’’

Allocating the DMA Buffer
This section covers the allocation of DMA buffers at a low level; we will introduce
a higher-level interface shortly, but it is still a good idea to understand the material
pr esented her e.

The main problem with the DMA buffer is that when it is bigger than one page, it
must occupy contiguous pages in physical memory because the device transfers
data using the ISA or PCI system bus, both of which carry physical addresses. It’s
inter esting to note that this constraint doesn’t apply to the SBus (see ‘‘SBus’’ in
Chapter 15), which uses virtual addresses on the peripheral bus. Some architec-
tur es can also use virtual addresses on the PCI bus, but a portable driver cannot
count on that capability.

Although DMA buffers can be allocated either at system boot or at runtime, mod-
ules can only allocate their buffers at runtime. Chapter 7 introduced these tech-
niques: ‘‘Boot-Time Allocation’’ talked about allocation at system boot, while ‘‘The
Real Story of kmalloc’’ and ‘‘get_free_page and Friends’’ described allocation at

402

22 June 2001 16:42

runtime. Driver writers must take care to allocate the right kind of memory when it
will be used for DMA operations—not all memory zones are suitable. In particular,
high memory will not work for DMA on most systems—the peripherals simply
cannot work with addresses that high.

Most devices on modern buses can handle 32-bit addresses, meaning that normal
memory allocations will work just fine for them. Some PCI devices, however, fail
to implement the full PCI standard and cannot work with 32-bit addresses. And
ISA devices, of course, are limited to 16-bit addresses only.

For devices with this kind of limitation, memory should be allocated from the
DMA zone by adding the GFP_DMA flag to the kmalloc or get_fr ee_pages call.
When this flag is present, only memory that can be addressed with 16 bits will be
allocated.

Do-it-your self allocation

We have seen how get_fr ee_pages (and therefor e kmalloc) can’t retur n mor e than
128 KB (or, mor e generally, 32 pages) of consecutive memory space. But the
request is prone to fail even when the allocated buffer is less than 128 KB,
because system memory becomes fragmented over time.*

When the kernel cannot retur n the requested amount of memory, or when you
need more than 128 KB (a common requir ement for PCI frame grabbers, for exam-
ple), an alternative to retur ning -ENOMEM is to allocate memory at boot time or
reserve the top of physical RAM for your buffer. We described allocation at boot
time in ‘‘Boot-Time Allocation’’ in Chapter 7, but it is not available to modules.
Reserving the top of RAM is accomplished by passing a mem= argument to the ker-
nel at boot time. For example, if you have 32 MB, the argument mem=31M keeps
the kernel from using the top megabyte. Your module could later use the follow-
ing code to gain access to such memory:

dmabuf = ioremap(0x1F00000 /* 31M */, 0x100000 /* 1M */);

Actually, there is another way to allocate DMA space: perfor m aggr essive alloca-
tion until you are able to get enough consecutive pages to make a buffer. We
str ongly discourage this allocation technique if there’s any other way to achieve
your goal. Aggressive allocation results in high machine load, and possibly in a
system lockup if your aggressiveness isn’t correctly tuned. On the other hand,
sometimes there is no other way available.

In practice, the code invokes kmalloc(GFP_ATOMIC) until the call fails; it then
waits until the kernel frees some pages, and then allocates everything once again.

* The word fragmentation is usually applied to disks, to express the idea that files are not
stor ed consecutively on the magnetic medium. The same concept applies to memory,
wher e each virtual address space gets scattered throughout physical RAM, and it becomes
dif ficult to retrieve consecutive free pages when a DMA buffer is requested.

Direct Memory Access and Bus Mastering

403

22 June 2001 16:42

Chapter 13: mmap and DMA

If you keep an eye on the pool of allocated pages, sooner or later you’ll find that
your DMA buffer of consecutive pages has appeared; at this point you can release
every page but the selected buffer. This kind of behavior is rather risky, though,
because it may lead to a deadlock. We suggest using a kernel timer to release
every page in case allocation doesn’t succeed before a timeout expires.

We’r e not going to show the code here, but you’ll find it in misc-modules/alloca-
tor.c; the code is thoroughly commented and designed to be called by other mod-
ules. Unlike every other source accompanying this book, the allocator is covered
by the GPL. The reason we decided to put the source under the GPL is that it is
neither particularly beautiful nor particularly clever, and if someone is going to use
it, we want to be sure that the source is released with the module.

Bus Addresses
A device driver using DMA has to talk to hardware connected to the interface bus,
which uses physical addresses, whereas program code uses virtual addresses.

As a matter of fact, the situation is slightly more complicated than that. DMA-based
hardwar e uses bus, rather than physical, addr esses. Although ISA and PCI
addr esses ar e simply physical addresses on the PC, this is not true for every plat-
for m. Sometimes the interface bus is connected through bridge circuitry that maps
I/O addresses to differ ent physical addresses. Some systems even have a page-
mapping scheme that can make arbitrary pages appear contiguous to the periph-
eral bus.

At the lowest level (again, we’ll look at a higher-level solution shortly), the Linux
ker nel pr ovides a portable solution by exporting the following functions, defined
in <asm/io.h>:

unsigned long virt_to_bus(volatile void * address);
void * bus_to_virt(unsigned long address);

The virt_to_bus conversion must be used when the driver needs to send address
infor mation to an I/O device (such as an expansion board or the DMA controller),
while bus_to_virt must be used when address information is received from hard-
war e connected to the bus.

DMA on the PCI Bus
The 2.4 kernel includes a flexible mechanism that supports PCI DMA (also known
as bus mastering). It handles the details of buffer allocation and can deal with set-
ting up the bus hardware for multipage transfers on hardware that supports them.
This code also takes care of situations in which a buffer lives in a non-DMA-capa-
ble zone of memory, though only on some platforms and at a computational cost
(as we will see later).

404

22 June 2001 16:42

The functions in this section requir e a struct pci_dev structur e for your
device. The details of setting up a PCI device are cover ed in Chapter 15. Note,
however, that the routines described here can also be used with ISA devices; in
that case, the struct pci_dev pointer should simply be passed in as NULL.

Drivers that use the following functions should include <linux/pci.h>.

Dealing with difficult hardware

The first question that must be answered before per forming DMA is whether the
given device is capable of such operation on the current host. Many PCI devices
fail to implement the full 32-bit bus address space, often because they are modi-
fied versions of old ISA hardware. The Linux kernel will attempt to work with
such devices, but it is not always possible.

The function pci_dma_supported should be called for any device that has address-
ing limitations:

int pci_dma_supported(struct pci_dev *pdev, dma_addr_t mask);

Her e, mask is a simple bit mask describing which address bits the device can suc-
cessfully use. If the retur n value is nonzero, DMA is possible, and your driver
should set the dma_mask field in the PCI device structure to the mask value. For a
device that can only handle 16-bit addresses, you might use a call like this:

if (pci_dma_supported (pdev, 0xffff))
pdev->dma_mask = 0xffff;

else {
card->use_dma = 0; /* We’ll have to live without DMA */
printk (KERN_WARN, "mydev: DMA not supported\n");

}

As of kernel 2.4.3, a new function, pci_set_dma_mask, has been provided. This
function has the following prototype:

int pci_set_dma_mask(struct pci_dev *pdev, dma_addr_t mask);

If DMA can be supported with the given mask, this function retur ns 0 and sets the
dma_mask field; otherwise, -EIO is retur ned.

For devices that can handle 32-bit addresses, there is no need to call
pci_dma_supported.

DMA mappings

A DMA mapping is a combination of allocating a DMA buffer and generating an
addr ess for that buffer that is accessible by the device. In many cases, getting that
addr ess involves a simple call to virt_to_bus; some hardware, however, requir es
that mapping registers be set up in the bus hardware as well. Mapping registers

Direct Memory Access and Bus Mastering

405

22 June 2001 16:42

Chapter 13: mmap and DMA

ar e an equivalent of virtual memory for peripherals. On systems where these regis-
ters are used, peripherals have a relatively small, dedicated range of addresses to
which they may perfor m DMA. Those addresses are remapped, via the mapping
registers, into system RAM. Mapping registers have some nice features, including
the ability to make several distributed pages appear contiguous in the device’s
addr ess space. Not all architectur es have mapping registers, however; in particular,
the popular PC platform has no mapping registers.

Setting up a useful address for the device may also, in some cases, requir e the
establishment of a bounce buffer. Bounce buffers are created when a driver
attempts to perfor m DMA on an address that is not reachable by the peripheral
device — a high-memory address, for example. Data is then copied to and from the
bounce buffer as needed. Making code work properly with bounce buffers
requir es adher ence to some rules, as we will see shortly.

The DMA mapping sets up a new type, dma_addr_t, to repr esent bus addresses.
Variables of type dma_addr_t should be treated as opaque by the driver; the
only allowable operations are to pass them to the DMA support routines and to
the device itself.

The PCI code distinguishes between two types of DMA mappings, depending on
how long the DMA buffer is expected to stay around:

Consistent DMA mappings
These exist for the life of the driver. A consistently mapped buffer must be
simultaneously available to both the CPU and the peripheral (other types of
mappings, as we will see later, can be available only to one or the other at
any given time). The buffer should also, if possible, not have caching issues
that could cause one not to see updates made by the other.

Str eaming DMA mappings
These are set up for a single operation. Some architectur es allow for signifi-
cant optimizations when streaming mappings are used, as we will see, but
these mappings also are subject to a stricter set of rules in how they may be
accessed. The kernel developers recommend the use of streaming mappings
over consistent mappings whenever possible. There are two reasons for this
recommendation. The first is that, on systems that support them, each DMA
mapping uses one or more mapping registers on the bus. Consistent map-
pings, which have a long lifetime, can monopolize these registers for a long
time, even when they are not being used. The other reason is that, on some
hardwar e, str eaming mappings can be optimized in ways that are not available
to consistent mappings.

The two mapping types must be manipulated in differ ent ways; it’s time to look at
the details.

406

22 June 2001 16:42

Setting up consistent DMA mappings

A driver can set up a consistent mapping with a call to pci_alloc_consistent:

void *pci_alloc_consistent(struct pci_dev *pdev, size_t size,
dma_addr_t *bus_addr);

This function handles both the allocation and the mapping of the buffer. The first
two arguments are our PCI device structure and the size of the needed buffer. The
function retur ns the result of the DMA mapping in two places. The retur n value is
a ker nel virtual address for the buffer, which may be used by the driver; the asso-
ciated bus address, instead, is retur ned in bus_addr. Allocation is handled in this
function so that the buffer will be placed in a location that works with DMA; usu-
ally the memory is just allocated with get_fr ee_pages (but note that the size is in
bytes, rather than an order value).

Most architectur es that support PCI perfor m the allocation at the GFP_ATOMIC pri-
ority, and thus do not sleep. The ARM port, however, is an exception to this rule.

When the buffer is no longer needed (usually at module unload time), it should be
retur ned to the system with pci_fr ee_consistent:

void pci_free_consistent(struct pci_dev *pdev, size_t size,
void *cpu_addr, dma_handle_t bus_addr);

Note that this function requir es that both the CPU address and the bus address be
pr ovided.

Setting up streaming DMA mappings

Str eaming mappings have a more complicated interface than the consistent variety,
for a number of reasons. These mappings expect to work with a buffer that has
alr eady been allocated by the driver, and thus have to deal with addresses that
they did not choose. On some architectur es, str eaming mappings can also have
multiple, discontiguous pages and multipart “scatter-gather” buffers.

When setting up a streaming mapping, you must tell the kernel in which direction
the data will be moving. Some symbols have been defined for this purpose:

PCI_DMA_TODEVICE
PCI_DMA_FROMDEVICE

These two symbols should be reasonably self-explanatory. If data is being sent
to the device (in response, perhaps, to a write system call), PCI_DMA_TODE-
VICE should be used; data going to the CPU, instead, will be marked with
PCI_DMA_FROMDEVICE.

Direct Memory Access and Bus Mastering

407

22 June 2001 16:42

Chapter 13: mmap and DMA

PCI_DMA_BIDIRECTIONAL
If data can move in either direction, use PCI_DMA_BIDIRECTIONAL.

PCI_DMA_NONE
This symbol is provided only as a debugging aid. Attempts to use buffers with
this ‘‘direction’’ will cause a kernel panic.

For a number of reasons that we will touch on shortly, it is important to pick the
right value for the direction of a streaming DMA mapping. It may be tempting to
just pick PCI_DMA_BIDIRECTIONAL at all times, but on some architectur es ther e
will be a perfor mance penalty to pay for that choice.

When you have a single buffer to transfer, map it with pci_map_single:

dma_addr_t pci_map_single(struct pci_dev *pdev, void *buffer,
size_t size, int direction);

The retur n value is the bus address that you can pass to the device, or NULL if
something goes wrong.

Once the transfer is complete, the mapping should be deleted with
pci_unmap_single:

void pci_unmap_single(struct pci_dev *pdev, dma_addr_t bus_addr,
size_t size, int direction);

Her e, the size and direction arguments must match those used to map the
buf fer.

Ther e ar e some important rules that apply to streaming DMA mappings:

• The buffer must be used only for a transfer that matches the direction value
given when it was mapped.

• Once a buffer has been mapped, it belongs to the device, not the processor.
Until the buffer has been unmapped, the driver should not touch its contents
in any way. Only after pci_unmap_single has been called is it safe for the
driver to access the contents of the buffer (with one exception that we’ll see
shortly). Among other things, this rule implies that a buffer being written to a
device cannot be mapped until it contains all the data to write.

• The buffer must not be unmapped while DMA is still active, or serious system
instability is guaranteed.

You may be wondering why the driver can no longer work with a buffer once it
has been mapped. There are actually two reasons why this rule makes sense. First,
when a buffer is mapped for DMA, the kernel must ensure that all of the data in
that buffer has actually been written to memory. It is likely that some data will
remain in the processor’s cache, and must be explicitly flushed. Data written to the
buf fer by the processor after the flush may not be visible to the device.

408

22 June 2001 16:42

Second, consider what happens if the buffer to be mapped is in a region of mem-
ory that is not accessible to the device. Some architectur es will simply fail in this
case, but others will create a bounce buffer. The bounce buffer is just a separate
region of memory that is accessible to the device. If a buffer is mapped with a
dir ection of PCI_DMA_TODEVICE, and a bounce buffer is requir ed, the contents
of the original buffer will be copied as part of the mapping operation. Clearly,
changes to the original buffer after the copy will not be seen by the device. Simi-
larly, PCI_DMA_FROMDEVICE bounce buffers are copied back to the original
buf fer by pci_unmap_single; the data from the device is not present until that
copy has been done.

Incidentally, bounce buffers are one reason why it is important to get the direction
right. PCI_DMA_BIDIRECTIONAL bounce buffers are copied before and after the
operation, which is often an unnecessary waste of CPU cycles.

Occasionally a driver will need to access the contents of a streaming DMA buffer
without unmapping it. A call has been provided to make this possible:

void pci_sync_single(struct pci_dev *pdev, dma_handle_t bus_addr,
size_t size, int direction);

This function should be called befor e the processor accesses a
PCI_DMA_FROMDEVICE buf fer, and after an access to a PCI_DMA_TODEVICE
buf fer.

Scatter-gather mappings

Scatter-gather mappings are a special case of streaming DMA mappings. Suppose
you have several buffers, all of which need to be transferred to or from the device.
This situation can come about in several ways, including from a readv or writev
system call, a clustered disk I/O request, or a list of pages in a mapped kernel I/O
buf fer. You could simply map each buffer in turn and perfor m the requir ed opera-
tion, but there are advantages to mapping the whole list at once.

One reason is that some smart devices can accept a scatterlist of array pointers
and lengths and transfer them all in one DMA operation; for example, ‘‘zero-copy’’
networking is easier if packets can be built in multiple pieces. Linux is likely to
take much better advantage of such devices in the future. Another reason to map
scatterlists as a whole is to take advantage of systems that have mapping registers
in the bus hardware. On such systems, physically discontiguous pages can be
assembled into a single, contiguous array from the device’s point of view. This
technique works only when the entries in the scatterlist are equal to the page size
in length (except the first and last), but when it does work it can turn multiple
operations into a single DMA and speed things up accordingly.

Finally, if a bounce buffer must be used, it makes sense to coalesce the entire list
into a single buffer (since it is being copied anyway).

Direct Memory Access and Bus Mastering

409

22 June 2001 16:42

Chapter 13: mmap and DMA

So now you’re convinced that mapping of scatterlists is worthwhile in some situa-
tions. The first step in mapping a scatterlist is to create and fill in an array of
struct scatterlist describing the buffers to be transferred. This structure is
architectur e dependent, and is described in <linux/scatterlist.h>. It will
always contain two fields, however:

char *address;
The address of a buffer used in the scatter/gather operation

unsigned int length;
The length of that buffer

To map a scatter/gather DMA operation, your driver should set the address and
length fields in a struct scatterlist entry for each buffer to be trans-
ferr ed. Then call:

int pci_map_sg(struct pci_dev *pdev, struct scatterlist *list,
int nents, int direction);

The retur n value will be the number of DMA buffers to transfer; it may be less
than nents, the number of scatterlist entries passed in.

Your driver should transfer each buffer retur ned by pci_map_sg. The bus address
and length of each buffer will be stored in the struct scatterlist entries,
but their location in the structure varies from one architectur e to the next. Two
macr os have been defined to make it possible to write portable code:

dma_addr_t sg_dma_address(struct scatterlist *sg);
Retur ns the bus (DMA) address from this scatterlist entry

unsigned int sg_dma_len(struct scatterlist *sg);
Retur ns the length of this buffer

Again, remember that the address and length of the buffers to transfer may be dif-
fer ent fr om what was passed in to pci_map_sg.

Once the transfer is complete, a scatter-gather mapping is unmapped with a call to
pci_unmap_sg:

void pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *list,
int nents, int direction);

Note that nents must be the number of entries that you originally passed to
pci_map_sg, and not the number of DMA buffers that function retur ned to you.

Scatter-gather mappings are str eaming DMA mappings, and the same access rules
apply to them as to the single variety. If you must access a mapped scatter-gather
list, you must synchronize it first:

void pci_dma_sync_sg(struct pci_dev *pdev, struct scatterlist *sg,
int nents, int direction);

410

22 June 2001 16:42

How different architectures support PCI DMA

As we stated at the beginning of this section, DMA is a very hardware-specific
operation. The PCI DMA interface we have just described attempts to abstract out
as many hardware dependencies as possible. There are still some things that show
thr ough, however.

M68K
S/390
Super-H

These architectur es do not support the PCI bus as of 2.4.0.

IA-32 (x86)
MIPS
PowerPC
ARM

These platforms support the PCI DMA interface, but it is mostly a false front.
Ther e ar e no mapping registers in the bus interface, so scatterlists cannot be
combined and virtual addresses cannot be used. Ther e is no bounce buffer
support, so mapping of high-memory addresses cannot be done. The mapping
functions on the ARM architectur e can sleep, which is not the case for the
other platforms.

IA-64
The Itanium architectur e also lacks mapping registers. This 64-bit architectur e
can easily generate addresses that PCI peripherals cannot use, though. The
PCI interface on this platform thus implements bounce buffers, allowing any
addr ess to be (seemingly) used for DMA operations.

Alpha
MIPS64
SPARC

These architectur es support an I/O memory management unit. As of 2.4.0, the
MIPS64 port does not actually make use of this capability, so its PCI DMA
implementation looks like that of the IA-32. The Alpha and SPARC ports,
though, can do full-buffer mapping with proper scatter-gather support.

The differ ences listed will not be problems for most driver writers, as long as the
inter face guidelines are followed.

A simple PCI DMA example

The actual form of DMA operations on the PCI bus is very dependent on the
device being driven. Thus, this example does not apply to any real device; instead,
it is part of a hypothetical driver called dad (DMA Acquisition Device). A driver for
this device might define a transfer function like this:

Direct Memory Access and Bus Mastering

411

22 June 2001 16:42

Chapter 13: mmap and DMA

int dad_transfer(struct dad_dev *dev, int write, void *buffer,
size_t count)

{
dma_addr_t bus_addr;
unsigned long flags;

/* Map the buffer for DMA */
dev->dma_dir = (write ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
dev->dma_size = count;
bus_addr = pci_map_single(dev->pci_dev, buffer, count,

dev->dma_dir);
dev->dma_addr = bus_addr;

/* Set up the device */
writeb(dev->registers.command, DAD_CMD_DISABLEDMA);
writeb(dev->registers.command, write ? DAD_CMD_WR : DAD_CMD_RD);
writel(dev->registers.addr, cpu_to_le32(bus_addr));
writel(dev->registers.len, cpu_to_le32(count));

/* Start the operation */
writeb(dev->registers.command, DAD_CMD_ENABLEDMA);
return 0;

}

This function maps the buffer to be transferred and starts the device operation.
The other half of the job must be done in the interrupt service routine, which
would look something like this:

void dad_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{

struct dad_dev *dev = (struct dad_dev *) dev_id;

/* Make sure it’s really our device interrupting */

/* Unmap the DMA buffer */
pci_unmap_single(dev->pci_dev, dev->dma_addr, dev->dma_size,

dev->dma_dir);

/* Only now is it safe to access the buffer, copy to user, etc. */
...

}

Obviously a great deal of detail has been left out of this example, including what-
ever steps may be requir ed to prevent attempts to start multiple simultaneous
DMA operations.

A quick look at SBus

SPARC-based systems have traditionally included a Sun-designed bus called the
SBus. This bus is beyond the scope of this chapter, but a quick mention is worth-
while. There is a set of functions (declared in <asm/sbus.h>) for perfor ming
DMA mappings on the SBus; they have names like sbus_alloc_consistent and

412

22 June 2001 16:42

sbus_map_sg. In other words, the SBus DMA API looks almost exactly like the PCI
inter face. A detailed look at the function definitions will be requir ed befor e work-
ing with DMA on the SBus, but the concepts will match those discussed earlier for
the PCI bus.

DMA for ISA Devices
The ISA bus allows for two kinds of DMA transfers: native DMA and ISA bus mas-
ter DMA. Native DMA uses standard DMA-controller circuitry on the motherboard
to drive the signal lines on the ISA bus. ISA bus master DMA, on the other hand, is
handled entirely by the peripheral device. The latter type of DMA is rarely used
and doesn’t requir e discussion here because it is similar to DMA for PCI devices, at
least from the driver’s point of view. An example of an ISA bus master is the 1542
SCSI controller, whose driver is drivers/scsi/aha1542.c in the kernel sources.

As far as native DMA is concerned, there are thr ee entities involved in a DMA data
transfer on the ISA bus:

The 8237 DMA controller (DMAC)
The controller holds information about the DMA transfer, such as the direc-
tion, the memory address, and the size of the transfer. It also contains a
counter that tracks the status of ongoing transfers. When the controller
receives a DMA request signal, it gains control of the bus and drives the signal
lines so that the device can read or write its data.

The peripheral device
The device must activate the DMA request signal when it’s ready to transfer
data. The actual transfer is managed by the DMAC; the hardware device
sequentially reads or writes data onto the bus when the controller strobes the
device. The device usually raises an interrupt when the transfer is over.

The device driver
The driver has little to do: it provides the DMA controller with the direction,
bus address, and size of the transfer. It also talks to its peripheral to prepar e it
for transferring the data and responds to the interrupt when the DMA is over.

The original DMA controller used in the PC could manage four “channels,” each
associated with one set of DMA registers. Four devices could store their DMA
infor mation in the controller at the same time. Newer PCs contain the equivalent
of two DMAC devices:* the second controller (master) is connected to the system
pr ocessor, and the first (slave) is connected to channel 0 of the second controller.†

* These circuits are now part of the motherboard’s chipset, but a few years ago they were
two separate 8237 chips.

† The original PCs had only one controller; the second was added in 286-based platforms.
However, the second controller is connected as the master because it handles 16-bit
transfers; the first transfers only 8 bits at a time and is there for backward compatibility.

Direct Memory Access and Bus Mastering

413

22 June 2001 16:42

Chapter 13: mmap and DMA

The channels are number ed fr om 0 to 7; channel 4 is not available to ISA periph-
erals because it is used internally to cascade the slave controller onto the master.
The available channels are thus 0 to 3 on the slave (the 8-bit channels) and 5 to 7
on the master (the 16-bit channels). The size of any DMA transfer, as stor ed in the
contr oller, is a 16-bit number repr esenting the number of bus cycles. The maxi-
mum transfer size is therefor e 64 KB for the slave controller and 128 KB for the
master.

Because the DMA controller is a system-wide resource, the kernel helps deal with
it. It uses a DMA registry to provide a request-and-fr ee mechanism for the DMA
channels and a set of functions to configure channel information in the DMA con-
tr oller.

Reg istering DMA usage

You should be used to kernel registries — we’ve alr eady seen them for I/O ports
and interrupt lines. The DMA channel registry is similar to the others. After
<asm/dma.h> has been included, the following functions can be used to obtain
and release ownership of a DMA channel:

int request_dma(unsigned int channel, const char *name);
void free_dma(unsigned int channel);

The channel argument is a number between 0 and 7 or, mor e pr ecisely, a posi-
tive number less than MAX_DMA_CHANNELS. On the PC, MAX_DMA_CHANNELS is
defined as 8, to match the hardware. The name argument is a string identifying the
device. The specified name appears in the file /pr oc/dma, which can be read by
user programs.

The retur n value from request_dma is 0 for success and -EINVAL or -EBUSY if
ther e was an error. The former means that the requested channel is out of range,
and the latter means that another device is holding the channel.

We recommend that you take the same care with DMA channels as with I/O ports
and interrupt lines; requesting the channel at open time is much better than
requesting it from the module initialization function. Delaying the request allows
some sharing between drivers; for example, your sound card and your analog I/O
inter face can share the DMA channel as long as they are not used at the same
time.

We also suggest that you request the DMA channel after you’ve requested the
interrupt line and that you release it befor e the interrupt. This is the conventional
order for requesting the two resources; following the convention avoids possible
deadlocks. Note that every device using DMA needs an IRQ line as well; other-
wise, it couldn’t signal the completion of data transfer.

414

22 June 2001 16:42

In a typical case, the code for open looks like the following, which refers to our
hypothetical dad module. The dad device as shown uses a fast interrupt handler
without support for shared IRQ lines.

int dad_open (struct inode *inode, struct file *filp)
{

struct dad_device *my_device;

/* ... */
if ((error = request_irq(my_device.irq, dad_interrupt,

SA_INTERRUPT, "dad", NULL)))
return error; /* or implement blocking open */

if ((error = request_dma(my_device.dma, "dad"))) {
free_irq(my_device.irq, NULL);
return error; /* or implement blocking open */

}
/* ... */
return 0;

}

The close implementation that matches the open just shown looks like this:

void dad_close (struct inode *inode, struct file *filp)
{

struct dad_device *my_device;

/* ... */
free_dma(my_device.dma);
free_irq(my_device.irq, NULL);
/* ... */

}

As far as /pr oc/dma is concerned, here’s how the file looks on a system with the
sound card installed:

merlino% cat /proc/dma
1: Sound Blaster8
4: cascade

It’s interesting to note that the default sound driver gets the DMA channel at sys-
tem boot and never releases it. The cascade entry shown is a placeholder, indi-
cating that channel 4 is not available to drivers, as explained earlier.

Talking to the DMA controller

After registration, the main part of the driver’s job consists of configuring the DMA
contr oller for proper operation. This task is not trivial, but fortunately the kernel
exports all the functions needed by the typical driver.

Direct Memory Access and Bus Mastering

415

22 June 2001 16:42

Chapter 13: mmap and DMA

The driver needs to configure the DMA controller either when read or write is
called, or when preparing for asynchronous transfers. This latter task is perfor med
either at open time or in response to an ioctl command, depending on the driver
and the policy it implements. The code shown here is the code that is typically
called by the read or write device methods.

This subsection provides a quick overview of the internals of the DMA controller
so you will understand the code introduced here. If you want to learn mor e, we’d
urge you to read <asm/dma.h> and some hardware manuals describing the PC
architectur e. In particular, we don’t deal with the issue of 8-bit versus 16-bit data
transfers. If you are writing device drivers for ISA device boards, you should find
the relevant information in the hardware manuals for the devices.

The DMA controller is a shared resource, and confusion could arise if more than
one processor attempts to program it simultaneously. For that reason, the con-
tr oller is protected by a spinlock, called dma_spin_lock. Drivers should not
manipulate the lock directly, however; two functions have been provided to do
that for you:

unsigned long claim_dma_lock();
Acquir es the DMA spinlock. This function also blocks interrupts on the local
pr ocessor; thus the retur n value is the usual ‘‘flags’’ value, which must be used
when reenabling interrupts.

void release_dma_lock(unsigned long flags);
Retur ns the DMA spinlock and restor es the previous interrupt status.

The spinlock should be held when using the functions described next. It should
not be held during the actual I/O, however. A driver should never sleep when
holding a spinlock.

The information that must be loaded into the controller is made up of three items:
the RAM address, the number of atomic items that must be transferred (in bytes or
words), and the direction of the transfer. To this end, the following functions are
exported by <asm/dma.h>:

void set_dma_mode(unsigned int channel, char mode);
Indicates whether the channel must read from the device (DMA_MODE_READ)
or write to it (DMA_MODE_WRITE). A third mode exists, DMA_MODE_CAS-
CADE, which is used to release control of the bus. Cascading is the way the
first controller is connected to the top of the second, but it can also be used
by true ISA bus-master devices. We won’t discuss bus mastering here.

void set_dma_addr(unsigned int channel, unsigned int addr);
Assigns the address of the DMA buffer. The function stores the 24 least signifi-
cant bits of addr in the controller. The addr argument must be a bus addr ess
(see “Bus Addresses” earlier in this chapter).

416

22 June 2001 16:42

void set_dma_count(unsigned int channel, unsigned int
count);

Assigns the number of bytes to transfer. The count argument repr esents bytes
for 16-bit channels as well; in this case, the number must be even.

In addition to these functions, there are a number of housekeeping facilities that
must be used when dealing with DMA devices:

void disable_dma(unsigned int channel);
A DMA channel can be disabled within the controller. The channel should be
disabled before the controller is configured, to prevent improper operation
(the controller is programmed via eight-bit data transfers, and thus none of the
pr evious functions is executed atomically).

void enable_dma(unsigned int channel);
This function tells the controller that the DMA channel contains valid data.

int get_dma_residue(unsigned int channel);
The driver sometimes needs to know if a DMA transfer has been completed.
This function retur ns the number of bytes that are still to be transferred. The
retur n value is 0 after a successful transfer and is unpredictable (but not 0)
while the controller is working. The unpredictability reflects the fact that the
residue is a 16-bit value, which is obtained by two 8-bit input operations.

void clear_dma_ff(unsigned int channel)
This function clears the DMA flip-flop. The flip-flop is used to control access
to 16-bit registers. The registers are accessed by two consecutive 8-bit opera-
tions, and the flip-flop is used to select the least significant byte (when it is
clear) or the most significant byte (when it is set). The flip-flop automatically
toggles when 8 bits have been transferred; the programmer must clear the flip-
flop (to set it to a known state) before accessing the DMA registers.

Using these functions, a driver can implement a function like the following to pre-
par e for a DMA transfer:

int dad_dma_prepare(int channel, int mode, unsigned int buf,
unsigned int count)

{
unsigned long flags;

flags = claim_dma_lock();
disable_dma(channel);
clear_dma_ff(channel);
set_dma_mode(channel, mode);
set_dma_addr(channel, virt_to_bus(buf));
set_dma_count(channel, count);
enable_dma(channel);
release_dma_lock(flags);

Direct Memory Access and Bus Mastering

417

22 June 2001 16:42

Chapter 13: mmap and DMA

return 0;
}

A function like the next one, then, is used to check for successful completion of
DMA:

int dad_dma_isdone(int channel)
{

int residue;
unsigned long flags = claim_dma_lock ();
residue = get_dma_residue(channel);
release_dma_lock(flags);
return (residue == 0);

}

The only thing that remains to be done is to configure the device board. This
device-specific task usually consists of reading or writing a few I/O ports. Devices
dif fer in significant ways. For example, some devices expect the programmer to
tell the hardware how big the DMA buffer is, and sometimes the driver has to read
a value that is hardwired into the device. For configuring the board, the hardware
manual is your only friend.

Backward Compatibility
As with other parts of the kernel, both memory mapping and DMA have seen a
number of changes over the years. This section describes the things a driver writer
must take into account in order to write portable code.

Changes to Memory Management
The 2.3 development series saw major changes in the way memory management
worked. The 2.2 kernel was quite limited in the amount of memory it could use,
especially on 32-bit processors. With 2.4, those limits have been lifted; Linux is
now able to manage all the memory that the processor is able to address. Some
things have had to change to make all this possible; overall, however, the scale of
the changes at the API level is surprisingly small.

As we have seen, the 2.4 kernel makes extensive use of pointers to struct
page to refer to specific pages in memory. This structure has been present in
Linux for a long time, but it was not previously used to refer to the pages them-
selves; instead, the kernel used logical addresses.

Thus, for example, pte_ page retur ned an unsigned long value instead of
struct page *. The virt_to_ page macr o did not exist at all; if you needed to
find a struct page entry you had to go directly to the memory map to get it.
The macro MAP_NR would turn a logical address into an index in mem_map; thus,
the current virt_to_ page macr o could be defined (and, in sysdep.h in the sample
code, is defined) as follows:

418

22 June 2001 16:42

#ifdef MAP_NR
#define virt_to_page(page) (mem_map + MAP_NR(page))
#endif

The MAP_NR macr o went away when virt_to_ page was introduced. The get_ page
macr o also didn’t exist prior to 2.4, so sysdep.h defines it as follows:

#ifndef get_page
define get_page(p) atomic_inc(&(p)->count)
#endif

struct page has also changed with time; in particular, the virtual field is
pr esent in Linux 2.4 only.

The page_table_lock was introduced in 2.3.10. Earlier code would obtain the
‘‘big kernel lock’’ (by calling lock_ker nel and unlock_ker nel) befor e traversing
page tables.

The vm_area_struct structur e saw a number of changes in the 2.3 develop-
ment series, and more in 2.1. These included the following:

• The vm_pgoff field was called vm_offset in 2.2 and before. It was an off-
set in bytes, not pages.

• The vm_private_data field did not exist in Linux 2.2, so drivers had no
way of storing their own information in the VMA. A number of them did so
anyway, using the vm_pte field, but it would be safer to obtain the minor
device number from vm_file and use it to retrieve the needed information.

• The 2.4 kernel initializes the vm_file pointer before calling the mmap
method. In 2.2, drivers had to assign that value themselves, using the file
structur e passed in as an argument.

• The vm_file pointer did not exist at all in 2.0 kernels; instead, there was a
vm_inode pointer pointing to the inode structur e. This field needed to be
assigned by the driver; it was also necessary to increment inode->i_count
in the mmap method.

• The VM_RESERVED flag was added in kernel 2.4.0-test10.

Ther e have also been changes to the the various vm_ops methods stored in the
VMA:

• 2.2 and earlier kernels had a method called advise, which was never actually
used by the kernel. There was also a swapin method, which was used to bring
in memory from backing store; it was not generally of interest to driver writ-
ers.

• The nopage and wppage methods retur ned unsigned long (i.e., a logical
addr ess) in 2.2, rather than struct page *.

Backward Compatibility

419

22 June 2001 16:42

Chapter 13: mmap and DMA

• The NOPAGE_SIGBUS and NOPAGE_OOM retur n codes for nopage did not
exist. nopage simply retur ned 0 to indicate a problem and send a bus signal
to the affected process.

Because nopage used to retur n unsigned long, its job was to retur n the logical
addr ess of the page of interest, rather than its mem_map entry.

Ther e was, of course, no high-memory support in older kernels. All memory had
logical addresses, and the kmap and kunmap functions did not exist.

In the 2.0 kernel, the init_mm structur e was not exported to modules. Thus, a
module that wished to access init_mm had to dig through the task table to find it
(as part of the init pr ocess). When running on a 2.0 kernel, scullp finds init_mm
with this bit of code:

static struct mm_struct *init_mm_ptr;
#define init_mm (*init_mm_ptr) /* to avoid ifdefs later */

static void retrieve_init_mm_ptr(void)
{

struct task_struct *p;

for (p = current ; (p = p->next_task) != current ;)
if (p->pid == 0)

break;

init_mm_ptr = p->mm;
}

The 2.0 kernel also lacked the distinction between logical and physical addresses,
so the _ _va and _ _pa macr os did not exist. There was no need for them at that
time.

Another thing the 2.0 kernel did not have was maintenance of the module’s usage
count in the presence of memory-mapped areas. Drivers that implement mmap
under 2.0 need to provide open and close VMA operations to adjust the usage
count themselves. The sample source modules that implement mmap pr ovide
these operations.

Finally, the 2.0 version of the driver mmap method, like most others, had a
struct inode argument; the method’s prototype was

int (*mmap)(struct inode *inode, struct file *filp,
struct vm_area_struct *vma);

Changes to DMA
The PCI DMA interface as described earlier did not exist prior to kernel 2.3.41.
Befor e then, DMA was handled in a more dir ect—and system-dependent—way.
Buf fers wer e ‘‘mapped’’ by calling virt_to_bus, and there was no general interface
for handling bus-mapping registers.

420

22 June 2001 16:42

For those who need to write portable PCI drivers, sysdep.h in the sample code
includes a simple implementation of the 2.4 DMA interface that may be used on
older kernels.

The ISA interface, on the other hand, is almost unchanged since Linux 2.0. ISA is
an old architectur e, after all, and there have not been a whole lot of changes to
keep up with. The only addition was the DMA spinlock in 2.2; prior to that kernel,
ther e was no need to protect against conflicting access to the DMA controller. Ver-
sions of these functions have been defined in sysdep.h; they disable and restor e
interrupts, but perfor m no other function.

Quick Reference
This chapter introduced the following symbols related to memory handling. The
list doesn’t include the symbols introduced in the first section, as that section is a
huge list in itself and those symbols are rar ely useful to device drivers.

#include <linux/mm.h>
All the functions and structures related to memory management are proto-
typed and defined in this header.

int remap_page_range(unsigned long virt_add, unsigned long
phys_add, unsigned long size, pgprot_t prot);

This function sits at the heart of mmap. It maps size bytes of physical
addr esses, starting at phys_addr, to the virtual address virt_add. The pro-
tection bits associated with the virtual space are specified in prot.

struct page *virt_to_page(void *kaddr);
void *page_address(struct page *page);

These macros convert between kernel logical addresses and their associated
memory map entries. page_addr ess only works for low-memory pages, or
high-memory pages that have been explicitly mapped.

void *__va(unsigned long physaddr);
unsigned long __pa(void *kaddr);

These macros convert between kernel logical addresses and physical
addr esses.

unsigned long kmap(struct page *page);
void kunmap(struct page *page);

kmap retur ns a ker nel virtual address that is mapped to the given page, creat-
ing the mapping if need be. kunmap deletes the mapping for the given page.

Quick Reference

421

22 June 2001 16:42

Chapter 13: mmap and DMA

#include <linux/iobuf.h>
void kiobuf_init(struct kiobuf *iobuf);
int alloc_kiovec(int number, struct kiobuf **iobuf);
void free_kiovec(int number, struct kiobuf **iobuf);

These functions handle the allocation, initialization, and freeing of kernel I/O
buf fers. kiobuf_init initializes a single kiobuf, but is rarely used; alloc_kiovec,
which allocates and initializes a vector of kiobufs, is usually used instead. A
vector of kiobufs is freed with fr ee_kiovec.

int lock_kiovec(int nr, struct kiobuf *iovec[], int wait);
int unlock_kiovec(int nr, struct kiobuf *iovec[]);

These functions lock a kiovec in memory, and release it. They are unnecessary
when using kiobufs for I/O to user-space memory.

int map_user_kiobuf(int rw, struct kiobuf *iobuf, unsigned
long address, size_t len);

void unmap_kiobuf(struct kiobuf *iobuf);
map_user_kiobuf maps a buffer in user space into the given kernel I/O buffer;
unmap_kiobuf undoes that mapping.

#include <asm/io.h>
unsigned long virt_to_bus(volatile void * address);
void * bus_to_virt(unsigned long address);

These functions convert between kernel virtual and bus addresses. Bus
addr esses must be used to talk to peripheral devices.

#include <linux/pci.h>
The header file requir ed to define the following functions.

int pci_dma_supported(struct pci_dev *pdev, dma_addr_t
mask);

For peripherals that cannot address the full 32-bit range, this function deter-
mines whether DMA can be supported at all on the host system.

void *pci_alloc_consistent(struct pci_dev *pdev, size_t
size, dma_addr_t *bus_addr)

void pci_free_consistent(struct pci_dev *pdev, size_t size,
void *cpuaddr, dma_handle_t bus_addr);

These functions allocate and free consistent DMA mappings, for a buffer that
will last the lifetime of the driver.

PCI_DMA_TODEVICE
PCI_DMA_FROMDEVICE
PCI_DMA_BIDIRECTIONAL
PCI_DMA_NONE

These symbols are used to tell the streaming mapping functions the direction
in which data will be moving to or from the buffer.

422

22 June 2001 16:42

dma_addr_t pci_map_single(struct pci_dev *pdev, void
*buffer, size_t size, int direction);

void pci_unmap_single(struct pci_dev *pdev, dma_addr_t
bus_addr, size_t size, int direction);

Cr eate and destroy a single-use, streaming DMA mapping.

void pci_sync_single(struct pci_dev *pdev, dma_handle_t
bus_addr, size_t size, int direction)

Synchr onizes a buf fer that has a streaming mapping. This function must be
used if the processor must access a buffer while the streaming mapping is in
place (i.e., while the device owns the buffer).

struct scatterlist { /* . . . */ };
dma_addr_t sg_dma_address(struct scatterlist *sg);
unsigned int sg_dma_len(struct scatterlist *sg);

The scatterlist structur e describes an I/O operation that involves more
than one buffer. The macros sg_dma_addr ess and sg_dma_len may be used to
extract bus addresses and buffer lengths to pass to the device when imple-
menting scatter-gather operations.

pci_map_sg(struct pci_dev *pdev, struct scatterlist *list,
int nents, int direction);

pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *list,
int nents, int direction);

pci_dma_sync_sg(struct pci_dev *pdev, struct scatterlist
*sg, int nents, int direction)

pci_map_sg maps a scatter-gather operation, and pci_unmap_sg undoes that
mapping. If the buffers must be accessed while the mapping is active,
pci_dma_sync_sg may be used to synchronize things.

/proc/dma
This file contains a textual snapshot of the allocated channels in the DMA con-
tr ollers. PCI-based DMA is not shown because each board works indepen-
dently, without the need to allocate a channel in the DMA controller.

#include <asm/dma.h>
This header defines or prototypes all the functions and macros related to
DMA. It must be included to use any of the following symbols.

int request_dma(unsigned int channel, const char *name);
void free_dma(unsigned int channel);

These functions access the DMA registry. Registration must be perfor med
befor e using ISA DMA channels.

Quick Reference

423

22 June 2001 16:42

Chapter 13: mmap and DMA

unsigned long claim_dma_lock();
void release_dma_lock(unsigned long flags);

These functions acquire and release the DMA spinlock, which must be held
prior to calling the other ISA DMA functions described later in this list. They
also disable and reenable interrupts on the local processor.

void set_dma_mode(unsigned int channel, char mode);
void set_dma_addr(unsigned int channel, unsigned int addr);
void set_dma_count(unsigned int channel, unsigned int

count);
These functions are used to program DMA information in the DMA controller.
addr is a bus address.

void disable_dma(unsigned int channel);
void enable_dma(unsigned int channel);

A DMA channel must be disabled during configuration. These functions
change the status of the DMA channel.

int get_dma_residue(unsigned int channel);
If the driver needs to know how a DMA transfer is proceeding, it can call this
function, which retur ns the number of data transfers that are yet to be com-
pleted. After successful completion of DMA, the function retur ns 0; the value
is unpredictable while data is being transferred.

void clear_dma_ff(unsigned int channel)
The DMA flip-flop is used by the controller to transfer 16-bit values by means
of two 8-bit operations. It must be cleared before sending any data to the con-
tr oller.

424

22 June 2001 16:42

