
CHAPTER TWELVE

LOADING BLOCK
DRIVERS

Our discussion thus far has been limited to char drivers. As we have already men-
tioned, however, char drivers are not the only type of driver used in Linux sys-
tems. Here we tur n our attention to block drivers. Block drivers provide access to
block-oriented devices—those that transfer data in randomly accessible, fixed-size
blocks. The classic block device is a disk drive, though others exist as well.

The char driver interface is relatively clean and easy to use; the block interface,
unfortunately, is a little messier. Ker nel developers like to complain about it. There
ar e two reasons for this state of affairs. The first is simple history—the block inter-
face has been at the core of every version of Linux since the first, and it has
pr oved hard to change. The other reason is perfor mance. A slow char driver is an
undesirable thing, but a slow block driver is a drag on the entire system. As a
result, the design of the block interface has often been influenced by the need for
speed.

The block driver interface has evolved significantly over time. As with the rest of
the book, we cover the 2.4 interface in this chapter, with a discussion of the
changes at the end. The example drivers work on all kernels between 2.0 and 2.4,
however.

This chapter explores the creation of block drivers with two new example drivers.
The first, sbull (Simple Block Utility for Loading Localities) implements a block
device using system memory—a RAM-disk driver, essentially. Later on, we’ll intro-
duce a variant called spull as a way of showing how to deal with partition tables.

As always, these example drivers gloss over many of the issues found in real block
drivers; their purpose is to demonstrate the interface that such drivers must work
with. Real drivers will have to deal with hardware, so the material covered in
Chapter 8 and Chapter 9 will be useful as well.
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Chapter 12: Loading Block Driver s

One quick note on terminology: the word block as used in this book refers to a
block of data as determined by the kernel. The size of blocks can be differ ent in
dif ferent disks, though they are always a power of two. A sector is a fixed-size unit
of data as determined by the underlying hardware. Sectors are almost always 512
bytes long.

Reg istering the Driver
Like char drivers, block drivers in the kernel are identified by major numbers.
Block major numbers are entir ely distinct from char major numbers, however. A
block device with major number 32 can coexist with a char device using the same
major number since the two ranges are separate.

The functions for registering and unregistering block devices look similar to those
for char devices:

#include <linux/fs.h>
int register_blkdev(unsigned int major, const char *name,

struct block_device_operations *bdops);
int unregister_blkdev(unsigned int major, const char *name);

The arguments have the same general meaning as for char devices, and major
numbers can be assigned dynamically in the same way. So the sbull device regis-
ters itself in almost exactly the same way as scull did:

result = register_blkdev(sbull_major, "sbull", &sbull_bdops);
if (result < 0) {

printk(KERN_WARNING "sbull: can’t get major %d\n",sbull_major);
return result;

}
if (sbull_major == 0) sbull_major = result; /* dynamic */
major = sbull_major; /* Use ‘major’ later on to save typing */

The similarity stops here, however. One differ ence is already evident: regis-
ter_chr dev took a pointer to a file_operations structur e, but register_blkdev
uses a structure of type block_device_operations instead — as it has since
ker nel version 2.3.38. The structure is still sometimes referr ed to by the name
fops in block drivers; we’ll call it bdops to be more faithful to what the structure
is and to follow the suggested naming. The definition of this structure is as fol-
lows:

struct block_device_operations {
int (*open) (struct inode *inode, struct file *filp);
int (*release) (struct inode *inode, struct file *filp);
int (*ioctl) (struct inode *inode, struct file *filp,

unsigned command, unsigned long argument);
int (*check_media_change) (kdev_t dev);
int (*revalidate) (kdev_t dev);

};
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The open, release, and ioctl methods listed here are exactly the same as their char
device counterparts. The other two methods are specific to block devices and are
discussed later in this chapter. Note that there is no owner field in this structure;
block drivers must still maintain their usage count manually, even in the 2.4 ker-
nel.

The bdops structur e used in sbull is as follows:

struct block_device_operations sbull_bdops = {
open: sbull_open,
release: sbull_release,
ioctl: sbull_ioctl,
check_media_change: sbull_check_change,
revalidate: sbull_revalidate,

};

Note that there are no read or write operations provided in the
block_device_operations structur e. All I/O to block devices is normally
buf fered by the system (the only exception is with ‘‘raw’’ devices, which we cover
in the next chapter); user processes do not perfor m dir ect I/O to these devices.
User-mode access to block devices usually is implicit in filesystem operations they
per form, and those operations clearly benefit from I/O buffering. However, even
‘‘dir ect’’ I/O to a block device, such as when a filesystem is created, goes through
the Linux buffer cache.* As a result, the kernel provides a single set of read and
write functions for block devices, and drivers do not need to worry about them.

Clearly, a block driver must eventually provide some mechanism for actually doing
block I/O to a device. In Linux, the method used for these I/O operations is called
request; it is the equivalent of the ‘‘strategy’’ function found on many Unix sys-
tems. The request method handles both read and write operations and can be
somewhat complex. We will get into the details of request shortly.

For the purposes of block device registration, however, we must tell the kernel
wher e our request method is. This method is not kept in the
block_device_operations structur e, for both historical and perfor mance rea-
sons; instead, it is associated with the queue of pending I/O operations for the
device. By default, there is one such queue for each major number. A block driver
must initialize that queue with blk_init_queue. Queue initialization and cleanup is
defined as follows:

#include <linux/blkdev.h>
blk_init_queue(request_queue_t *queue, request_fn_proc *request);
blk_cleanup_queue(request_queue_t *queue);

* Actually, the 2.3 development series added the raw I/O capability, allowing user pro-
cesses to write to block devices without involving the buffer cache. Block drivers, how-
ever, are entir ely unawar e of raw I/O, so we defer the discussion of that facility to the
next chapter.

Reg istering the Driver
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The init function sets up the queue, and associates the driver’s request function
(passed as the second parameter) with the queue. It is necessary to call
blk_cleanup_queue at module cleanup time. The sbull driver initializes its queue
with this line of code:

blk_init_queue(BLK_DEFAULT_QUEUE(major), sbull_request);

Each device has a request queue that it uses by default; the macro
BLK_DEFAULT_QUEUE(major) is used to indicate that queue when needed.
This macro looks into a global array of blk_dev_struct structur es called
blk_dev, which is maintained by the kernel and indexed by major number. The
structur e looks like this:

struct blk_dev_struct {
request_queue_t request_queue;
queue_proc *queue;
void *data;

};

The request_queue member contains the I/O request queue that we have just
initialized. We will look at the queue member shortly. The data field may be
used by the driver for its own data—but few drivers do so.

Figur e 12-1 visualizes the main steps a driver module perfor ms to register with the
ker nel pr oper and deregister. If you compare this figure with Figure 2-1, similari-
ties and differ ences should be clear.

In addition to blk_dev, several other global arrays hold information about block
drivers. These arrays are indexed by the major number, and sometimes also the
minor number. They are declar ed and described in drivers/block/ll_rw_block.c.

int blk_size[][];
This array is indexed by the major and minor numbers. It describes the size of
each device, in kilobytes. If blk_size[major] is NULL, no checking is per-
for med on the size of the device (i.e., the kernel might request data transfers
past end-of-device).

int blksize_size[][];
The size of the block used by each device, in bytes. Like the previous one,
this bidimensional array is indexed by both major and minor numbers. If
blksize_size[major] is a null pointer, a block size of BLOCK_SIZE (cur-
rently 1 KB) is assumed. The block size for the device must be a power of
two, because the kernel uses bit-shift operators to convert offsets to block
numbers.

int hardsect_size[][];
Like the others, this data structure is indexed by the major and minor num-
bers. The default value for the hardware sector size is 512 bytes. With the 2.2
and 2.4 kernels, differ ent sector sizes are supported, but they must always be
a power of two greater than or equal to 512 bytes.
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Figur e 12-1. Registering a Block Device Driver

int read_ahead[];
int max_readahead[][];

These arrays define the number of sectors to be read in advance by the kernel
when a file is being read sequentially. read_ahead applies to all devices of
a given type and is indexed by major number; max_readahead applies to
individual devices and is indexed by both the major and minor numbers.

Reg istering the Driver
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Reading data before a process asks for it helps system perfor mance and over-
all throughput. A slower device should specify a bigger read-ahead value,
while fast devices will be happy even with a smaller value. The bigger the
read-ahead value, the more memory the buffer cache uses.

The primary differ ence between the two arrays is this: read_ahead is
applied at the block I/O level and controls how many blocks may be read
sequentially fr om the disk ahead of the current request. max_readahead
works at the filesystem level and refers to blocks in the file, which may not be
sequential on disk. Kernel development is moving toward doing read ahead at
the filesystem level, rather than at the block I/O level. In the 2.4 kernel, how-
ever, read ahead is still done at both levels, so both of these arrays are used.

Ther e is one read_ahead[] value for each major number, and it applies to
all its minor numbers. max_readahead, instead, has a value for every device.
The values can be changed via the driver’s ioctl method; hard-disk drivers usu-
ally set read_ahead to 8 sectors, which corresponds to 4 KB. The
max_readahead value, on the other hand, is rarely set by the drivers; it
defaults to MAX_READAHEAD, curr ently 31 pages.

int max_sectors[][];
This array limits the maximum size of a single request. It should normally be
set to the largest transfer that your hardware can handle.

int max_segments[];
This array controlled the number of individual segments that could appear in a
cluster ed request; it was removed just before the release of the 2.4 kernel,
however. (See “Clustered Requests” later in this chapter for information on
cluster ed requests).

The sbull device allows you to set these values at load time, and they apply to all
the minor numbers of the sample driver. The variable names and their default val-
ues in sbull ar e as follows:

size=2048 (kilobytes)
Each RAM disk created by sbull takes two megabytes of RAM.

blksize=1024 (bytes)
The software ‘‘block’’ used by the module is one kilobyte, like the system
default.

hardsect=512 (bytes)
The sbull sector size is the usual half-kilobyte value.

rahead=2 (sectors)
Because the RAM disk is a fast device, the default read-ahead value is small.

The sbull device also allows you to choose the number of devices to install. devs,
the number of devices, defaults to 2, resulting in a default memory usage of four
megabytes — two disks at two megabytes each.

326

22 June 2001 16:41



The initialization of these arrays in sbull is done as follows:

read_ahead[major] = sbull_rahead;
result = -ENOMEM; /* for the possible errors */

sbull_sizes = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
if (!sbull_sizes)

goto fail_malloc;
for (i=0; i < sbull_devs; i++) /* all the same size */

sbull_sizes[i] = sbull_size;
blk_size[major]=sbull_sizes;

sbull_blksizes = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
if (!sbull_blksizes)

goto fail_malloc;
for (i=0; i < sbull_devs; i++) /* all the same blocksize */

sbull_blksizes[i] = sbull_blksize;
blksize_size[major]=sbull_blksizes;

sbull_hardsects = kmalloc(sbull_devs * sizeof(int), GFP_KERNEL);
if (!sbull_hardsects)

goto fail_malloc;
for (i=0; i < sbull_devs; i++) /* all the same hardsect */

sbull_hardsects[i] = sbull_hardsect;
hardsect_size[major]=sbull_hardsects;

For brevity, the error handling code (the target of the fail_malloc goto) has
been omitted; it simply frees anything that was successfully allocated, unregisters
the device, and retur ns a failur e status.

One last thing that must be done is to register every ‘‘disk’’ device provided by the
driver. sbull calls the necessary function (register_disk) as follows:

for (i = 0; i < sbull_devs; i++)
register_disk(NULL, MKDEV(major, i), 1, &sbull_bdops,

sbull_size << 1);

In the 2.4.0 kernel, register_disk does nothing when invoked in this manner. The
real purpose of register_disk is to set up the partition table, which is not supported
by sbull. All block drivers, however, make this call whether or not they support
partitions, indicating that it may become necessary for all block devices in the
futur e. A block driver without partitions will work without this call in 2.4.0, but it
is safer to include it. We revisit register_disk in detail later in this chapter, when we
cover partitions.

The cleanup function used by sbull looks like this:

for (i=0; i<sbull_devs; i++)
fsync_dev(MKDEV(sbull_major, i)); /* flush the devices */

unregister_blkdev(major, "sbull");
/*
* Fix up the request queue(s)

Reg istering the Driver
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*/
blk_cleanup_queue(BLK_DEFAULT_QUEUE(major));

/* Clean up the global arrays */
read_ahead[major] = 0;
kfree(blk_size[major]);
blk_size[major] = NULL;
kfree(blksize_size[major]);
blksize_size[major] = NULL;
kfree(hardsect_size[major]);
hardsect_size[major] = NULL;

Her e, the call to fsync_dev is needed to free all refer ences to the device that the
ker nel keeps in various caches. fsync_dev is the implementation of block_fsync,
which is the fsync ‘‘method’’ for block devices.

The Header File blk.h
All block drivers should include the header file <linux/blk.h>. This file defines
much of the common code that is used in block drivers, and it provides functions
for dealing with the I/O request queue.

Actually, the blk.h header is quite unusual, because it defines several symbols
based on the symbol MAJOR_NR, which must be declared by the driver befor e it
includes the header. This convention was developed in the early days of Linux,
when all block devices had preassigned major numbers and modular block drivers
wer e not supported.

If you look at blk.h, you’ll see that several device-dependent symbols are declar ed
according to the value of MAJOR_NR, which is expected to be known in advance.
However, if the major number is dynamically assigned, the driver has no way to
know its assigned number at compile time and cannot correctly define MAJOR_NR.
If MAJOR_NR is undefined, blk.h can’t set up some of the macros used with the
request queue. Fortunately, MAJOR_NR can be defined as an integer variable and
all will work fine for add-on block drivers.

blk.h makes use of some other predefined, driver-specific symbols as well. The
following list describes the symbols in <linux/blk.h> that must be defined in
advance; at the end of the list, the code used in sbull is shown.

MAJOR_NR
This symbol is used to access a few arrays, in particular blk_dev and blk-
size_size. A custom driver like sbull, which is unable to assign a constant
value to the symbol, should #define it to the variable holding the major
number. For sbull, this is sbull_major.
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DEVICE_NAME
The name of the device being created. This string is used in printing error
messages.

DEVICE_NR(kdev_t device)
This symbol is used to extract the ordinal number of the physical device from
the kdev_t device number. This symbol is used in turn to declar e CUR-
RENT_DEV, which can be used within the request function to determine
which hardware device owns the minor number involved in a transfer request.

The value of this macro can be MINOR(device) or another expression,
according to the convention used to assign minor numbers to devices and par-
titions. The macro should retur n the same device number for all partitions on
the same physical device—that is, DEVICE_NR repr esents the disk number,
not the partition number. Partitionable devices are intr oduced later in this
chapter.

DEVICE_INTR
This symbol is used to declare a pointer variable that refers to the current bot-
tom-half handler. The macros SET_INTR(intr) and CLEAR_INTR ar e used
to assign the variable. Using multiple handlers is convenient when the device
can issue interrupts with differ ent meanings.

DEVICE_ON(kdev_t device)
DEVICE_OFF(kdev_t device)

These macros are intended to help devices that need to perfor m pr ocessing
befor e or after a set of transfers is perfor med; for example, they could be used
by a floppy driver to start the drive motor before I/O and to stop it afterward.
Moder n drivers no longer use these macros, and DEVICE_ON does not even
get called anymore. Portable drivers, though, should define them (as empty
symbols), or compilation errors will result on 2.0 and 2.2 kernels.

DEVICE_NO_RANDOM
By default, the function end_r equest contributes to system entropy (the
amount of collected ‘‘randomness’’), which is used by /dev/random. If the
device isn’t able to contribute significant entropy to the random device,
DEVICE_NO_RANDOM should be defined. /dev/random was introduced in
“Installing an Interrupt Handler” in Chapter 9, where SA_SAMPLE_RANDOM
was explained.

DEVICE_REQUEST
Used to specify the name of the request function used by the driver. The only
ef fect of defining DEVICE_REQUEST is to cause a forward declaration of the
request function to be done; it is a holdover from older times, and most (or
all) drivers can leave it out.

The Header File blk.h
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The sbull driver declares the symbols in the following way:

#define MAJOR_NR sbull_major /* force definitions on in blk.h */
static int sbull_major; /* must be declared before including blk.h */

#define DEVICE_NR(device) MINOR(device) /* has no partition bits */
#define DEVICE_NAME "sbull" /* name for messaging */
#define DEVICE_INTR sbull_intrptr /* pointer to bottom half */
#define DEVICE_NO_RANDOM /* no entropy to contribute */
#define DEVICE_REQUEST sbull_request
#define DEVICE_OFF(d) /* do-nothing */

#include <linux/blk.h>

#include "sbull.h" /* local definitions */

The blk.h header uses the macros just listed to define some additional macros
usable by the driver. We’ll describe those macros in the following sections.

Handling Requests: A Simple
Introduction
The most important function in a block driver is the request function, which per-
for ms the low-level operations related to reading and writing data. This section
discusses the basic design of the request pr ocedure.

The Request Queue
When the kernel schedules a data transfer, it queues the request in a list, ordered
in such a way that it maximizes system perfor mance. The queue of requests is
then passed to the driver’s request function, which has the following prototype:

void request_fn(request_queue_t *queue);

The request function should perfor m the following tasks for each request in the
queue:

1. Check the validity of the request. This test is perfor med by the macro
INIT_REQUEST, defined in blk.h; the test consists of looking for problems
that could indicate a bug in the system’s request queue handling.

2. Perfor m the actual data transfer. The CURRENT variable (a macro, actually) can
be used to retrieve the details of the current request. CURRENT is a pointer to
struct request, whose fields are described in the next section.
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3. Clean up the request just processed. This operation is perfor med by
end_r equest, a static function whose code resides in blk.h. end_r equest han-
dles the management of the request queue and wakes up processes waiting
on the I/O operation. It also manages the CURRENT variable, ensuring that it
points to the next unsatisfied request. The driver passes the function a single
argument, which is 1 in case of success and 0 in case of failure. When
end_r equest is called with an argument of 0, an ‘‘I/O error’’ message is deliv-
er ed to the system logs (via printk).

4. Loop back to the beginning, to consume the next request.

Based on the previous description, a minimal request function, which does not
actually transfer any data, would look like this:

void sbull_request(request_queue_t *q)
{

while(1) {
INIT_REQUEST;
printk("<1>request %p: cmd %i sec %li (nr. %li)\n", CURRENT,

CURRENT->cmd,
CURRENT->sector,
CURRENT->current_nr_sectors);

end_request(1); /* success */
}

}

Although this code does nothing but print messages, running this function pro-
vides good insight into the basic design of data transfer. It also demonstrates a
couple of features of the macros defined in <linux/blk.h>. The first is that,
although the while loop looks like it will never terminate, the fact is that the
INIT_REQUEST macr o per forms a return when the request queue is empty.
The loop thus iterates over the queue of outstanding requests and then retur ns
fr om the request function. Second, the CURRENT macr o always describes the
request to be processed. We get into the details of CURRENT in the next section.

A block driver using the request function just shown will actually work—for a
short while. It is possible to make a filesystem on the device and access it for as
long as the data remains in the system’s buffer cache.

This empty (but verbose) function can still be run in sbull by defining the symbol
SBULL_EMPTY_REQUEST at compile time. If you want to understand how the
ker nel handles differ ent block sizes, you can experiment with blksize= on the
insmod command line. The empty request function shows the internal workings of
the kernel by printing the details of each request.

The request function has one very important constraint: it must be atomic. request
is not usually called in direct response to user requests, and it is not running in the
context of any particular process. It can be called at interrupt time, from tasklets,
or from any number of other places. Thus, it must not sleep while carrying out its
tasks.

Handling Requests: A Simple Introduction
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Perfor ming the Actual Data Transfer
To understand how to build a working request function for sbull, let’s look at how
the kernel describes a request within a struct request. The structure is
defined in <linux/blkdev.h>. By accessing the fields in the request struc-
tur e, usually by way of CURRENT, the driver can retrieve all the information
needed to transfer data between the buffer cache and the physical block device.*
CURRENT is just a pointer into blk_dev[MAJOR_NR].request_queue. The
following fields of a request hold information that is useful to the request function:

kdev_t rq_dev;
The device accessed by the request. By default, the same request function is
used for every device managed by the driver. A single request function deals
with all the minor numbers; rq_dev can be used to extract the minor device
being acted upon. The CURRENT_DEV macr o is simply defined as
DEVICE_NR(CURRENT->rq_dev).

int cmd;
This field describes the operation to be perfor med; it is either READ (fr om the
device) or WRITE (to the device).

unsigned long sector;
The number of the first sector to be transferred in this request.

unsigned long current_nr_sectors;
unsigned long nr_sectors;

The number of sectors to transfer for the current request. The driver should
refer to current_nr_sectors and ignore nr_sectors (which is listed
her e just for completeness). See “Clustered Requests” later in this chapter for
mor e detail on nr_sectors.

char *buffer;
The area in the buffer cache to which data should be written (cmd==READ) or
fr om which data should be read (cmd==WRITE).

struct buffer_head *bh;
The structure describing the first buffer in the list for this request. Buffer heads
ar e used in the management of the buffer cache; we’ll look at them in detail
shortly in “The request structure and the buffer cache.”

Ther e ar e other fields in the structure, but they are primarily meant for internal use
in the kernel; the driver is not expected to use them.

* Actually, not all blocks passed to a block driver need be in the buffer cache, but that’s a
topic beyond the scope of this chapter.
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The implementation for the working request function in the sbull device is shown
her e. In the following code, the Sbull_Dev serves the same function as
Scull_Dev, intr oduced in “scull’s Memory Usage” in Chapter 3.

void sbull_request(request_queue_t *q)
{

Sbull_Dev *device;
int status;

while(1) {
INIT_REQUEST; /* returns when queue is empty */

/* Which "device" are we using? */
device = sbull_locate_device (CURRENT);
if (device == NULL) {

end_request(0);
continue;

}

/* Perform the transfer and clean up. */
spin_lock(&device->lock);
status = sbull_transfer(device, CURRENT);
spin_unlock(&device->lock);
end_request(status);

}
}

This code looks little differ ent fr om the empty version shown earlier; it concerns
itself with request queue management and pushes off the real work to other func-
tions. The first, sbull_locate_device, looks at the device number in the request and
finds the right Sbull_Dev structur e:

static Sbull_Dev *sbull_locate_device(const struct request *req)
{

int devno;
Sbull_Dev *device;

/* Check if the minor number is in range */
devno = DEVICE_NR(req->rq_dev);
if (devno >= sbull_devs) {

static int count = 0;
if (count++ < 5) /* print the message at most five times */

printk(KERN_WARNING "sbull: request for unknown device\n");
return NULL;

}
device = sbull_devices + devno; /* Pick it out of device array */
return device;

}

The only ‘‘strange’’ feature of the function is the conditional statement that limits it
to reporting five errors. This is intended to avoid clobbering the system logs with
too many messages, since end_request(0) alr eady prints an ‘‘I/O error’’

Handling Requests: A Simple Introduction
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message when the request fails. The static counter is a standard way to limit
message reporting and is used several times in the kernel.

The actual I/O of the request is handled by sbull_transfer:

static int sbull_transfer(Sbull_Dev *device, const struct request *req)
{

int size;
u8 *ptr;

ptr = device->data + req->sector * sbull_hardsect;
size = req->current_nr_sectors * sbull_hardsect;

/* Make sure that the transfer fits within the device. */
if (ptr + size > device->data + sbull_blksize*sbull_size) {

static int count = 0;
if (count++ < 5)

printk(KERN_WARNING "sbull: request past end of device\n");
return 0;

}

/* Looks good, do the transfer. */
switch(req->cmd) {

case READ:
memcpy(req->buffer, ptr, size); /* from sbull to buffer */
return 1;

case WRITE:
memcpy(ptr, req->buffer, size); /* from buffer to sbull */
return 1;

default:
/* can’t happen */
return 0;

}
}

Since sbull is just a RAM disk, its ‘‘data transfer’’ reduces to a memcpy call.

Handling Requests: The Detailed View
The sbull driver as described earlier works very well. In simple situations (as with
sbull), the macros from <linux/blk.h> can be used to easily set up a request
function and get a working driver. As has already been mentioned, however, block
drivers are often a perfor mance-critical part of the kernel. Drivers based on the
simple code shown earlier will likely not perfor m very well in many situations,
and can also be a drag on the system as a whole. In this section we get into the
details of how the I/O request queue works with an eye toward writing a faster,
mor e ef ficient driver.
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The I/O Request Queue
Each block driver works with at least one I/O request queue. This queue contains,
at any given time, all of the I/O operations that the kernel would like to see done
on the driver’s devices. The management of this queue is complicated; the perfor-
mance of the system depends on how it is done.

The queue is designed with physical disk drives in mind. With disks, the amount
of time requir ed to transfer a block of data is typically quite small. The amount of
time requir ed to position the head (seek) to do that transfer, however, can be very
large. Thus the Linux kernel works to minimize the number and extent of the
seeks perfor med by the device.

Two things are done to achieve those goals. One is the clustering of requests to
adjacent sectors on the disk. Most modern filesystems will attempt to lay out files
in consecutive sectors; as a result, requests to adjoining parts of the disk are com-
mon. The kernel also applies an ‘‘elevator’’ algorithm to the requests. An elevator
in a skyscraper is either going up or down; it will continue to move in those direc-
tions until all of its ‘‘requests’’ (people wanting on or off) have been satisfied. In
the same way, the kernel tries to keep the disk head moving in the same direction
for as long as possible; this approach tends to minimize seek times while ensuring
that all requests get satisfied eventually.

A Linux I/O request queue is repr esented by a structure of type request_queue,
declar ed in <linux/blkdev.h>. The request_queue structur e looks some-
what like file_operations and other such objects, in that it contains pointers
to a number of functions that operate on the queue—for example, the driver’s
request function is stored there. There is also a queue head (using the functions
fr om <linux/list.h> described in “Linked Lists” in Chapter 10), which points
to the list of outstanding requests to the device.

These requests are, of course, of type struct request; we have already looked
at some of the fields in this structure. The reality of the request structur e is a lit-
tle more complicated, however; understanding it requir es a brief digression into
the structure of the Linux buffer cache.

The request structure and the buffer cache

The design of the request structur e is driven by the Linux memory management
scheme. Like most Unix-like systems, Linux maintains a buf fer cache, a region of
memory that is used to hold copies of blocks stored on disk. A great many “disk”
operations perfor med at higher levels of the kernel — such as in the filesystem
code — act only on the buffer cache and do not generate any actual I/O opera-
tions. Through aggressive caching the kernel can avoid many read operations alto-
gether, and multiple writes can often be merged into a single physical write to
disk.
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One unavoidable aspect of the buffer cache, however, is that blocks that are adja-
cent on disk are almost certainly not adjacent in memory. The buffer cache is a
dynamic thing, and blocks end up being scattered widely. In order to keep track
of everything, the kernel manages the buffer cache through buffer_head struc-
tur es. One buffer_head is associated with each data buffer. This structure con-
tains a great many fields, most of which do not concern a driver writer. Ther e ar e
a few that are important, however, including the following:

char *b_data;
The actual data block associated with this buffer head.

unsigned long b_size;
The size of the block pointed to by b_data.

kdev_t b_rdev;
The device holding the block repr esented by this buffer head.

unsigned long b_rsector;
The sector number where this block lives on disk.

struct buffer_head *b_reqnext;
A pointer to a linked list of buffer head structures in the request queue.

void (*b_end_io)(struct buffer_head *bh, int uptodate);
A pointer to a function to be called when I/O on this buffer completes. bh is
the buffer head itself, and uptodate is nonzero if the I/O was successful.

Every block passed to a driver’s request function either lives in the buffer cache,
or, on rar e occasion, lives elsewhere but has been made to look as if it lived in the
buf fer cache.* As a result, every request passed to the driver deals with one or
mor e buffer_head structur es. The request structur e contains a member
(called simply bh) that points to a linked list of these structures; satisfying the
request requir es per forming the indicated I/O operation on each buffer in the list.
Figur e 12-2 shows how the request queue and buffer_head structur es fit
together.

Requests are not made of random lists of buffers; instead, all of the buffer heads
attached to a single request will belong to a series of adjacent blocks on the disk.
Thus a request is, in a sense, a single operation referring to a (perhaps long)
gr oup of blocks on the disk. This grouping of blocks is called clustering, and we
will look at it in detail after completing our discussion of how the request list
works.

* The RAM-disk driver, for example, makes its memory look as if it were in the buffer
cache. Since the ‘‘disk’’ buffer is already in system RAM, there’s no need to keep a copy
in the buffer cache. Our sample code is thus much less efficient than a properly imple-
mented RAM disk, not being concerned with RAM-disk-specific perfor mance issues.
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Figur e 12-2. Buffers in the I/O Request Queue

Request queue manipulation

The header <linux/blkdev.h> defines a small number of functions that manip-
ulate the request queue, most of which are implemented as prepr ocessor macr os.
Not all drivers will need to work with the queue at this level, but a familiarity with
how it all works can be helpful. Most request queue functions will be introduced
as we need them, but a few are worth mentioning here.

struct request *blkdev_entry_next_request(struct list_head
*head);

Retur ns the next entry in the request list. Usually the head argument is the
queue_head member of the request_queue structur e; in this case the
function retur ns the first entry in the queue. The function uses the list_entry
macr o to look in the list.

struct request *blkdev_next_request(struct request *req);
struct request *blkdev_prev_request(struct request *req);

Given a request structure, retur n the next or previous structure in the request
queue.
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blkdev_dequeue_request(struct request *req);
Removes a request from its request queue.

blkdev_release_request(struct request *req);
Releases a request structure back to the kernel when it has been completely
executed. Each request queue maintains its own free list of request structures
(two, actually: one for reads and one for writes); this function places a struc-
tur e back on the proper free list. blkdev_r elease_r equest will also wake up any
pr ocesses that are waiting on a free request structure.

All of these functions requir e that the io_request_lock be held, which we will
discuss next.

The I/O request lock

The I/O request queue is a complex data structure that is accessed in many places
in the kernel. It is entirely possible that the kernel needs to add more requests to
the queue at the same time that your driver is taking requests off. The queue is
thus subject to the usual sort of race conditions, and must be protected accord-
ingly.

In Linux 2.2 and 2.4, all request queues are protected with a single global spinlock
called io_request_lock. Any code that manipulates a request queue must hold
that lock and disable interrupts, with one small exception: the very first entry in
the request queue is (by default) considered to be owned by the driver. Failur e to
acquir e the io_request_lock prior to working with the request queue can
cause the queue to be corrupted, with a system crash following shortly thereafter.

The simple request function shown earlier did not need to worry about this lock
because the kernel always calls the request function with the io_request_lock
held. A driver is thus protected against corrupting the request queue; it is also pro-
tected against reentrant calls to the request function. This scheme was designed to
enable drivers that are not SMP aware to function on multiprocessor systems.

Note, however, that the io_request_lock is an expensive resource to hold. As
long as your driver holds this lock, no other requests may be queued to any block
driver in the system, and no other request functions may be called. A driver that
holds this lock for a long time may well slow down the system as a whole.

Thus, well-written block drivers often drop this lock as soon as possible. We will
see an example of how this can be done shortly. Block drivers that drop the
io_request_lock must be written with a couple of important things in mind,
however. First is that the request function must always reacquir e this lock before
retur ning, since the calling code expects it to still be held. The other concern is
that, as soon as the io_request_lock is dropped, the possibility of reentrant
calls to the request function is very real; the function must be written to handle
that eventuality.
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A variant of this latter case can also occur if your request function retur ns while an
I/O request is still active. Many drivers for real hardware will start an I/O opera-
tion, then retur n; the work is completed in the driver’s interrupt handler. We will
look at interrupt-driven block I/O in detail later in this chapter; for now it is worth
mentioning, however, that the request function can be called while these opera-
tions are still in progr ess.

Some drivers handle request function reentrancy by maintaining an internal
request queue. The request function simply removes any new requests from the
I/O request queue and adds them to the internal queue, which is then processed
thr ough a combination of tasklets and interrupt handlers.

How the blk.h macros and functions work

In our simple request function earlier, we wer e not concerned with buffer_head
structur es or linked lists. The macros and functions in <linux/blk.h> hide the
structur e of the I/O request queue in order to make the task of writing a block
driver simpler. In many cases, however, getting reasonable perfor mance requir es a
deeper understanding of how the queue works. In this section we look at the
actual steps involved in manipulating the request queue; subsequent sections
show some more advanced techniques for writing block request functions.

The fields of the request structur e that we looked at earlier—sector, cur-
rent_nr_sectors, and buffer—are really just copies of the analogous infor-
mation stored in the first buffer_head structur e on the list. Thus, a request
function that uses this information from the CURRENT pointer is just processing
the first of what might be many buffers within the request. The task of splitting up
a multibuf fer request into (seemingly) independent, single-buffer requests is han-
dled by two important definitions in <linux/blk.h>: the INIT_REQUEST
macr o and the end_r equest function.

Of the two, INIT_REQUEST is the simpler; all it really does is make a couple of
consistency checks on the request queue and cause a retur n fr om the request
function if the queue is empty. It is simply making sure that there is still work to
do.

The bulk of the queue management work is done by end_r equest. This function,
remember, is called when the driver has processed a single ‘‘request’’ (actually one
buf fer); it has several tasks to perfor m:

1. Complete the I/O processing on the current buffer; this involves calling the
b_end_io function with the status of the operation, thus waking any process
that may be sleeping on the buffer.
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2. Remove the buffer from the request’s linked list. If there are further buffers to
be processed, the sector, current_nr_sectors, and buffer fields in
the request structure are updated to reflect the contents of the next
buffer_head structur e in the list. In this case (there are still buffers to be
transferr ed), end_r equest is finished for this iteration and steps 3 to 5 are not
executed.

3. Call add_blkdev_randomness to update the entropy pool, unless
DEVICE_NO_RANDOM has been defined (as is done in the sbull driver).

4. Remove the finished request from the request queue by calling
blkdev_dequeue_r equest. This step modifies the request queue, and thus must
be perfor med with the io_request_lock held.

5. Release the finished request back to the system; io_request_lock is
requir ed her e too.

The kernel defines a couple of helper functions that are used by end_r equest to
do most of this work. The first one is called end_that_r equest_first, which handles
the first two steps just described. Its prototype is

int end_that_request_first(struct request *req, int status, char *name);

status is the status of the request as passed to end_r equest; the name parameter
is the device name, to be used when printing error messages. The retur n value is
nonzer o if there are mor e buf fers to be processed in the current request; in that
case the work is done. Otherwise, the request is dequeued and released with
end_that_r equest_last:

void end_that_request_last(struct request *req);

In end_r equest this step is handled with this code:

struct request *req = CURRENT;
blkdev_dequeue_request(req);
end_that_request_last(req);

That is all there is to it.

Clustered Requests
The time has come to look at how to apply all of that background material to the
task of writing better block drivers. We’ll start with a look at the handling of clus-
ter ed requests. Clustering, as mentioned earlier, is simply the practice of joining
together requests that operate on adjacent blocks on the disk. There are two
advantages to doing things this way. First, clustering speeds up the transfer; clus-
tering can also save some memory in the kernel by avoiding allocation of redun-
dant request structur es.
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As we have seen, block drivers need not be aware of clustering at all;
<linux/blk.h> transpar ently splits each clustered request into its component
pieces. In many cases, however, a driver can do better by explicitly acting on clus-
tering. It is often possible to set up the I/O for several consecutive blocks at the
same time, with an improvement in throughput. For example, the Linux floppy
driver attempts to write an entire track to the diskette in a single operation. Most
high-per formance disk controllers can do “scatter/gather” I/O as well, leading to
large perfor mance gains.

To take advantage of clustering, a block driver must look directly at the list of
buffer_head structur es attached to the request. This list is pointed to by CUR-
RENT->bh; subsequent buffers can be found by following the b_reqnext point-
ers in each buffer_head structur e. A driver perfor ming cluster ed I/O should
follow roughly this sequence of operations with each buffer in the cluster:

1. Arrange to transfer the data block at address bh->b_data, of size
bh->b_size bytes. The direction of the data transfer is CURRENT->cmd (i.e.,
either READ or WRITE).

2. Retrieve the next buffer head in the list: bh->b_reqnext. Then detach the
buf fer just transferred from the list, by zeroing its b_reqnext—the pointer to
the new buffer you just retrieved.

3. Update the request structur e to reflect the I/O done with the buffer that has
just been removed. Both CURRENT->hard_nr_sectors and CUR-
RENT->nr_sectors should be decremented by the number of sectors (not
blocks) transferred from the buffer. The sector numbers CUR-
RENT->hard_sector and CURRENT->sector should be incremented by
the same amount. Perfor ming these operations keeps the request structur e
consistent.

4. Loop back to the beginning to transfer the next adjacent block.

When the I/O on each buffer completes, your driver should notify the kernel by
calling the buffer’s I/O completion routine:

bh->b_end_io(bh, status);

status is nonzero if the operation was successful. You also, of course, need to
remove the request structur e for the completed operations from the queue. The
pr ocessing steps just described can be done without holding the
io_request_lock, but that lock must be reacquir ed befor e changing the queue
itself.

Your driver can still use end_r equest (as opposed to manipulating the queue
dir ectly) at the completion of the I/O operation, as long as it takes care to set the
CURRENT->bh pointer properly. This pointer should either be NULL or it should
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point to the last buffer_head structur e that was transferred. In the latter case,
the b_end_io function should not have been called on that last buffer, since
end_r equest will make that call.

A full-featur ed implementation of clustering appears in drivers/block/floppy.c, while
a summary of the operations requir ed appears in end_r equest, in blk.h. Neither
floppy.c nor blk.h ar e easy to understand, but the latter is a better place to start.

The active queue head

One other detail regarding the behavior of the I/O request queue is relevant for
block drivers that are dealing with clustering. It has to do with the queue head—
the first request on the queue. For historical compatibility reasons, the kernel
(almost) always assumes that a block driver is processing the first entry in the
request queue. To avoid corruption resulting from conflicting activity, the kernel
will never modify a request once it gets to the head of the queue. No further clus-
tering will happen on that request, and the elevator code will not put other
requests in front of it.

Many block drivers remove requests from the queue entirely before beginning to
pr ocess them. If your driver works this way, the request at the head of the queue
should be fair game for the kernel. In this case, your driver should inform the ker-
nel that the head of the queue is not active by calling blk_queue_headactive:

blk_queue_headactive(request_queue_t *queue, int active);

If active is 0, the kernel will be able to make changes to the head of the request
queue.

Multiqueue Block Driver s
As we have seen, the kernel, by default, maintains a single I/O request queue for
each major number. The single queue works well for devices like sbull, but it is
not always optimal for real-world situations.

Consider a driver that is handling real disk devices. Each disk is capable of operat-
ing independently; the perfor mance of the system is sure to be better if the drives
could be kept busy in parallel. A simple driver based on a single queue will not
achieve that—it will perfor m operations on a single device at a time.

It would not be all that hard for a driver to walk through the request queue and
pick out requests for independent drives. But the 2.4 kernel makes life easier by
allowing the driver to set up independent queues for each device. Most high-per-
for mance drivers take advantage of this multiqueue capability. Doing so is not dif-
ficult, but it does requir e moving beyond the simple <linux/blk.h> definitions.
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The sbull driver, when compiled with the SBULL_MULTIQUEUE symbol defined,
operates in a multiqueue mode. It works without the <linux/blk.h> macr os,
and demonstrates a number of the features that have been described in this sec-
tion.

To operate in a multiqueue mode, a block driver must define its own request
queues. sbull does this by adding a queue member to the Sbull_Dev structur e:

request_queue_t queue;
int busy;

The busy flag is used to protect against request function reentrancy, as we will
see.

Request queues must be initialized, of course. sbull initializes its device-specific
queues in this manner:

for (i = 0; i < sbull_devs; i++) {
blk_init_queue(&sbull_devices[i].queue, sbull_request);
blk_queue_headactive(&sbull_devices[i].queue, 0);

}
blk_dev[major].queue = sbull_find_queue;

The call to blk_init_queue is as we have seen before, only now we pass in the
device-specific queues instead of the default queue for our major device number.
This code also marks the queues as not having active heads.

You might be wondering how the kernel manages to find the request queues,
which are buried in a device-specific, private structure. The key is the last line just
shown, which sets the queue member in the global blk_dev structur e. This
member points to a function that has the job of finding the proper request queue
for a given device number. Devices using the default queue have no such func-
tion, but multiqueue devices must implement it. sbull’s queue function looks like
this:

request_queue_t *sbull_find_queue(kdev_t device)
{

int devno = DEVICE_NR(device);

if (devno >= sbull_devs) {
static int count = 0;
if (count++ < 5) /* print the message at most five times */

printk(KERN_WARNING "sbull: request for unknown device\n");
return NULL;

}
return &sbull_devices[devno].queue;

}

Like the request function, sbull_find_queue must be atomic (no sleeping allowed).
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Each queue has its own request function, though usually a driver will use the same
function for all of its queues. The kernel passes the actual request queue into the
request function as a parameter, so the function can always figure out which
device is being operated on. The multiqueue request function used in sbull looks a
little differ ent fr om the ones we have seen so far because it manipulates the
request queue directly. It also drops the io_request_lock while perfor ming
transfers to allow the kernel to execute other block operations. Finally, the code
must take care to avoid two separate perils: multiple calls of the request function
and conflicting access to the device itself.

void sbull_request(request_queue_t *q)
{

Sbull_Dev *device;
struct request *req;
int status;

/* Find our device */
device = sbull_locate_device (blkdev_entry_next_request(&q->queue_head));
if (device->busy) /* no race here - io_request_lock held */

return;
device->busy = 1;

/* Process requests in the queue */
while(! list_empty(&q->queue_head)) {

/* Pull the next request off the list. */
req = blkdev_entry_next_request(&q->queue_head);
blkdev_dequeue_request(req);
spin_unlock_irq (&io_request_lock);
spin_lock(&device->lock);

/* Process all of the buffers in this (possibly clustered) request. */
do {

status = sbull_transfer(device, req);
} while (end_that_request_first(req, status, DEVICE_NAME));
spin_unlock(&device->lock);
spin_lock_irq (&io_request_lock);
end_that_request_last(req);

}
device->busy = 0;

}

Instead of using INIT_REQUEST, this function tests its specific request queue
with the list function list_empty. As long as requests exist, it removes each one in
tur n fr om the queue with blkdev_dequeue_r equest. Only then, once the removal is
complete, is it able to drop io_request_lock and obtain the device-specific
lock. The actual transfer is done using sbull_transfer, which we have already seen.
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Each call to sbull_transfer handles exactly one buffer_head structur e attached
to the request. The function then calls end_that_r equest_first to dispose of that
buf fer, and, if the request is complete, goes on to end_that_r equest_last to clean
up the request as a whole.

The management of concurrency here is worth a quick look. The busy flag is
used to prevent multiple invocations of sbull_r equest. Since sbull_r equest is always
called with the io_request_lock held, it is safe to test and set the busy flag
with no additional protection. (Otherwise, an atomic_t could have been used).
The io_request_lock is dropped before the device-specific lock is acquired. It
is possible to acquire multiple locks without risking deadlock, but it is harder;
when the constraints allow, it is better to release one lock before obtaining
another.

end_that_r equest_first is called without the io_request_lock held. Since this
function operates only on the given request structure, calling it this way is safe—
as long as the request is not on the queue. The call to end_that_r equest_last, how-
ever, requir es that the lock be held, since it retur ns the request to the request
queue’s free list. The function also always exits from the outer loop (and the func-
tion as a whole) with the io_request_lock held and the device lock released.

Multiqueue drivers must, of course, clean up all of their queues at module removal
time:

for (i = 0; i < sbull_devs; i++)
blk_cleanup_queue(&sbull_devices[i].queue);

blk_dev[major].queue = NULL;

It is worth noting, briefly, that this code could be made more efficient. It allocates
a whole set of request queues at initialization time, even though some of them
may never be used. A request queue is a large structure, since many (perhaps
thousands) of request structur es ar e allocated when the queue is initialized. A
mor e clever implementation would allocate a request queue when needed in
either the open method or the queue function. We chose a simpler implementation
for sbull in order to avoid complicating the code.

That covers the mechanics of multiqueue drivers. Drivers handling real hardware
may have other issues to deal with, of course, such as serializing access to a con-
tr oller. But the basic structure of multiqueue drivers is as we have seen here.

Doing Without the Request Queue
Much of the discussion to this point has centered around the manipulation of the
I/O request queue. The purpose of the request queue is to improve perfor mance
by allowing the driver to act asynchronously and, crucially, by allowing the merg-
ing of contiguous (on the disk) operations. For normal disk devices, operations on
contiguous blocks are common, and this optimization is necessary.
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Not all block devices benefit from the request queue, however. sbull, for example,
pr ocesses requests synchronously and has no problems with seek times. For sbull,
the request queue actually ends up slowing things down. Other types of block
devices also can be better off without a request queue. For example, RAID
devices, which are made up of multiple disks, often spread ‘‘contiguous’’ blocks
acr oss multiple physical devices. Block devices implemented by the logical volume
manager (LVM) capability (which first appeared in 2.4) also have an implementa-
tion that is more complex than the block interface that is presented to the rest of
the kernel.

In the 2.4 kernel, block I/O requests are placed on the queue by the function
_ _make_r equest, which is also responsible for invoking the driver’s request func-
tion. Block drivers that need more contr ol over request queueing, however, can
replace that function with their own ‘‘make request’’ function. The RAID and LVM
drivers do so, providing their own variant that, eventually, requeues each I/O
request (with differ ent block numbers) to the appropriate low-level device (or
devices) that make up the higher-level device. A RAM-disk driver, instead, can exe-
cute the I/O operation directly.

sbull, when loaded with the noqueue=1 option on 2.4 systems, will provide its
own ‘‘make request’’ function and operate without a request queue. The first step
in this scenario is to replace _ _make_r equest. The ‘‘make request’’ function pointer
is stored in the request queue, and can be changed with blk_queue_make_r equest:

void blk_queue_make_request(request_queue_t *queue,
make_request_fn *func);

The make_request_fn type, in turn, is defined as follows:

typedef int (make_request_fn) (request_queue_t *q, int rw,
struct buffer_head *bh);

The ‘‘make request’’ function must arrange to transfer the given block, and see to
it that the b_end_io function is called when the transfer is done. The kernel does
not hold the io_request_lock lock when calling the make_r equest_fn func-
tion, so the function must acquire the lock itself if it will be manipulating the
request queue. If the transfer has been set up (not necessarily completed), the
function should retur n 0.

The phrase ‘‘arrange to transfer’’ was chosen carefully; often a driver-specific make
request function will not actually transfer the data. Consider a RAID device. What
the function really needs to do is to map the I/O operation onto one of its con-
stituent devices, then invoke that device’s driver to actually do the work. This
mapping is done by setting the b_rdev member of the buffer_head structur e
to the number of the ‘‘real’’ device that will do the transfer, then signaling that the
block still needs to be written by retur ning a nonzer o value.
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When the kernel sees a nonzero retur n value from the make request function, it
concludes that the job is not done and will try again. But first it will look up the
make request function for the device indicated in the b_rdev field. Thus, in the
RAID case, the RAID driver’s ‘‘make request’’ function will not be called again;
instead, the kernel will pass the block to the appropriate function for the underly-
ing device.

sbull, at initialization time, sets up its make request function as follows:

if (noqueue)
blk_queue_make_request(BLK_DEFAULT_QUEUE(major), sbull_make_request);

It does not call blk_init_queue when operating in this mode, because the request
queue will not be used.

When the kernel generates a request for an sbull device, it will call
sbull_make_r equest, which is as follows:

int sbull_make_request(request_queue_t *queue, int rw,
struct buffer_head *bh)

{
u8 *ptr;

/* Figure out what we are doing */
Sbull_Dev *device = sbull_devices + MINOR(bh->b_rdev);
ptr = device->data + bh->b_rsector * sbull_hardsect;

/* Paranoid check; this apparently can really happen */
if (ptr + bh->b_size > device->data + sbull_blksize*sbull_size) {

static int count = 0;
if (count++ < 5)

printk(KERN_WARNING "sbull: request past end of device\n");
bh->b_end_io(bh, 0);
return 0;

}

/* This could be a high-memory buffer; shift it down */
#if CONFIG_HIGHMEM

bh = create_bounce(rw, bh);
#endif

/* Do the transfer */
switch(rw) {
case READ:
case READA: /* Read ahead */

memcpy(bh->b_data, ptr, bh->b_size); /* from sbull to buffer */
bh->b_end_io(bh, 1);
break;

case WRITE:
refile_buffer(bh);
memcpy(ptr, bh->b_data, bh->b_size); /* from buffer to sbull */
mark_buffer_uptodate(bh, 1);
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bh->b_end_io(bh, 1);
break;

default:
/* can’t happen */
bh->b_end_io(bh, 0);
break;

}

/* Nonzero return means we’re done */
return 0;

}

For the most part, this code should look familiar. It contains the usual calculations
to determine where the block lives within the sbull device and uses memcpy to
per form the operation. Because the operation completes immediately, it is able to
call bh->b_end_io to indicate the completion of the operation, and it retur ns 0
to the kernel.

Ther e is, however, one detail that the ‘‘make request’’ function must take care of.
The buffer to be transferred could be resident in high memory, which is not
dir ectly accessible by the kernel. High memory is covered in detail in Chapter 13.
We won’t repeat the discussion here; suffice it to say that one way to deal with the
pr oblem is to replace a high-memory buffer with one that is in accessible memory.
The function cr eate_bounce will do so, in a way that is transparent to the driver.
The kernel normally uses cr eate_bounce befor e placing buffers in the driver’s
request queue; if the driver implements its own make_r equest_fn, however, it must
take care of this task itself.

How Mounting and Unmounting Works
Block devices differ from char devices and normal files in that they can be
mounted on the computer’s filesystem. Mounting provides a level of indirection
not seen with char devices, which are accessed through a struct file pointer
that is held by a specific process. When a filesystem is mounted, there is no pro-
cess holding that file structur e.

When the kernel mounts a device in the filesystem, it invokes the normal open
method to access the driver. However, in this case both the filp and inode
arguments to open ar e dummy variables. In the file structur e, only the f_mode
and f_flags fields hold anything meaningful; in the inode structur e only
i_rdev may be used. The remaining fields hold random values and should not
be used. The value of f_mode tells the driver whether the device is to be
mounted read-only (f_mode == FMODE_READ) or read/write (f_mode ==
(FMODE_READ|FMODE_WRITE)).
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This interface may seem a little strange; it is done this way for two reasons. First is
that the open method can still be called normally by a process that accesses the
device directly — the mkfs utility, for example. The other reason is a historical arti-
fact: block devices once used the same file_operations structur e as char
devices, and thus had to conform to the same interface.

Other than the limitations on the arguments to the open method, the driver does
not really see anything unusual when a filesystem is mounted. The device is
opened, and then the request method is invoked to transfer blocks back and forth.
The driver cannot really tell the differ ence between operations that happen in
response to an individual process (such as fsck) and those that originate in the
filesystem layers of the kernel.

As far as umount is concerned, it just flushes the buffer cache and calls the release
driver method. Since there is no meaningful filp to pass to the release method,
the kernel uses NULL. Since the release implementation of a block driver can’t use
filp->private_data to access device information, it uses inode->i_rdev to
dif ferentiate between devices instead. This is how sbull implements release:

int sbull_release (struct inode *inode, struct file *filp)
{

Sbull_Dev *dev = sbull_devices + MINOR(inode->i_rdev);

spin_lock(&dev->lock);
dev->usage--;
MOD_DEC_USE_COUNT;
spin_unlock(&dev->lock);
return 0;

}

Other driver functions are not affected by the ‘‘missing filp’’ problem because
they aren’t involved with mounted filesystems. For example, ioctl is issued only by
pr ocesses that explicitly open the device.

The ioctl Method
Like char devices, block devices can be acted on by using the ioctl system call.
The only relevant differ ence between block and char ioctl implementations is that
block drivers share a number of common ioctl commands that most drivers are
expected to support.

The commands that block drivers usually handle are the following, declared in
<linux/fs.h>.

BLKGETSIZE
Retrieve the size of the current device, expressed as the number of sectors.
The value of arg passed in by the system call is a pointer to a long value

The ioctl Method
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and should be used to copy the size to a user-space variable. This ioctl com-
mand is used, for instance, by mkfs to know the size of the filesystem being
cr eated.

BLKFLSBUF
Literally, ‘‘flush buffers.’’ The implementation of this command is the same for
every device and is shown later with the sample code for the whole ioctl
method.

BLKRRPART
Rer ead the partition table. This command is meaningful only for partitionable
devices, introduced later in this chapter.

BLKRAGET
BLKRASET

Used to get and change the current block-level read-ahead value (the one
stor ed in the read_ahead array) for the device. For GET, the current value
should be written to user space as a long item using the pointer passed to
ioctl in arg; for SET, the new value is passed as an argument.

BLKFRAGET
BLKFRASET

Get and set the filesystem-level read-ahead value (the one stored in
max_readahead) for this device.

BLKROSET
BLKROGET

These commands are used to change and check the read-only flag for the
device.

BLKSECTGET
BLKSECTSET

These commands retrieve and set the maximum number of sectors per request
(as stored in max_sectors).

BLKSSZGET
Retur ns the sector size of this block device in the integer variable pointed to
by the caller; this size comes directly from the hardsect_size array.

BLKPG
The BLKPG command allows user-mode programs to add and delete parti-
tions. It is implemented by blk_ioctl (described shortly), and no drivers in the
mainline kernel provide their own implementation.
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BLKELVGET
BLKELVSET

These commands allow some control over how the elevator request sorting
algorithm works. As with BLKPG, no driver implements them directly.

HDIO_GETGEO
Defined in <linux/hdreg.h> and used to retrieve the disk geometry. The
geometry should be written to user space in a struct hd_geometry,
which is declared in hdr eg.h as well. sbull shows the general implementation
for this command.

The HDIO_GETGEO command is the most commonly used of a series of HDIO_
commands, all defined in <linux/hdreg.h>. The interested reader can look in
ide.c and hd.c for more infor mation about these commands.

Almost all of these ioctl commands are implemented in the same way for all block
devices. The 2.4 kernel has provided a function, blk_ioctl, that may be called to
implement the common commands; it is declared in <linux/blkpg.h>. Often
the only ones that must be implemented in the driver itself are BLKGETSIZE and
HDIO_GETGEO. The driver can then safely pass any other commands to blk_ioctl
for handling.

The sbull device supports only the general commands just listed, because imple-
menting device-specific commands is no differ ent fr om the implementation of
commands for char drivers. The ioctl implementation for sbull is as follows:

int sbull_ioctl (struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg)

{
int err;
long size;
struct hd_geometry geo;

PDEBUG("ioctl 0x%x 0x%lx\n", cmd, arg);
switch(cmd) {

case BLKGETSIZE:
/* Return the device size, expressed in sectors */
if (!arg) return -EINVAL; /* NULL pointer: not valid */
err = ! access_ok (VERIFY_WRITE, arg, sizeof(long));
if (err) return -EFAULT;
size = blksize*sbull_sizes[MINOR(inode->i_rdev)]

/ sbull_hardsects[MINOR(inode->i_rdev)];
if (copy_to_user((long *) arg, &size, sizeof (long)))

return -EFAULT;
return 0;

case BLKRRPART: /* reread partition table: can’t do it */
return -ENOTTY;

case HDIO_GETGEO:

The ioctl Method
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/*
* Get geometry: since we are a virtual device, we have to make
* up something plausible. So we claim 16 sectors, four heads,
* and calculate the corresponding number of cylinders. We set
* the start of data at sector four.
*/

err = ! access_ok(VERIFY_WRITE, arg, sizeof(geo));
if (err) return -EFAULT;
size = sbull_size * blksize / sbull_hardsect;
geo.cylinders = (size & ˜0x3f) >> 6;
geo.heads = 4;
geo.sectors = 16;
geo.start = 4;
if (copy_to_user((void *) arg, &geo, sizeof(geo)))

return -EFAULT;
return 0;

default:
/*
* For ioctls we don’t understand, let the block layer
* handle them.
*/

return blk_ioctl(inode->i_rdev, cmd, arg);
}

return -ENOTTY; /* unknown command */
}

The PDEBUG statement at the beginning of the function has been left in so that
when you compile the module, you can turn on debugging to see which ioctl
commands are invoked on the device.

Remova ble Devices
Thus far, we have ignored the final two file operations in the
block_device_operations structur e, which deal with devices that support
removable media. It’s now time to look at them; sbull isn’t actually removable but
it pretends to be, and therefor e it implements these methods.

The operations in question are check_media_change and revalidate. The former is
used to find out if the device has changed since the last access, and the latter re-
initializes the driver’s status after a disk change.

As far as sbull is concerned, the data area associated with a device is released half
a minute after its usage count drops to zero. Leaving the device unmounted (or
closed) long enough simulates a disk change, and the next access to the device
allocates a new memory area.

This kind of ‘‘timely expiration’’ is implemented using a kernel timer.
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check_media_change
The checking function receives kdev_t as a single argument that identifies the
device. The retur n value is 1 if the medium has been changed and 0 otherwise. A
block driver that doesn’t support removable devices can avoid declaring the func-
tion by setting bdops->check_media_change to NULL.

It’s interesting to note that when the device is removable but there is no way to
know if it changed, retur ning 1 is a safe choice. This is the behavior of the IDE
driver when dealing with removable disks.

The implementation in sbull retur ns 1 if the device has already been removed
fr om memory due to the timer expiration, and 0 if the data is still valid. If debug-
ging is enabled, it also prints a message to the system logger; the user can thus
verify when the method is called by the kernel.

int sbull_check_change(kdev_t i_rdev)
{

int minor = MINOR(i_rdev);
Sbull_Dev *dev = sbull_devices + minor;

PDEBUG("check_change for dev %i\n",minor);
if (dev->data)

return 0; /* still valid */
return 1; /* expired */

}

Revalidation
The validation function is called when a disk change is detected. It is also called
by the various stat system calls implemented in version 2.1 of the kernel. The
retur n value is currently unused; to be safe, retur n 0 to indicate success and a neg-
ative error code in case of error.

The action perfor med by revalidate is device specific, but revalidate usually
updates the internal status information to reflect the new device.

In sbull, the revalidate method tries to allocate a new data area if there is not
alr eady a valid area.

int sbull_revalidate(kdev_t i_rdev)
{

Sbull_Dev *dev = sbull_devices + MINOR(i_rdev);

PDEBUG("revalidate for dev %i\n",MINOR(i_rdev));
if (dev->data)

return 0;

Remova ble Devices
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dev->data = vmalloc(dev->size);
if (!dev->data)

return -ENOMEM;
return 0;

}

Extra Care
Drivers for removable devices should also check for a disk change when the
device is opened. The kernel provides a function to cause this check to happen:

int check_disk_change(kdev_t dev);

The retur n value is nonzero if a disk change was detected. The kernel automati-
cally calls check_disk_change at mount time, but not at open time.

Some programs, however, dir ectly access disk data without mounting the device:
fsck, mcopy, and fdisk ar e examples of such programs. If the driver keeps status
infor mation about removable devices in memory, it should call the kernel
check_disk_change function when the device is first opened. This function uses
the driver methods (check_media_change and revalidate), so nothing special has
to be implemented in open itself.

Her e is the sbull implementation of open, which takes care of the case in which
ther e’s been a disk change:

int sbull_open (struct inode *inode, struct file *filp)
{

Sbull_Dev *dev; /* device information */
int num = MINOR(inode->i_rdev);

if (num >= sbull_devs) return -ENODEV;
dev = sbull_devices + num;

spin_lock(&dev->lock);
/* revalidate on first open and fail if no data is there */
if (!dev->usage) {

check_disk_change(inode->i_rdev);
if (!dev->data)
{

spin_unlock (&dev->lock);
return -ENOMEM;

}
}
dev->usage++;
spin_unlock(&dev->lock);
MOD_INC_USE_COUNT;
return 0; /* success */

}

Nothing else needs to be done in the driver for a disk change. Data is corrupted
anyway if a disk is changed while its open count is greater than zero. The only
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way the driver can prevent this problem from happening is for the usage count to
contr ol the door lock in those cases where the physical device supports it. Then
open and close can disable and enable the lock appropriately.

Partitionable Devices
Most block devices are not used in one large chunk. Instead, the system adminis-
trator expects to be able to partition the device—to split it into several indepen-
dent pseudodevices. If you try to create partitions on an sbull device with fdisk,
you’ll run into problems. The fdisk pr ogram calls the partitions /dev/sbull01,
/dev/sbull02, and so on, but those names don’t exist on the filesystem. More to the
point, there is no mechanism in place for binding those names to partitions in the
sbull device. Something more must be done before a block device can be parti-
tioned.

To demonstrate how partitions are supported, we introduce a new device called
spull, a ‘‘Simple Partitionable Utility.’’ It is far simpler than sbull, lacking the
request queue management and some flexibility (like the ability to change the
hard-sector size). The device resides in the spull dir ectory and is completely
detached from sbull, even though they share some code.

To be able to support partitions on a device, we must assign several minor num-
bers to each physical device. One number is used to access the whole device (for
example, /dev/hda), and the others are used to access the various partitions (such
as /dev/hda1). Since fdisk cr eates partition names by adding a numerical suffix to
the whole-disk device name, we’ll follow the same naming convention in the spull
driver.

The device nodes implemented by spull ar e called pd, for ‘‘partitionable disk.’’ The
four whole devices (also called units) are thus named /dev/pda thr ough /dev/pdd;
each device supports at most 15 partitions. Minor numbers have the following
meaning: the least significant four bits repr esent the partition number (where 0 is
the whole device), and the most significant four bits repr esent the unit number.
This convention is expressed in the source file by the following macros:

#define MAJOR_NR spull_major /* force definitions on in blk.h */
int spull_major; /* must be declared before including blk.h */

#define SPULL_SHIFT 4 /* max 16 partitions */
#define SPULL_MAXNRDEV 4 /* max 4 device units */
#define DEVICE_NR(device) (MINOR(device)>>SPULL_SHIFT)
#define DEVICE_NAME "pd" /* name for messaging */

Partitionable Devices
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The spull driver also hardwires the value of the hard-sector size in order to sim-
plify the code:

#define SPULL_HARDSECT 512 /* 512-byte hardware sectors */

The Gener ic Hard Disk
Every partitionable device needs to know how it is partitioned. The information is
available in the partition table, and part of the initialization process consists of
decoding the partition table and updating the internal data structures to reflect the
partition information.

This decoding isn’t easy, but fortunately the kernel offers ‘‘generic hard disk’’ sup-
port usable by all block drivers. Such support considerably reduces the amount of
code needed in the driver for handling partitions. Another advantage of the
generic support is that the driver writer doesn’t need to understand how the parti-
tioning is done, and new partitioning schemes can be supported in the kernel
without requiring changes to driver code.

A block driver that supports partitions must include <linux/genhd.h> and
should declare a struct gendisk structur e. This structure describes the layout
of the disk(s) provided by the driver; the kernel maintains a global list of such
structur es, which may be queried to see what disks and partitions are available on
the system.

Befor e we go further, let’s look at some of the fields in struct gendisk. You’ll
need to understand them in order to exploit generic device support.

int major
The major number for the device that the structure refers to.

const char *major_name
The base name for devices belonging to this major number. Each device name
is derived from this name by adding a letter for each unit and a number for
each partition. For example, ‘‘hd’’ is the base name that is used to build
/dev/hda1 and /dev/hdb3. In moder n ker nels, the full length of the disk name
can be up to 32 characters; the 2.0 kernel, however, was more restricted.
Drivers wishing to be backward portable to 2.0 should limit the major_name
field to five characters. The name for spull is pd (‘‘partitionable disk’’).

int minor_shift
The number of bit shifts needed to extract the drive number from the device
minor number. In spull the number is 4. The value in this field should be con-
sistent with the definition of the macro DEVICE_NR(device) (see “The
Header File blk.h”). The macro in spull expands to device>>4.
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int max_p
The maximum number of partitions. In our example, max_p is 16, or more
generally, 1 << minor_shift.

struct hd_struct *part
The decoded partition table for the device. The driver uses this item to deter-
mine what range of the disk’s sectors is accessible through each minor num-
ber. The driver is responsible for allocation and deallocation of this array,
which most drivers implement as a static array of max_nr << minor_shift
structur es. The driver should initialize the array to zeros before the kernel
decodes the partition table.

int *sizes
An array of integers with the same information as the global blk_size array.
In fact, they are usually the same array. The driver is responsible for allocating
and deallocating the sizes array. Note that the partition check for the device
copies this pointer to blk_size, so a driver handling partitionable devices
doesn’t need to allocate the latter array.

int nr_real
The number of real devices (units) that exist.

void *real_devices
A private area that may be used by the driver to keep any additional requir ed
infor mation.

void struct gendisk *next
A pointer used to implement the linked list of generic hard-disk structures.

struct block_device_operations *fops;
A pointer to the block operations structure for this device.

Many of the fields in the gendisk structur e ar e set up at initialization time, so the
compile-time setup is relatively simple:

struct gendisk spull_gendisk = {
major: 0, /* Major number assigned later */
major_name: "pd", /* Name of the major device */
minor_shift: SPULL_SHIFT, /* Shift to get device number */
max_p: 1 << SPULL_SHIFT, /* Number of partitions */
fops: &spull_bdops, /* Block dev operations */

/* everything else is dynamic */
};

Partition Detection
When a module initializes itself, it must set things up properly for partition detec-
tion. Thus, spull starts by setting up the spull_sizes array for the gendisk

Partitionable Devices
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structur e (which also gets stored in blk_size[MAJOR_NR] and in the sizes
field of the gendisk structur e) and the spull_partitions array, which holds
the actual partition information (and gets stored in the part member of the
gendisk structur e). Both of these arrays are initialized to zeros at this time. The
code looks like this:

spull_sizes = kmalloc( (spull_devs << SPULL_SHIFT) * sizeof(int),
GFP_KERNEL);

if (!spull_sizes)
goto fail_malloc;

/* Start with zero-sized partitions, and correctly sized units */
memset(spull_sizes, 0, (spull_devs << SPULL_SHIFT) * sizeof(int));
for (i=0; i< spull_devs; i++)

spull_sizes[i<<SPULL_SHIFT] = spull_size;
blk_size[MAJOR_NR] = spull_gendisk.sizes = spull_sizes;

/* Allocate the partitions array. */
spull_partitions = kmalloc( (spull_devs << SPULL_SHIFT) *

sizeof(struct hd_struct), GFP_KERNEL);
if (!spull_partitions)

goto fail_malloc;

memset(spull_partitions, 0, (spull_devs << SPULL_SHIFT) *
sizeof(struct hd_struct));

/* fill in whole-disk entries */
for (i=0; i < spull_devs; i++)

spull_partitions[i << SPULL_SHIFT].nr_sects =
spull_size*(blksize/SPULL_HARDSECT);

spull_gendisk.part = spull_partitions;
spull_gendisk.nr_real = spull_devs;

The driver should also include its gendisk structur e on the global list. There is
no kernel-supplied function for adding gendisk structur es; it must be done by
hand:

spull_gendisk.next = gendisk_head;
gendisk_head = &spull_gendisk;

In practice, the only thing the system does with this list is to implement /pr oc/par-
titions.

The register_disk function, which we have already seen briefly, handles the job of
reading the disk’s partition table.

register_disk(struct gendisk *gd, int drive, unsigned minors,
struct block_device_operations *ops, long size);

Her e, gd is the gendisk structur e that we built earlier, drive is the device num-
ber, minors is the number of partitions supported, ops is the
block_device_operations structur e for the driver, and size is the size of
the device in sectors.
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Fixed disks might read the partition table only at module initialization time and
when BLKRRPART is invoked. Drivers for removable drives will also need to make
this call in the revalidate method. Either way, it is important to remember that reg-
ister_disk will call your driver’s request function to read the partition table, so the
driver must be sufficiently initialized at that point to handle requests. You should
also not have any locks held that will conflict with locks acquired in the request
function. register_disk must be called for each disk actually present on the system.

spull sets up partitions in the revalidate method:

int spull_revalidate(kdev_t i_rdev)
{

/* first partition, # of partitions */
int part1 = (DEVICE_NR(i_rdev) << SPULL_SHIFT) + 1;
int npart = (1 << SPULL_SHIFT) -1;

/* first clear old partition information */
memset(spull_gendisk.sizes+part1, 0, npart*sizeof(int));
memset(spull_gendisk.part +part1, 0, npart*sizeof(struct hd_struct));
spull_gendisk.part[DEVICE_NR(i_rdev) << SPULL_SHIFT].nr_sects =

spull_size << 1;

/* then fill new info */
printk(KERN_INFO "Spull partition check: (%d) ", DEVICE_NR(i_rdev));
register_disk(&spull_gendisk, i_rdev, SPULL_MAXNRDEV, &spull_bdops,

spull_size << 1);
return 0;

}

It’s interesting to note that register_disk prints partition information by repeatedly
calling

printk(" %s", disk_name(hd, minor, buf));

That’s why spull prints a leading string. It’s meant to add some context to the
infor mation that gets stuffed into the system log.

When a partitionable module is unloaded, the driver should arrange for all the
partitions to be flushed, by calling fsync_dev for every supported major/minor pair.
All of the relevant memory should be freed as well, of course. The cleanup func-
tion for spull is as follows:

for (i = 0; i < (spull_devs << SPULL_SHIFT); i++)
fsync_dev(MKDEV(spull_major, i)); /* flush the devices */

blk_cleanup_queue(BLK_DEFAULT_QUEUE(major));
read_ahead[major] = 0;
kfree(blk_size[major]); /* which is gendisk->sizes as well */
blk_size[major] = NULL;
kfree(spull_gendisk.part);
kfree(blksize_size[major]);
blksize_size[major] = NULL;

Partitionable Devices
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It is also necessary to remove the gendisk structur e fr om the global list. There is
no function provided to do this work, so it’s done by hand:

for (gdp = &gendisk_head; *gdp; gdp = &((*gdp)->next))
if (*gdp == &spull_gendisk) {

*gdp = (*gdp)->next;
break;

}

Note that there is no unr egister_disk to complement the register_disk function.
Everything done by register_disk is stored in the driver’s own arrays, so there is no
additional cleanup requir ed at unload time.

Partition Detection Using initrd
If you want to mount your root filesystem from a device whose driver is available
only in modularized form, you must use the initr d facility offer ed by modern
Linux kernels. We won’t introduce initr d her e; this subsection is aimed at readers
who know about initr d and wonder how it affects block drivers. More infor mation
on initr d can be found in Documentation/initr d.txt in the kernel source.

When you boot a kernel with initr d, it establishes a temporary running environ-
ment before it mounts the real root filesystem. Modules are usually loaded from
within the RAM disk being used as the temporary root file system.

Because the initr d pr ocess is run after all boot-time initialization is complete (but
befor e the real root filesystem has been mounted), there’s no differ ence between
loading a normal module and loading one living in the initr d RAM disk. If a driver
can be correctly loaded and used as a module, all Linux distributions that have
initr d available can include the driver on their installation disks without requiring
you to hack in the kernel source.

The Device Methods for spull
We have seen how to initialize partitionable devices, but not yet how to access
data within the partitions. To do that, we need to make use of the partition infor-
mation stored in the gendisk->part array by register_disk. This array is made
up of hd_struct structur es, and is indexed by the minor number. The
hd_struct has two fields of interest: start_sect tells where a given partition
starts on the disk, and nr_sects gives the size of that partition.

Her e we will show how spull makes use of that information. The following code
includes only those parts of spull that differ from sbull, because most of the code
is exactly the same.
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First of all, open and close must keep track of the usage count for each device.
Because the usage count refers to the physical device (unit), the following declara-
tion and assignment is used for the dev variable:

Spull_Dev *dev = spull_devices + DEVICE_NR(inode->i_rdev);

The DEVICE_NR macr o used here is the one that must be declared before
<linux/blk.h> is included; it yields the physical device number without taking
into account which partition is being used.

Although almost every device method works with the physical device as a whole,
ioctl should access specific information for each partition. For example, when mkfs
calls ioctl to retrieve the size of the device on which it will build a filesystem, it
should be told the size of the partition of interest, not the size of the whole
device. Here is how the BLKGETSIZE ioctl command is affected by the change
fr om one minor number per device to multiple minor numbers per device. As you
might expect, spull_gendisk->part is used as the source of the partition size.

case BLKGETSIZE:
/* Return the device size, expressed in sectors */
err = ! access_ok (VERIFY_WRITE, arg, sizeof(long));
if (err) return -EFAULT;
size = spull_gendisk.part[MINOR(inode->i_rdev)].nr_sects;
if (copy_to_user((long *) arg, &size, sizeof (long)))
return -EFAULT;
return 0;

The other ioctl command that is differ ent for partitionable devices is BLKRRPART.
Rer eading the partition table makes sense for partitionable devices and is equiva-
lent to revalidating a disk after a disk change:

case BLKRRPART: /* re-read partition table */
return spull_revalidate(inode->i_rdev);

But the major differ ence between sbull and spull is in the request function. In
spull, the request function needs to use the partition information in order to cor-
rectly transfer data for the differ ent minor numbers. Locating the transfer is done
by simply adding the starting sector to that provided in the request; the partition
size information is then used to be sure the request fits within the partition. Once
that is done, the implementation is the same as for sbull.

Her e ar e the relevant lines in spull_r equest:

ptr = device->data +
(spull_partitions[minor].start_sect + req->sector)*SPULL_HARDSECT;

size = req->current_nr_sectors*SPULL_HARDSECT;
/*
* Make sure that the transfer fits within the device.
*/

if (req->sector + req->current_nr_sectors >
spull_partitions[minor].nr_sects) {

Partitionable Devices
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static int count = 0;
if (count++ < 5)

printk(KERN_WARNING "spull: request past end of partition\n");
return 0;

}

The number of sectors is multiplied by the hardware sector size (which, remem-
ber, is hardwir ed in spull ) to get the size of the partition in bytes.

Inter rupt-Dr iven Block Driver s
When a driver controls a real hardware device, operation is usually interrupt
driven. Using interrupts helps system perfor mance by releasing the processor dur-
ing I/O operations. In order for interrupt-driven I/O to work, the device being
contr olled must be able to transfer data asynchronously and to generate interrupts.

When the driver is interrupt driven, the request function spawns a data transfer
and retur ns immediately without calling end_r equest. However, the kernel doesn’t
consider a request fulfilled unless end_r equest (or its component parts) has been
called. Therefor e, the top-half or the bottom-half interrupt handler calls
end_r equest when the device signals that the data transfer is complete.

Neither sbull nor spull can transfer data without using the system micropr ocessor;
however, spull is equipped with the capability of simulating interrupt-driven oper-
ation if the user specifies the irq=1 option at load time. When irq is not 0, the
driver uses a kernel timer to delay fulfillment of the current request. The length of
the delay is the value of irq: the greater the value, the longer the delay.

As always, block transfers begin when the kernel calls the driver’s request func-
tion. The request function for an interrupt-driven device instructs the hardware to
per form the transfer and then retur ns; it does not wait for the transfer to complete.
The spull request function perfor ms the usual error checks and then calls
spull_transfer to transfer the data (this is the task that a driver for real hardware
per forms asynchronously). It then delays acknowledgment until interrupt time:

void spull_irqdriven_request(request_queue_t *q)
{

Spull_Dev *device;
int status;
long flags;

/* If we are already processing requests, don’t do any more now. */
if (spull_busy)

return;

while(1) {
INIT_REQUEST; /* returns when queue is empty */

/* Which "device" are we using? */
device = spull_locate_device (CURRENT);
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if (device == NULL) {
end_request(0);
continue;

}
spin_lock_irqsave(&device->lock, flags);

/* Perform the transfer and clean up. */
status = spull_transfer(device, CURRENT);
spin_unlock_irqrestore(&device->lock, flags);
/* ... and wait for the timer to expire -- no end_request(1) */
spull_timer.expires = jiffies + spull_irq;
add_timer(&spull_timer);
spull_busy = 1;
return;

}
}

New requests can accumulate while the device is dealing with the current one.
Because reentrant calls are almost guaranteed in this scenario, the request function
sets a spull_busy flag so that only one transfer happens at any given time.
Since the entire function runs with the io_request_lock held (the kernel,
remember, obtains this lock before calling the request function), there is no need
for particular care in testing and setting the busy flag. Otherwise, an atomic_t
item should have been used instead of an int variable in order to avoid race con-
ditions.

The interrupt handler has a couple of tasks to perfor m. First, of course, it must
check the status of the outstanding transfer and clean up the request. Then, if
ther e ar e further requests to be processed, the interrupt handler is responsible for
getting the next one started. To avoid code duplication, the handler usually just
calls the request function to start the next transfer. Remember that the request
function expects the caller to hold the io_request_lock, so the interrupt han-
dler will have to obtain it. The end_r equest function also requir es this lock, of
course.

In our sample module, the role of the interrupt handler is perfor med by the func-
tion invoked when the timer expires. That function calls end_r equest and sched-
ules the next data transfer by calling the request function. In the interest of code
simplicity, the spull interrupt handler perfor ms all this work at ‘‘interrupt’’ time; a
real driver would almost certainly defer much of this work and run it from a task
queue or tasklet.

/* this is invoked when the timer expires */
void spull_interrupt(unsigned long unused)
{

unsigned long flags

spin_lock_irqsave(&io_request_lock, flags);
end_request(1); /* This request is done - we always succeed */
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spull_busy = 0; /* We have io_request_lock, no request conflict */
if (! QUEUE_EMPTY) /* more of them? */

spull_irqdriven_request(NULL); /* Start the next transfer */
spin_unlock_irqrestore(&io_request_lock, flags);

}

If you try to run the interrupt-driven flavor of the spull module, you’ll barely notice
the added delay. The device is almost as fast as it was before because the buffer
cache avoids most data transfers between memory and the device. If you want to
perceive how a slow device behaves, you can specify a bigger value for irq=
when loading spull.

Backward Compatibility
Much has changed with the block device layer, and most of those changes hap-
pened between the 2.2 and 2.4 stable releases. Here is a quick summary of what
was differ ent befor e. As always, you can look at the drivers in the sample source,
which work on 2.0, 2.2, and 2.4, to see how the portability challenges have been
handled.

The block_device_operations structur e did not exist in Linux 2.2. Instead,
block drivers used a file_operations structur e just like char drivers. The
check_media_change and revalidate methods used to be a part of that structure.
The kernel also provided a set of generic functions—block_r ead, block_write, and
block_fsync—which most drivers used in their file_operations structur es. A
typical 2.2 or 2.0 file_operations initialization looked like this:

struct file_operations sbull_bdops = {
read: block_read,
write: block_write,
ioctl: sbull_ioctl,
open: sbull_open,
release: sbull_release,
fsync: block_fsync,
check_media_change: sbull_check_change,
revalidate: sbull_revalidate

};

Note that block drivers are subject to the same changes in the file_opera-
tions pr ototypes between 2.0 and 2.2 as char drivers.

In 2.2 and previous kernels, the request function was stored in the blk_dev
global array. Initialization requir ed a line like

blk_dev[major].request_fn = sbull_request;
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Because this method allows for only one queue per major number, the multiqueue
capability of 2.4 kernels is not present in earlier releases. Because there was only
one queue, the request function did not need the queue as an argument, so it took
none. Its prototype was as follows:

void (*request) (void);

Also, all queues had active heads, so blk_queue_headactive did not exist.

Ther e was no blk_ioctl function in 2.2 and prior releases. There was, however, a
macr o called RO_IOCTLS, which could be inserted in a switch statement to
implement BLKROSET and BLKROGET. sysdep.h in the sample source includes an
implementation of blk_ioctl that uses RO_IOCTLS and implements a few other of
the standard ioctl commands as well:

#ifdef RO_IOCTLS
static inline int blk_ioctl(kdev_t dev, unsigned int cmd,

unsigned long arg)
{

int err;

switch (cmd) {
case BLKRAGET: /* return the read-ahead value */

if (!arg) return -EINVAL;
err = ! access_ok(VERIFY_WRITE, arg, sizeof(long));
if (err) return -EFAULT;
PUT_USER(read_ahead[MAJOR(dev)],(long *) arg);
return 0;

case BLKRASET: /* set the read-ahead value */
if (!capable(CAP_SYS_ADMIN)) return -EACCES;
if (arg > 0xff) return -EINVAL; /* limit it */
read_ahead[MAJOR(dev)] = arg;
return 0;

case BLKFLSBUF: /* flush */
if (! capable(CAP_SYS_ADMIN)) return -EACCES; /* only root */
fsync_dev(dev);
invalidate_buffers(dev);
return 0;

RO_IOCTLS(dev, arg);
}
return -ENOTTY;

}
#endif /* RO_IOCTLS */

The BLKFRAGET, BLKFRASET, BLKSECTGET, BLKSECTSET, BLKELVGET, and
BLKELVSET commands were added with Linux 2.2, and BLKPG was added in 2.4.

Backward Compatibility
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Linux 2.0 did not have the max_readahead array. The max_segments array,
instead, existed and was used in Linux 2.0 and 2.2, but device drivers did not nor-
mally need to set it.

Finally, register_disk did not exist until Linux 2.4. There was, instead, a function
called resetup_one_dev, which perfor med a similar function:

resetup_one_dev(struct gendisk *gd, int drive);

register_disk is emulated in sysdep.h with the following code:

static inline void register_disk(struct gendisk *gdev, kdev_t dev,
unsigned minors, struct file_operations *ops, long size)

{
if (! gdev)

return;
resetup_one_dev(gdev, MINOR(dev) >> gdev->minor_shift);

}

Linux 2.0 was differ ent, of course, in not supporting any sort of fine-grained SMP.
Thus, there was no io_request_lock and much less need to worry about con-
curr ent access to the I/O request queue.

One final thing worth keeping in mind: although nobody really knows what will
happen in the 2.5 development series, a major block device overhaul is almost
certain. Many people are unhappy with the design of this layer, and there is a lot
of pressur e to redo it.

Quick Reference
The most important functions and macros used in writing block drivers are sum-
marized here. To save space, however, we do not list the fields of struct
request, struct buffer_head, or struct genhd, and we omit the prede-
fined ioctl commands.

#include <linux/fs.h>
int register_blkdev(unsigned int major, const char *name,

struct block_device_operations *bdops);
int unregister_blkdev(unsigned int major, const char *name);

These functions are in charge of device registration in the module’s initializa-
tion function and device removal in the cleanup function.

#include <linux/blkdev.h>
blk_init_queue(request_queue_t *queue, request_fn_proc

*request);
blk_cleanup_queue(request_queue_t *queue);

The first function initializes a queue and establishes the request function; the
second is used at cleanup time.
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BLK_DEFAULT_QUEUE(major)
This macro retur ns a default I/O request queue for a given major number.

struct blk_dev_struct blk_dev[MAX_BLKDEV];
This array is used by the kernel to find the proper queue for a given request.

int read_ahead[];
int max_readahead[][];

read_ahead contains block-level read-ahead values for every major number.
A value of 8 is reasonable for devices like hard disks; the value should be
gr eater for slower media. max_readahead contains filesystem-level read-
ahead values for every major and minor number, and is not usually changed
fr om the system default.

int max_sectors[][];
This array, indexed by both major and minor number, holds the maximum
number of sectors that should be merged into a single I/O request.

int blksize_size[][];
int blk_size[][];
int hardsect_size[][];

These two-dimensional arrays are indexed by major and minor number. The
driver is responsible for allocating and deallocating the row in the matrix asso-
ciated with its major number. The arrays repr esent the size of device blocks in
bytes (it usually is 1 KB), the size of each minor device in kilobytes (not
blocks), and the size of the hardware sector in bytes.

MAJOR_NR
DEVICE_NAME
DEVICE_NR(kdev_t device)
DEVICE_INTR
#include <linux/blk.h>

These macros must be defined by the driver befor e it includes
<linux/blk.h>, because they are used within that file. MAJOR_NR is the
major number for the device, DEVICE_NAME is the name of the device to be
used in error messages, DEVICE_NR retur ns the minor number of the physical
device referr ed to by a device number, and DEVICE_INTR is a little-used
symbol that points to the device’s bottom-half interrupt handler.

spinlock_t io_request_lock;
The spinlock that must be held whenever an I/O request queue is being
manipulated.

Quick Reference
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struct request *CURRENT;
This macro points to the current request when the default queue is being
used. The request structure describes a data chunk to be transferred and is
used by the driver’s request function.

INIT_REQUEST;
end_request(int status);

INIT_REQUEST checks the next request on the queue and retur ns if there are
no more requests to execute. end_r equest is called at the completion of a
block request.

spinlock_t io_request_lock;
The I/O request lock must be held any time that the request queue is being
manipulated.

struct request *blkdev_entry_next_request(struct list_head
*head);

struct request *blkdev_next_request(struct request *req);
struct request *blkdev_prev_request(struct request *req);
blkdev_dequeue_request(struct request *req);
blkdev_release_request(struct request *req);

Various functions for working with the I/O request queue.

blk_queue_headactive(request_queue_t *queue, int active);
Indicates whether the first request in the queue is being actively processed by
the driver or not.

void blk_queue_make_request(request_queue_t *queue,
make_request_fn *func);

Pr ovides a function to handle block I/O requests directly out of the kernel.

end_that_request_first(struct request *req, int status, char
*name);

end_that_request_last(struct request *req);
Handle the stages of completing a block I/O request. end_that_r equest_last is
only called when all buffers in the request have been processed — that is,
when end_that_r equest_first retur ns 0.

bh->b_end_io(struct buffer_head *bh, int status);
Signals the completion of I/O on the given buffer.

int blk_ioctl(kdev_t dev, unsigned int cmd, unsigned long
arg);

A utility function that implements most of the standard block device ioctl com-
mands.
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int check_disk_change(kdev_t dev);
This function checks to see if a media change has occurred on the given
device, and calls the driver’s revalidate method if a change is detected.

#include<linux/gendisk.h>
struct gendisk;
struct gendisk *gendisk_head;

The generic hard disk allows Linux to support partitionable devices easily. The
gendisk structur e describes a generic disk; gendisk_head is the beginning
of a linked list of structures describing all of the disks on the system.

void register_disk(struct gendisk *gd, int drive, unsigned
minors, struct block_device_operations *ops, long
size);

This function scans the partition table of the disk and rewrites genhd->part
to reflect the new partitioning.

Quick Reference
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