
CHAPTER EIGHT

HARDWARE
MANAGEMENT

Although playing with scull and similar toys is a good introduction to the software
inter face of a Linux device driver, implementing a real device requir es hardwar e.
The driver is the abstraction layer between software concepts and hardware cir-
cuitry; as such, it needs to talk with both of them. Up to now, we have examined
the internals of software concepts; this chapter completes the picture by showing
you how a driver can access I/O ports and I/O memory while being portable
acr oss Linux platforms.

This chapter continues in the tradition of staying as independent of specific hard-
war e as possible. However, wher e specific examples are needed, we use simple
digital I/O ports (like the standard PC parallel port) to show how the I/O instruc-
tions work, and normal frame-buffer video memory to show memory-mapped I/O.

We chose simple digital I/O because it is the easiest form of input/output port.
Also, the Centronics parallel port implements raw I/O and is available in most
computers: data bits written to the device appear on the output pins, and voltage
levels on the input pins are dir ectly accessible by the processor. In practice, you
have to connect LEDs to the port to actually see the results of a digital I/O opera-
tion, but the underlying hardware is extr emely easy to use.

I/O Por ts and I/O Memory
Every peripheral device is controlled by writing and reading its registers. Most of
the time a device has several registers, and they are accessed at consecutive
addr esses, either in the memory address space or in the I/O address space.

At the hardware level, there is no conceptual differ ence between memory regions
and I/O regions: both of them are accessed by asserting electrical signals on the
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addr ess bus and control bus (i.e., the read and write signals)* and by reading from
or writing to the data bus.

While some CPU manufacturers implement a single address space in their chips,
some others decided that peripheral devices are dif ferent from memory and there-
for e deserve a separate address space. Some processors (most notably the x86
family) have separate read and write electrical lines for I/O ports, and special CPU
instructions to access ports.

Because peripheral devices are built to fit a peripheral bus, and the most popular
I/O buses are modeled on the personal computer, even processors that do not
have a separate address space for I/O ports must fake reading and writing I/O
ports when accessing some peripheral devices, usually by means of external
chipsets or extra circuitry in the CPU core. The latter solution is only common
within tiny processors meant for embedded use.

For the same reason, Linux implements the concept of I/O ports on all computer
platfor ms it runs on, even on platforms where the CPU implements a single
addr ess space. The implementation of port access sometimes depends on the spe-
cific make and model of the host computer (because differ ent models use differ ent
chipsets to map bus transactions into memory address space).

Even if the peripheral bus has a separate address space for I/O ports, not all
devices map their registers to I/O ports. While use of I/O ports is common for ISA
peripheral boards, most PCI devices map registers into a memory address region.
This I/O memory approach is generally preferr ed because it doesn’t requir e use of
special-purpose processor instructions; CPU cores access memory much more effi-
ciently, and the compiler has much more freedom in register allocation and
addr essing-mode selection when accessing memory.

I/O Register s and Conventional Memory
Despite the strong similarity between hardware registers and memory, a program-
mer accessing I/O registers must be careful to avoid being tricked by CPU (or
compiler) optimizations that can modify the expected I/O behavior.

The main differ ence between I/O registers and RAM is that I/O operations have
side effects, while memory operations have none: the only effect of a memory
write is storing a value to a location, and a memory read retur ns the last value
written there. Because memory access speed is so critical to CPU perfor mance, the
no-side-ef fects case has been optimized in several ways: values are cached and
read/write instructions are reorder ed.

* Not all computer platform use a read and a write signal; some have differ ent means to
addr ess exter nal circuits. The differ ence is irrelevant at software level, however, and we’ll
assume all have read and write to simplify the discussion.

I/O Por ts and I/O Memory
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Chapter 8: Hardware Management

The compiler can cache data values into CPU registers without writing them to
memory, and even if it stores them, both write and read operations can operate on
cache memory without ever reaching physical RAM. Reordering can also happen
both at compiler level and at hardware level: often a sequence of instructions can
be executed more quickly if it is run in an order differ ent fr om that which appears
in the program text, for example, to prevent interlocks in the RISC pipeline. On
CISC processors, operations that take a significant amount of time can be executed
concurr ently with other, quicker ones.

These optimizations are transpar ent and benign when applied to conventional
memory (at least on uniprocessor systems), but they can be fatal to correct I/O
operations because they interfer e with those ‘‘side effects’’ that are the main rea-
son why a driver accesses I/O registers. The processor cannot anticipate a situa-
tion in which some other process (running on a separate processor, or something
happening inside an I/O controller) depends on the order of memory access. A
driver must therefor e ensur e that no caching is perfor med and no read or write
reordering takes place when accessing registers: the compiler or the CPU may just
try to outsmart you and reorder the operations you request; the result can be
strange errors that are very difficult to debug.

The problem with hardware caching is the easiest to face: the underlying hardware
is already configured (either automatically or by Linux initialization code) to dis-
able any hardware cache when accessing I/O regions (whether they are memory
or port regions).

The solution to compiler optimization and hardware reordering is to place a mem-
ory barrier between operations that must be visible to the hardware (or to another
pr ocessor) in a particular order. Linux provides four macros to cover all possible
ordering needs.

#include <linux/kernel.h>
void barrier(void)

This function tells the compiler to insert a memory barrier, but has no effect
on the hardware. Compiled code will store to memory all values that are cur-
rently modified and resident in CPU registers, and will rer ead them later when
they are needed.

#include <asm/system.h>
void rmb(void);
void wmb(void);
void mb(void);

These functions insert hardware memory barriers in the compiled instruction
flow; their actual instantiation is platform dependent. An rmb (r ead memory
barrier) guarantees that any reads appearing before the barrier are completed
prior to the execution of any subsequent read. wmb guarantees ordering in
write operations, and the mb instruction guarantees both. Each of these func-
tions is a superset of barrier.
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A typical usage of memory barriers in a device driver may have this sort of form:

writel(dev->registers.addr, io_destination_address);
writel(dev->registers.size, io_size);
writel(dev->registers.operation, DEV_READ);
wmb();
writel(dev->registers.control, DEV_GO);

In this case, it is important to be sure that all of the device registers controlling a
particular operation have been properly set prior to telling it to begin. The mem-
ory barrier will enforce the completion of the writes in the necessary order.

Because memory barriers affect perfor mance, they should only be used where
really needed. The differ ent types of barriers can also have differ ent per formance
characteristics, so it is worthwhile to use the most specific type possible. For
example, on the x86 architectur e, wmb( ) curr ently does nothing, since writes out-
side the processor are not reorder ed. Reads are reorder ed, however, so mb( ) will
be slower than wmb( ).

It is worth noting that most of the other kernel primitives dealing with synchro-
nization, such as spinlock and atomic_t operations, also function as memory
barriers.

Some architectur es allow the efficient combination of an assignment and a mem-
ory barrier. Version 2.4 of the kernel provides a few macros that perfor m this com-
bination; in the default case they are defined as follows:

#define set_mb(var, value) do {var = value; mb();} while 0
#define set_wmb(var, value) do {var = value; wmb();} while 0
#define set_rmb(var, value) do {var = value; rmb();} while 0

Wher e appr opriate, <asm/system.h> defines these macros to use architectur e-
specific instructions that accomplish the task more quickly.

The header file sysdep.h defines macros described in this section for the platforms
and the kernel versions that lack them.

Using I/O Por ts
I/O ports are the means by which drivers communicate with many devices out
ther e—at least part of the time. This section covers the various functions available
for making use of I/O ports; we also touch on some portability issues.

Let us start with a quick reminder that I/O ports must be allocated before being
used by your driver. As we discussed in “I/O Ports and I/O Memory” in Chapter 2,
the functions used to allocate and free ports are:

Using I/O Por ts
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#include <linux/ioport.h>
int check_region(unsigned long start, unsigned long len);
struct resource *request_region(unsigned long start,

unsigned long len, char *name);
void release_region(unsigned long start, unsigned long len);

After a driver has requested the range of I/O ports it needs to use in its activities, it
must read and/or write to those ports. To this aim, most hardware dif ferentiates
between 8-bit, 16-bit, and 32-bit ports. Usually you can’t mix them like you nor-
mally do with system memory access.*

A C program, therefor e, must call differ ent functions to access differ ent size ports.
As suggested in the previous section, computer architectur es that support only
memory-mapped I/O registers fake port I/O by remapping port addresses to mem-
ory addresses, and the kernel hides the details from the driver in order to ease
portability. The Linux kernel headers (specifically, the architectur e-dependent
header <asm/io.h>) define the following inline functions to access I/O ports.

Fr om now on, when we use unsigned without further type speci-
fications, we are referring to an architectur e-dependent definition
whose exact nature is not relevant. The functions are almost always
portable because the compiler automatically casts the values during
assignment — their being unsigned helps prevent compile-time warn-
ings. No information is lost with such casts as long as the program-
mer assigns sensible values to avoid overflow. We’ll stick to this
convention of ‘‘incomplete typing’’ for the rest of the chapter.

unsigned inb(unsigned port);
void outb(unsigned char byte, unsigned port);

Read or write byte ports (eight bits wide). The port argument is defined as
unsigned long for some platforms and unsigned short for others. The
retur n type of inb is also differ ent acr oss architectur es.

unsigned inw(unsigned port);
void outw(unsigned short word, unsigned port);

These functions access 16-bit ports (word wide); they are not available when
compiling for the M68k and S390 platforms, which support only byte I/O.

* Sometimes I/O ports are arranged like memory, and you can (for example) bind two
8-bit writes into a single 16-bit operation. This applies, for instance, to PC video boards,
but in general you can’t count on this feature.
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unsigned inl(unsigned port);
void outl(unsigned longword, unsigned port);

These functions access 32-bit ports. longword is either declared as
unsigned long or unsigned int, according to the platform. Like word
I/O, ‘‘long’’ I/O is not available on M68k and S390.

Note that no 64-bit port I/O operations are defined. Even on 64-bit architectur es,
the port address space uses a 32-bit (maximum) data path.

The functions just described are primarily meant to be used by device drivers, but
they can also be used from user space, at least on PC-class computers. The GNU C
library defines them in <sys/io.h>. The following conditions should apply in
order for inb and friends to be used in user-space code:

• The program must be compiled with the -O option to force expansion of
inline functions.

• The ioper m or iopl system calls must be used to get permission to perfor m I/O
operations on ports. ioper m gets permission for individual ports, while iopl
gets permission for the entire I/O space. Both these functions are Intel spe-
cific.

• The program must run as root to invoke ioper m or iopl * Alter natively, one of
its ancestors must have gained port access running as root.

If the host platform has no ioper m and no iopl system calls, user space can still
access I/O ports by using the /dev/port device file. Note, though, that the meaning
of the file is very platform specific, and most likely not useful for anything but the
PC.

The sample sources misc-pr ogs/inp.c and misc-pr ogs/outp.c ar e a minimal tool for
reading and writing ports from the command line, in user space. They expect to
be installed under multiple names (i.e., inpb, inpw, and inpl and will manipulate
byte, word, or long ports depending on which name was invoked by the user.
They use /dev/port if ioper m is not present.

The programs can be made setuid root, if you want to live dangerously and play
with your hardware without acquiring explicit privileges.

Str ing Operations
In addition to the single-shot in and out operations, some processors implement
special instructions to transfer a sequence of bytes, words, or longs to and from a
single I/O port or the same size. These are the so-called string instructions, and
they perfor m the task more quickly than a C-language loop can do. The following

* Technically, it must have the CAP_SYS_RAWIO capability, but that is the same as running
as root on current systems.

Using I/O Por ts
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macr os implement the concept of string I/O by either using a single machine
instruction or by executing a tight loop if the target processor has no instruction
that perfor ms string I/O. The macros are not defined at all when compiling for the
M68k and S390 platforms. This should not be a portability problem, since these
platfor ms don’t usually share device drivers with other platforms, because their
peripheral buses are dif ferent.

The prototypes for string functions are the following:

void insb(unsigned port, void *addr, unsigned long count);
void outsb(unsigned port, void *addr, unsigned long count);

Read or write count bytes starting at the memory address addr. Data is read
fr om or written to the single port port.

void insw(unsigned port, void *addr, unsigned long count);
void outsw(unsigned port, void *addr, unsigned long count);

Read or write 16-bit values to a single 16-bit port.

void insl(unsigned port, void *addr, unsigned long count);
void outsl(unsigned port, void *addr, unsigned long count);

Read or write 32-bit values to a single 32-bit port.

Pausing I/O
Some platforms — most notably the i386—can have problems when the processor
tries to transfer data too quickly to or from the bus. The problems can arise
because the processor is overclocked with respect to the ISA bus, and can show
up when the device board is too slow. The solution is to insert a small delay after
each I/O instruction if another such instruction follows. If your device misses some
data, or if you fear it might miss some, you can use pausing functions in place of
the normal ones. The pausing functions are exactly like those listed previously, but
their names end in _p; they are called inb_ p, outb_ p, and so on. The functions are
defined for most supported architectur es, although they often expand to the same
code as nonpausing I/O, because there is no need for the extra pause if the archi-
tectur e runs with a nonobsolete peripheral bus.

Platfor m Dependencies
I/O instructions are, by their nature, highly processor dependent. Because they
work with the details of how the processor handles moving data in and out, it is
very hard to hide the differ ences between systems. As a consequence, much of the
source code related to port I/O is platform dependent.

You can see one of the incompatibilities, data typing, by looking back at the list of
functions, where the arguments are typed differ ently based on the architectural
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dif ferences between platforms. For example, a port is unsigned short on the
x86 (where the processor supports a 64-KB I/O space), but unsigned long on
other platforms, whose ports are just special locations in the same address space
as memory.

Other platform dependencies arise from basic structural differ ences in the proces-
sors and thus are unavoidable. We won’t go into detail about the differ ences,
because we assume that you won’t be writing a device driver for a particular sys-
tem without understanding the underlying hardware. Instead, the following is an
overview of the capabilities of the architectur es that are supported by version 2.4
of the kernel:

IA-32 (x86)
The architectur e supports all the functions described in this chapter. Port
numbers are of type unsigned short.

IA-64 (Itanium)
All functions are supported; ports are unsigned long (and memory-
mapped). String functions are implemented in C.

Alpha
All the functions are supported, and ports are memory-mapped. The imple-
mentation of port I/O is differ ent in differ ent Alpha platforms, according to the
chipset they use. String functions are implemented in C and defined in
ar ch/alpha/lib/io.c. Ports are unsigned long.

ARM
Ports are memory-mapped, and all functions are supported; string functions
ar e implemented in C. Ports are of type unsigned int.

M68k
Ports are memory-mapped, and only byte functions are supported. No string
functions are supported, and the port type is unsigned char *.

MIPS
MIPS64

The MIPS port supports all the functions. String operations are implemented
with tight assembly loops, because the processor lacks machine-level string
I/O. Ports are memory-mapped; they are unsigned int in 32-bit processors
and unsigned long in 64-bit ones.

PowerPC
All the functions are supported; ports have type unsigned char *.

Using I/O Por ts

233

22 June 2001 16:39



Chapter 8: Hardware Management

S390
Similar to the M68k, the header for this platform supports only byte-wide port
I/O with no string operations. Ports are char pointers and are memory-
mapped.

Super-H
Ports are unsigned int (memory-mapped), and all the functions are sup-
ported.

SPARC
SPARC64

Once again, I/O space is memory-mapped. Versions of the port functions are
defined to work with unsigned long ports.

The curious reader can extract more infor mation fr om the io.h files, which some-
times define a few architectur e-specific functions in addition to those we describe
in this chapter. Be war ned that some of these files are rather difficult reading,
however.

It’s interesting to note that no processor outside the x86 family features a differ ent
addr ess space for ports, even though several of the supported families are shipped
with ISA and/or PCI slots (and both buses implement differ ent I/O and memory
addr ess spaces).

Mor eover, some processors (most notably the early Alphas) lack instructions that
move one or two bytes at a time.* Ther efor e, their peripheral chipsets simulate
8-bit and 16-bit I/O accesses by mapping them to special address ranges in the
memory address space. Thus, an inb and an inw instruction that act on the same
port are implemented by two 32-bit memory reads that operate on differ ent
addr esses. Fortunately, all of this is hidden from the device driver writer by the
inter nals of the macros described in this section, but we feel it’s an interesting fea-
tur e to note. If you want to probe further, look for examples in include/asm-
alpha/cor e_lca.h.

How I/O operations are per formed on each platform is well described in the pro-
grammer’s manual for each platform; those manuals are usually available for
download as PDF files on the Web.

* Single-byte I/O is not as important as one may imagine, because it is a rare operation. In
order to read/write a single byte to any address space, you need to implement a data
path connecting the low bits of the register-set data bus to any byte position in the exter-
nal data bus. These data paths requir e additional logic gates that get in the way of every
data transfer. Dropping byte-wide loads and stores can benefit overall system perfor-
mance.
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Using Digital I/O Por ts
The sample code we use to show port I/O from within a device driver acts on
general-purpose digital I/O ports; such ports are found in most computer systems.

A digital I/O port, in its most common incarnation, is a byte-wide I/O location,
either memory-mapped or port-mapped. When you write a value to an output
location, the electrical signal seen on output pins is changed according to the indi-
vidual bits being written. When you read a value from the input location, the cur-
rent logic level seen on input pins is retur ned as individual bit values.

The actual implementation and software inter face of such I/O ports varies from
system to system. Most of the time I/O pins are contr olled by two I/O locations:
one that allows selecting what pins are used as input and what pins are used as
output, and one in which you can actually read or write logic levels. Sometimes,
however, things are even simpler and the bits are hardwir ed as either input or out-
put (but, in this case, you don’t call them ‘‘general-purpose I/O’’ anymore); the
parallel port found on all personal computers is one such not-so-general-purpose
I/O port. Either way, the I/O pins are usable by the sample code we introduce
shortly.

An Over view of the Parallel Por t
Because we expect most readers to be using an x86 platform in the form called
‘‘personal computer,’’ we feel it is worth explaining how the PC parallel port is
designed. The parallel port is the peripheral interface of choice for running digital
I/O sample code on a personal computer. Although most readers probably have
parallel port specifications available, we summarize them here for your conve-
nience.

The parallel interface, in its minimal configuration (we will overlook the ECP and
EPP modes) is made up of three 8-bit ports. The PC standard starts the I/O ports
for the first parallel interface at 0x378, and for the second at 0x278. The first port
is a bidirectional data register; it connects directly to pins 2 through 9 on the phys-
ical connector. The second port is a read-only status register; when the parallel
port is being used for a printer, this register reports several aspects of printer sta-
tus, such as being online, out of paper, or busy. The third port is an output-only
contr ol register, which, among other things, controls whether interrupts are
enabled.

The signal levels used in parallel communications are standard transistor-transistor
logic (TTL) levels: 0 and 5 volts, with the logic threshold at about 1.2 volts; you
can count on the ports at least meeting the standard TTL LS current ratings,
although most modern parallel ports do better in both current and voltage ratings.

Using Digital I/O Por ts
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The parallel connector is not isolated from the computer’s internal
circuitry, which is useful if you want to connect logic gates directly
to the port. But you have to be careful to do the wiring correctly; the
parallel port circuitry is easily damaged when you play with your
own custom circuitry unless you add optoisolators to your circuit.
You can choose to use plug-in parallel ports if you fear you’ll dam-
age your motherboard.

The bit specifications are outlined in Figure 8-1. You can access 12 output bits and
5 input bits, some of which are logically inverted over the course of their signal
path. The only bit with no associated signal pin is bit 4 (0x10) of port 2, which
enables interrupts from the parallel port. We’ll make use of this bit as part of our
implementation of an interrupt handler in Chapter 9.

Input line
Output line

3 2

17 16

Bit #

Pin #

noninverted
inverted

1

13

14

25

49 8 7 6 5 3 2

27 6 5 4 3 1 0

Data port: base_addr + 0

Status port: base_addr + 1 11 10 12 13 15

27 6 5 4 3 1 0

1617 14 1

27 6 5 4 3 1 0

Control port: base_addr + 2

irq enable

KEY

Figur e 8-1. The pinout of the parallel port
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A Sample Driver
The driver we will introduce is called short (Simple Hardware Operations and Raw
Tests). All it does is read and write a few eight-bit ports, starting from the one you
select at load time. By default it uses the port range assigned to the parallel inter-
face of the PC. Each device node (with a unique minor number) accesses a differ-
ent port. The short driver doesn’t do anything useful; it just isolates for external
use a single instruction acting on a port. If you are not used to port I/O, you can
use short to get familiar with it; you can measure the time it takes to transfer data
thr ough a port or play other games.

For short to work on your system, it must have free access to the underlying hard-
war e device (by default, the parallel interface); thus, no other driver may have
allocated it. Most modern distributions set up the parallel port drivers as modules
that are loaded only when needed, so contention for the I/O addresses is not usu-
ally a problem. If, however, you get a “can’t get I/O address” error from short (on
the console or in the system log file), some other driver has probably already
taken the port. A quick look at /pr oc/ioports will usually tell you which driver is
getting in the way. The same caveat applies to other I/O devices if you are not
using the parallel interface.

Fr om now on, we’ll just refer to ‘‘the parallel interface’’ to simplify the discussion.
However, you can set the base module parameter at load time to redir ect short to
other I/O devices. This feature allows the sample code to run on any Linux plat-
for m wher e you have access to a digital I/O interface that is accessible via outb
and inb (even though the actual hardware is memory-mapped on all platforms but
the x86). Later, in “Using I/O Memory,” we’ll show how short can be used with
generic memory-mapped digital I/O as well.

To watch what happens on the parallel connector, and if you have a bit of an
inclination to work with hardware, you can solder a few LEDs to the output pins.
Each LED should be connected in series to a 1-KΩ resistor leading to a ground pin
(unless, of course, your LEDs have the resistor built in). If you connect an output
pin to an input pin, you’ll generate your own input to be read from the input
ports.

Note that you cannot just connect a printer to the parallel port and see data sent to
short. This driver implements simple access to the I/O ports and does not perfor m
the handshake that printers need to operate on the data.

If you are going to view parallel data by soldering LEDs to a D-type connector, we
suggest that you not use pins 9 and 10, because we’ll be connecting them together
later to run the sample code shown in Chapter 9.

As far as short is concerned, /dev/short0 writes to and reads from the eight-bit port
located at the I/O address base (0x378 unless changed at load time). /dev/short1
writes to the eight-bit port located at base + 1, and so on up to base + 7.

Using Digital I/O Por ts
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The actual output operation perfor med by /dev/short0 is based on a tight loop
using outb. A memory barrier instruction is used to ensure that the output opera-
tion actually takes place and is not optimized away.

while (count--) {
outb(*(ptr++), address);
wmb();

}

You can run the following command to light your LEDs:

echo -n "any string" > /dev/short0

Each LED monitors a single bit of the output port. Remember that only the last
character written remains steady on the output pins long enough to be perceived
by your eyes. For that reason, we suggest that you prevent automatic insertion of a
trailing newline by passing the -n option to echo.

Reading is perfor med by a similar function, built around inb instead of outb. In
order to read ‘‘meaningful’’ values from the parallel port, you need to have some
hardwar e connected to the input pins of the connector to generate signals. If there
is no signal, you’ll read an endless stream of identical bytes. If you choose to read
fr om an output port, you’ll most likely get back the last value written to the port
(this applies to the parallel interface and to most other digital I/O circuits in com-
mon use). Thus, those uninclined to get out their soldering irons can read the cur-
rent output value on port 0x378 by running a command like:

dd if=/dev/short0 bs=1 count=1 | od -t x1

To demonstrate the use of all the I/O instructions, there are thr ee variations of
each short device: /dev/short0 per forms the loop just shown, /dev/short0p uses
outb_ p and inb_ p in place of the ‘‘fast’’ functions, and /dev/short0s uses the string
instructions. There are eight such devices, from short0 to short7. Although the PC
parallel interface has only three ports, you may need more of them if using a dif-
fer ent I/O device to run your tests.

The short driver perfor ms an absolute minimum of hardware contr ol, but is ade-
quate to show how the I/O port instructions are used. Interested readers may want
to look at the source for the parport and parport_ pc modules to see how compli-
cated this device can get in real life in order to support a range of devices (print-
ers, tape backup, network interfaces) on the parallel port.

Using I/O Memory
Despite the popularity of I/O ports in the x86 world, the main mechanism used to
communicate with devices is through memory-mapped registers and device mem-
ory. Both are called I/O memory because the differ ence between registers and
memory is transparent to software.
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I/O memory is simply a region of RAM-like locations that the device makes avail-
able to the processor over the bus. This memory can be used for a number of pur-
poses, such as holding video data or Ethernet packets, as well as implementing
device registers that behave just like I/O ports (i.e., they have side effects associ-
ated with reading and writing them).

The way used to access I/O memory depends on the computer architectur e, bus,
and device being used, though the principles are the same everywhere. The dis-
cussion in this chapter touches mainly on ISA and PCI memory, while trying to
convey general information as well. Although access to PCI memory is introduced
her e, a thor ough discussion of PCI is deferred to Chapter 15.

According to the computer platform and bus being used, I/O memory may or may
not be accessed through page tables. When access passes though page tables, the
ker nel must first arrange for the physical address to be visible from your driver
(this usually means that you must call ior emap befor e doing any I/O). If no page
tables are needed, then I/O memory locations look pretty much like I/O ports,
and you can just read and write to them using proper wrapper functions.

Whether or not ior emap is requir ed to access I/O memory, direct use of pointers
to I/O memory is a discouraged practice. Even though (as introduced in “I/O Ports
and I/O Memory”) I/O memory is addressed like normal RAM at hardware level,
the extra care outlined in “I/O Registers and Conventional Memory” suggests
avoiding normal pointers. The wrapper functions used to access I/O memory are
both safe on all platforms and optimized away whenever straight pointer derefer-
encing can perfor m the operation.

Ther efor e, even though derefer encing a pointer works (for now) on the x86, fail-
ur e to use the proper macros will hinder the portability and readability of the
driver.

Remember from Chapter 2 that device memory regions must be allocated prior to
use. This is similar to how I/O ports are register ed and is accomplished by the fol-
lowing functions:

int check_mem_region(unsigned long start, unsigned long len);
void request_mem_region(unsigned long start, unsigned long len,
char *name);
void release_mem_region(unsigned long start, unsigned long len);

The start argument to pass to the functions is the physical address of the mem-
ory region, before any remapping takes place. The functions would normally be
used in a manner such as the following:

if (check_mem_region(mem_addr, mem_size)) {
printk("drivername: memory already in use\n");
return -EBUSY;

}
request_mem_region(mem_addr, mem_size, "drivername");
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[...]

release_mem_region(mem_addr, mem_size);

Directly Mapped Memory
Several computer platforms reserve part of their memory address space for I/O
locations, and automatically disable memory management for any (virtual) address
in that memory range.

The MIPS processors used in personal digital assistants (PDAs) offer an interesting
example of this setup. Two address ranges, 512 MB each, are dir ectly mapped to
physical addresses. Any memory access to either of those address ranges bypasses
the MMU, and any access to one of those ranges bypasses the cache as well. A
section of these 512 megabytes is reserved for peripheral devices, and drivers can
access their I/O memory directly by using the noncached address range.

Other platforms have other means to offer directly mapped address ranges: some
of them have special address spaces to derefer ence physical addresses (for exam-
ple, SPARC64 uses a special ‘‘address space identifier’’ for this aim), and others use
virtual addresses set up to bypass processor caches.

When you need to access a directly mapped I/O memory area, you still shouldn’t
der efer ence your I/O pointers, even though, on some architectur es, you may well
be able to get away with doing exactly that. To write code that will work across
systems and kernel versions, however, you must avoid direct accesses and instead
use the following functions.

unsigned readb(address);
unsigned readw(address);
unsigned readl(address);

These macros are used to retrieve 8-bit, 16-bit, and 32-bit data values from I/O
memory. The advantage of using macros is the typelessness of the argument:
address is cast before being used, because the value ‘‘is not clearly either an
integer or a pointer, and we will accept both’’ (from asm-alpha/io.h). Neither
the reading nor the writing functions check the validity of address, because
they are meant to be as fast as pointer derefer encing (we already know that
sometimes they actually expand into pointer derefer encing).

void writeb(unsigned value, address);
void writew(unsigned value, address);
void writel(unsigned value, address);

Like the previous functions, these functions (macros) are used to write 8-bit,
16-bit, and 32-bit data items.
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memset_io(address, value, count);
When you need to call memset on I/O memory, this function does what you
need, while keeping the semantics of the original memset.

memcpy_fromio(dest, source, num);
memcpy_toio(dest, source, num);

These functions move blocks of data to and from I/O memory and behave
like the C library routine memcpy.

In modern versions of the kernel, these functions are available across all architec-
tur es. The implementation will vary, however; on some they are macr os that
expand to pointer operations, and on others they are real functions. As a driver
writer, however, you need not worry about how they work, as long as you use
them.

Some 64-bit platforms also offer readq and writeq, for quad-word (eight-byte)
memory operations on the PCI bus. The quad-wor d nomenclatur e is a historical
leftover from the times when all real processors had 16-bit words. Actually, the L
naming used for 32-bit values has become incorrect too, but renaming everything
would make things still more confused.

Reusing short for I/O Memory
The short sample module, introduced earlier to access I/O ports, can be used to
access I/O memory as well. To this aim, you must tell it to use I/O memory at
load time; also, you’ll need to change the base address to make it point to your
I/O region.

For example, this is how we used short to light the debug LEDs on a MIPS devel-
opment board:

mips.root# ./short_load use_mem=1 base=0xb7ffffc0
mips.root# echo -n 7 > /dev/short0

Use of short for I/O memory is the same as it is for I/O ports; however, since no
pausing or string instructions exist for I/O memory, access to /dev/short0p and
/dev/short0s per forms the same operation as /dev/short0.

The following fragment shows the loop used by short in writing to a memory loca-
tion:

while (count--) {
writeb(*(ptr++), address);
wmb();

}

Note the use of a write memory barrier here. Because writeb likely turns into a
dir ect assignment on many architectur es, the memory barrier is needed to ensure
that the writes happen in the expected order.
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Software-Mapped I/O Memory
The MIPS class of processors notwithstanding, directly mapped I/O memory is
pr etty rar e in the current platform arena; this is especially true when a peripheral
bus is used with memory-mapped devices (which is most of the time).

The most common hardware and software arrangement for I/O memory is this:
devices live at well-known physical addresses, but the CPU has no predefined vir-
tual address to access them. The well-known physical address can be either hard-
wir ed in the device or assigned by system firmwar e at boot time. The former is
true, for example, of ISA devices, whose addresses are either burned in device
logic circuits, statically assigned in local device memory, or set by means of physi-
cal jumpers. The latter is true of PCI devices, whose addresses are assigned by sys-
tem software and written to device memory, where they persist only while the
device is powered on.

Either way, for software to access I/O memory, there must be a way to assign a
virtual address to the device. This is the role of the ior emap function, introduced
in “vmalloc and Friends.” The function, which was covered in the previous chapter
because it is related to memory use, is designed specifically to assign virtual
addr esses to I/O memory regions. Moreover, ker nel developers implemented
ior emap so that it doesn’t do anything if applied to directly mapped I/O addresses.

Once equipped with ior emap (and iounmap), a device driver can access any I/O
memory address, whether it is directly mapped to virtual address space or not.
Remember, though, that these addresses should not be derefer enced dir ectly;
instead, functions like readb should be used. We could thus arrange short to work
with both MIPS I/O memory and the more common ISA/PCI x86 memory by
equipping the module with ior emap/iounmap calls whenever the use_mem
parameter is set.

Befor e we show how short calls the functions, we’d better review the prototypes
of the functions and introduce a few details that we passed over in the previous
chapter.

The functions are called according to the following definition:

#include <asm/io.h>
void *ioremap(unsigned long phys_addr, unsigned long size);
void *ioremap_nocache(unsigned long phys_addr, unsigned long size);
void iounmap(void * addr);

First of all, you’ll notice the new function ior emap_nocache. We didn’t cover it in
Chapter 7, because its meaning is definitely hardware related. Quoting from one of
the kernel headers: ‘‘It’s useful if some control registers are in such an area and
write combining or read caching is not desirable.’’ Actually, the function’s imple-
mentation is identical to ior emap on most computer platforms: in situations in
which all of I/O memory is already visible through noncacheable addresses,
ther e’s no reason to implement a separate, noncaching version of ior emap.
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Another important feature of ior emap is the differ ent behavior of the 2.0 version
with respect to later ones. Under Linux 2.0, the function (called, remember,
vr emap at the time) refused to remap any non-page-aligned memory region. This
was a sensible choice, since at CPU level everything happens with page-sized
granularity. However, sometimes you need to map small regions of I/O registers
whose (physical) address is not page aligned. To fit this new need, version 2.1.131
and later of the kernel are able to remap unaligned addresses.

Our short module, in order to be backward portable to version 2.0 and to be able
to access non-page-aligned registers, includes the following code instead of calling
ior emap dir ectly:

/* Remap a not (necessarily) aligned port region */
void *short_remap(unsigned long phys_addr)
{

/* The code comes mainly from arch/any/mm/ioremap.c */
unsigned long offset, last_addr, size;

last_addr = phys_addr + SHORT_NR_PORTS - 1;
offset = phys_addr & ˜PAGE_MASK;

/* Adjust the begin and end to remap a full page */
phys_addr &= PAGE_MASK;
size = PAGE_ALIGN(last_addr) - phys_addr;
return ioremap(phys_addr, size) + offset;

}

/* Unmap a region obtained with short_remap */
void short_unmap(void *virt_add)
{

iounmap((void *)((unsigned long)virt_add & PAGE_MASK));
}

ISA Memory Below 1 MB
One of the most well-known I/O memory regions is the ISA range as found on
personal computers. This is the memory range between 640 KB (0xA0000) and 1
MB (0x100000). It thus appears right in the middle of regular system RAM. This
positioning may seem a little strange; it is an artifact of a decision made in the
early 1980s, when 640 KB of memory seemed like more than anybody would ever
be able to use.

This memory range belongs to the non-directly-mapped class of memory.* You

* Actually, this is not completely true. The memory range is so small and so frequently
used that the kernel builds page tables at boot time to access those addresses. However,
the virtual address used to access them is not the same as the physical address, and thus
ior emap is needed anyway. Moreover, version 2.0 of the kernel had that range directly
mapped. See “Backward Compatibility” for 2.0 issues.
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can read/write a few bytes in that memory range using the short module as
explained previously, that is, by setting use_mem at load time.

Although ISA I/O memory exists only in x86-class computers, we think it’s worth
spending a few words and a sample driver on it.

We are not going to discuss PCI memory in this chapter, since it is the cleanest
kind of I/O memory: once you know the physical address you can simply remap
and access it. The ‘‘problem’’ with PCI I/O memory is that it doesn’t lend itself to a
working example for this chapter, because we can’t know in advance the physical
addr esses your PCI memory is mapped to, nor whether it’s safe to access either of
those ranges. We chose to describe the ISA memory range because it’s both less
clean and more suitable to running sample code.

To demonstrate access to ISA memory, we will make use of yet another silly little
module (part of the sample sources). In fact, this one is called silly, as an acr onym
for Simple Tool for Unloading and Printing ISA Data, or something like that.

The module supplements the functionality of short by giving access to the whole
384-KB memory space and by showing all the differ ent I/O functions. It features
four device nodes that perfor m the same task using differ ent data transfer func-
tions. The silly devices act as a window over I/O memory, in a way similar to
/dev/mem. You can read and write data, and lseek to an arbitrary I/O memory
addr ess.

Because silly pr ovides access to ISA memory, it must start by mapping the physical
ISA addresses into kernel virtual addresses. In the early days of the Linux kernel,
one could simply assign a pointer to an ISA address of interest, then derefer ence it
dir ectly. In the modern world, though, we must work with the virtual memory sys-
tem and remap the memory range first. This mapping is done with ior emap, as
explained earlier for short:

#define ISA_BASE 0xA0000
#define ISA_MAX 0x100000 /* for general memory access */

/* this line appears in silly_init */
io_base = ioremap(ISA_BASE, ISA_MAX - ISA_BASE);

ior emap retur ns a pointer value that can be used with readb and the other func-
tions explained in the section “Directly Mapped Memory.”

Let’s look back at our sample module to see how these functions might be used.
/dev/sillyb, featuring minor number 0, accesses I/O memory with readb and
writeb. The following code shows the implementation for read, which makes the
addr ess range 0xA0000-0xFFFFF available as a virtual file in the range
0-0x5FFFF. The read function is structured as a switch statement over the dif-
fer ent access modes; here is the sillyb case:
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case M_8:
while (count) {

*ptr = readb(add);
add++; count--; ptr++;

}
break;

The next two devices are /dev/sillyw (minor number 1) and /dev/sillyl (minor num-
ber 2). They act like /dev/sillyb, except that they use 16-bit and 32-bit functions.
Her e’s the write implementation of sillyl, again part of a switch:

case M_32:
while (count >= 4) {

writel(*(u32 *)ptr, add);
add+=4; count-=4; ptr+=4;

}
break;

The last device is /dev/sillycp (minor number 3), which uses the memcpy_*io func-
tions to perfor m the same task. Here’s the core of its read implementation:

case M_memcpy:
memcpy_fromio(ptr, add, count);
break;

Because ior emap was used to provide access to the ISA memory area, silly must
invoke iounmap when the module is unloaded:

iounmap(io_base);

isa_readb and Friends
A look at the kernel source will turn up another set of routines with names like
isa_r eadb. In fact, each of the functions just described has an isa_ equivalent.
These functions provide access to ISA memory without the need for a separate
ior emap step. The word from the kernel developers, however, is that these func-
tions are intended to be temporary driver-porting aids, and that they may go away
in the future. Their use is thus best avoided.

Probing for ISA Memory
Even though most modern devices rely on better I/O bus architectur es, like PCI,
sometimes programmers must still deal with ISA devices and their I/O memory, so
we’ll spend a page on this issue. We won’t touch high ISA memory (the so-called
memory hole in the 14 MB to 16 MB physical address range), because that kind of
I/O memory is extremely rare nowadays and is not supported by the majority of
moder n motherboards or by the kernel. To access that range of I/O memory you’d
need to hack the kernel initialization sequence, and that is better not covered
her e.
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When using ISA memory-mapped devices, the driver writer often ignores where
relevant I/O memory is located in the physical address space, since the actual
addr ess is usually assigned by the user among a range of possible addresses. Or it
may be necessary simply to see if a device is present at a given address or not.

The memory resource management scheme can be helpful in probing, since it will
identify regions of memory that have already been claimed by another driver. The
resource manager, however, cannot tell you about devices whose drivers have not
been loaded, or whether a given region contains the device that you are inter ested
in. Thus, it can still be necessary to actually probe memory to see what is there.
Ther e ar e thr ee distinct cases that you will encounter: that RAM is mapped to the
addr ess, that ROM is there (the VGA BIOS, for example), or that the area is free.

The skull sample source shows a way to deal with such memory, but since skull is
not related to any physical device, it just prints information about the 640 KB to 1
MB memory region and then exits. However, the code used to analyze memory is
worth describing, since it shows how memory probes can be done.

The code to check for RAM segments makes use of cli to disable interrupts,
because these segments can be identified only by physically writing and rer eading
data, and real RAM might be changed by an interrupt handler in the middle of our
tests. The following code is not completely foolproof, because it might mistake
RAM memory on acquisition boards for empty regions if a device is actively writ-
ing to its own memory while this code is scanning the area. However, this situa-
tion is quite unlikely to happen.

unsigned char oldval, newval; /* values read from memory */
unsigned long flags; /* used to hold system flags */
unsigned long add, i;
void *base;

/* Use ioremap to get a handle on our region */
base = ioremap(ISA_REGION_BEGIN, ISA_REGION_END - ISA_REGION_BEGIN);
base -= ISA_REGION_BEGIN; /* Do the offset once */

/* probe all the memory hole in 2-KB steps */
for (add = ISA_REGION_BEGIN; add < ISA_REGION_END; add += STEP) {

/*
* Check for an already allocated region.
*/

if (check_mem_region (add, 2048)) {
printk(KERN_INFO "%lx: Allocated\n", add);
continue;

}
/*
* Read and write the beginning of the region and see what happens.
*/

save_flags(flags);
cli();
oldval = readb (base + add); /* Read a byte */
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writeb (oldvalˆ0xff, base + add);
mb();
newval = readb (base + add);
writeb (oldval, base + add);
restore_flags(flags);

if ((oldvalˆnewval) == 0xff) { /* we reread our change: it’s RAM */
printk(KERN_INFO "%lx: RAM\n", add);
continue;

}
if ((oldvalˆnewval) != 0) { /* random bits changed: it’s empty */

printk(KERN_INFO "%lx: empty\n", add);
continue;

}

/*
* Expansion ROM (executed at boot time by the BIOS)
* has a signature where the first byte is 0x55, the second 0xaa,
* and the third byte indicates the size of such ROM
*/

if ( (oldval == 0x55) && (readb (base + add + 1) == 0xaa)) {
int size = 512 * readb (base + add + 2);
printk(KERN_INFO "%lx: Expansion ROM, %i bytes\n",

add, size);
add += (size & ˜2048) - 2048; /* skip it */
continue;

}

/*
* If the tests above failed, we still don’t know if it is ROM or
* empty. Since empty memory can appear as 0x00, 0xff, or the low
* address byte, we must probe multiple bytes: if at least one of
* them is different from these three values, then this is ROM
* (though not boot ROM).
*/

printk(KERN_INFO "%lx: ", add);
for (i=0; i<5; i++) {

unsigned long radd = add + 57*(i+1); /* a "random" value */
unsigned char val = readb (base + radd);
if (val && val != 0xFF && val != ((unsigned long) radd&0xFF))

break;
}
printk("%s\n", i==5 ? "empty" : "ROM");

}

Detecting memory doesn’t cause collisions with other devices, as long as you take
car e to restor e any byte you modified while you were probing. It is worth noting
that it is always possible that writing to another device’s memory will cause that
device to do something undesirable. In general, this method of probing memory
should be avoided if possible, but it’s not always possible when dealing with older
hardwar e.
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Backward Compatibility
Happily, little has changed with regard to basic hardware access. There are just a
few things that need to be kept in mind when writing backward-compatible
drivers.

Hardwar e memory barriers didn’t exist in version 2.0 of the kernel. There was no
need for such ordering instructions on the platforms then supported. Including sys-
dep.h in your driver will fix the problem by defining hardware barriers to be the
same as software barriers.

Similarly, not all of the port-access functions (inb and friends) were supported on
all architectur es in older kernels. The string functions, in particular, tended to be
absent. We don’t provide the missing functions in our sysdep.h facility: it won’t be
an easy task to perfor m cleanly and most likely is not worth the effort, given the
hardwar e dependency of those functions.

In Linux 2.0, ior emap and iounmap wer e called vr emap and vfr ee, respectively.
The parameters and the functionality were the same. Thus, a couple of definitions
that map the functions to their older counterpart are often enough.

Unfortunately, while vr emap worked just like ior emap for providing access to
‘‘high’’ memory (such as that on PCI cards), it did refuse to remap the ISA memory
ranges. Back in those days, access to this memory was done via direct pointers, so
ther e was no need to remap that address space. Thus, a more complete solution to
implement ior emap for Linux 2.0 running on the x86 platform is as follows:

extern inline void *ioremap(unsigned long phys_addr, unsigned long size)
{

if (phys_addr >= 0xA0000 && phys_addr + size <= 0x100000)
return (void *)phys_addr;

return vremap(phys_addr, size);
}

extern inline void iounmap(void *addr)
{

if ((unsigned long)addr >= 0xA0000
&& (unsigned long)addr < 0x100000)

return;
vfree(addr);

}

If you include sysdep.h in your drivers you’ll be able to use ior emap with no prob-
lems even when accessing ISA memory.

Allocation of memory regions (check_mem_r egion and friends) was introduced in
ker nel 2.3.17. In the 2.0 and 2.2 kernels, there was no central facility for the allo-
cation of memory resources. You can use the macros anyway if you include
sysdep.h because it nullifies the three macros when compiling for 2.0 or 2.2.
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Quick Reference
This chapter introduced the following symbols related to hardware management.

#include <linux/kernel.h>
void barrier(void)

This ‘‘software’’ memory barrier requests the compiler to consider all memory
volatile across this instruction.

#include <asm/system.h>
void rmb(void);
void wmb(void);
void mb(void);

Hardwar e memory barriers. They request the CPU (and the compiler) to
checkpoint all memory reads, writes, or both, across this instruction.

#include <asm/io.h>
unsigned inb(unsigned port);
void outb(unsigned char byte, unsigned port);
unsigned inw(unsigned port);
void outw(unsigned short word, unsigned port);
unsigned inl(unsigned port);
void outl(unsigned doubleword, unsigned port);

These functions are used to read and write I/O ports. They can also be called
by user-space programs, provided they have the right privileges to access
ports.

unsigned inb_p(unsigned port);
. . .

The statement SLOW_DOWN_IO is sometimes needed to deal with slow ISA
boards on the x86 platform. If a small delay is needed after an I/O operation,
you can use the six pausing counterparts of the functions introduced in the
pr evious entry; these pausing functions have names ending in _p.

void insb(unsigned port, void *addr, unsigned long count);
void outsb(unsigned port, void *addr, unsigned long count);
void insw(unsigned port, void *addr, unsigned long count);
void outsw(unsigned port, void *addr, unsigned long count);
void insl(unsigned port, void *addr, unsigned long count);
void outsl(unsigned port, void *addr, unsigned long count);

The ‘‘string functions’’ are optimized to transfer data from an input port to a
region of memory, or the other way around. Such transfers are per formed by
reading or writing the same port count times.
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#include <linux/ioport.h>
int check_region(unsigned long start, unsigned long len);
void request_region(unsigned long start, unsigned long len,

char *name);
void release_region(unsigned long start, unsigned long len);

Resource allocators for I/O ports. The check function retur ns 0 for success and
less than 0 in case of error.

int check_mem_region(unsigned long start, unsigned long
len);

void request_mem_region(unsigned long start, unsigned long
len, char *name);

void release_mem_region(unsigned long start, unsigned long
len);

These functions handle resource allocation for memory regions.

#include <asm/io.h>
void *ioremap(unsigned long phys_addr, unsigned long size);
void *ioremap_nocache(unsigned long phys_addr, unsigned long

size);
void iounmap(void *virt_addr);

ior emap remaps a physical address range into the processor’s virtual address
space, making it available to the kernel. iounmap fr ees the mapping when it
is no longer needed.

#include <linux/io.h>
unsigned readb(address);
unsigned readw(address);
unsigned readl(address);
void writeb(unsigned value, address);
void writew(unsigned value, address);
void writel(unsigned value, address);
memset_io(address, value, count);
memcpy_fromio(dest, source, nbytes);
memcpy_toio(dest, source, nbytes);

These functions are used to access I/O memory regions, either low ISA mem-
ory or high PCI buffers.
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