
CHAPTER ONE

AN INTRODUCTION TO
DEVICE DRIVERS

As the popularity of the Linux system continues to grow, the interest in writing
Linux device drivers steadily increases. Most of Linux is independent of the hard-
war e it runs on, and most users can be (happily) unaware of hardwar e issues. But,
for each piece of hardware supported by Linux, somebody somewhere has written
a driver to make it work with the system. Without device drivers, there is no func-
tioning system.

Device drivers take on a special role in the Linux kernel. They are distinct “black
boxes” that make a particular piece of hardware respond to a well-defined internal
pr ogramming inter face; they hide completely the details of how the device works.
User activities are per formed by means of a set of standardized calls that are inde-
pendent of the specific driver; mapping those calls to device-specific operations
that act on real hardware is then the role of the device driver. This programming
inter face is such that drivers can be built separately from the rest of the kernel,
and “plugged in” at runtime when needed. This modularity makes Linux drivers
easy to write, to the point that there are now hundreds of them available.

Ther e ar e a number of reasons to be interested in the writing of Linux device
drivers. The rate at which new hardware becomes available (and obsolete!) alone
guarantees that driver writers will be busy for the foreseeable future. Individuals
may need to know about drivers in order to gain access to a particular device that
is of interest to them. Hardware vendors, by making a Linux driver available for
their products, can add the large and growing Linux user base to their potential
markets. And the open source nature of the Linux system means that if the driver
writer wishes, the source to a driver can be quickly disseminated to millions of
users.

1

22 June 2001 16:32



Chapter 1: An Introduction to Device Driver s

This book will teach you how to write your own drivers and how to hack around
in related parts of the kernel. We have taken a device-independent approach; the
pr ogramming techniques and interfaces are presented, whenever possible, without
being tied to any specific device. Each driver is differ ent; as a driver writer, you
will need to understand your specific device well. But most of the principles and
basic techniques are the same for all drivers. This book cannot teach you about
your device, but it will give you a handle on the background you need to make
your device work.

As you learn to write drivers, you will find out a lot about the Linux kernel in gen-
eral; this may help you understand how your machine works and why things
ar en’t always as fast as you expect or don’t do quite what you want. We’ll intro-
duce new ideas gradually, starting off with very simple drivers and building upon
them; every new concept will be accompanied by sample code that doesn’t need
special hardware to be tested.

This chapter doesn’t actually get into writing code. However, we intr oduce some
backgr ound concepts about the Linux kernel that you’ll be glad you know later,
when we do launch into programming.

The Role of the Device Driver
As a programmer, you will be able to make your own choices about your driver,
choosing an acceptable trade-off between the programming time requir ed and the
flexibility of the result. Though it may appear strange to say that a driver is “flexi-
ble,” we like this word because it emphasizes that the role of a device driver is
pr oviding mechanism, not policy.

The distinction between mechanism and policy is one of the best ideas behind the
Unix design. Most programming problems can indeed be split into two parts:
“what capabilities are to be provided” (the mechanism) and “how those capabili-
ties can be used” (the policy). If the two issues are addr essed by differ ent parts of
the program, or even by differ ent pr ograms altogether, the software package is
much easier to develop and to adapt to particular needs.

For example, Unix management of the graphic display is split between the X
server, which knows the hardware and offers a unified interface to user programs,
and the window and session managers, which implement a particular policy with-
out knowing anything about the hardware. People can use the same window man-
ager on differ ent hardwar e, and differ ent users can run differ ent configurations on
the same workstation. Even completely differ ent desktop environments, such as
KDE and GNOME, can coexist on the same system. Another example is the lay-
er ed structur e of TCP/IP networking: the operating system offers the socket
abstraction, which implements no policy regarding the data to be transferred,
while differ ent servers are in charge of the services (and their associated policies).

2

22 June 2001 16:32



Mor eover, a server like ftpd pr ovides the file transfer mechanism, while users can
use whatever client they prefer; both command-line and graphic clients exist, and
anyone can write a new user interface to transfer files.

Wher e drivers are concer ned, the same separation of mechanism and policy
applies. The floppy driver is policy free — its role is only to show the diskette as a
continuous array of data blocks. Higher levels of the system provide policies, such
as who may access the floppy drive, whether the drive is accessed directly or via a
filesystem, and whether users may mount filesystems on the drive. Since differ ent
envir onments usually need to use hardware in dif ferent ways, it’s important to be
as policy free as possible.

When writing drivers, a programmer should pay particular attention to this funda-
mental concept: write kernel code to access the hardware, but don’t force particu-
lar policies on the user, since differ ent users have differ ent needs. The driver
should deal with making the hardware available, leaving all the issues about how
to use the hardware to the applications. A driver, then, is flexible if it offers access
to the hardware capabilities without adding constraints. Sometimes, however,
some policy decisions must be made. For example, a digital I/O driver may only
of fer byte-wide access to the hardware in order to avoid the extra code needed to
handle individual bits.

You can also look at your driver from a differ ent perspective: it is a software layer
that lies between the applications and the actual device. This privileged role of the
driver allows the driver programmer to choose exactly how the device should
appear: differ ent drivers can offer differ ent capabilities, even for the same device.
The actual driver design should be a balance between many differ ent considera-
tions. For instance, a single device may be used concurrently by differ ent pr o-
grams, and the driver programmer has complete freedom to determine how to
handle concurrency. You could implement memory mapping on the device inde-
pendently of its hardware capabilities, or you could provide a user library to help
application programmers implement new policies on top of the available primi-
tives, and so forth. One major consideration is the trade-off between the desire to
pr esent the user with as many options as possible and the time in which you have
to do the writing as well as the need to keep things simple so that errors don’t
cr eep in.

Policy-fr ee drivers have a number of typical characteristics. These include support
for both synchronous and asynchronous operation, the ability to be opened multi-
ple times, the ability to exploit the full capabilities of the hardware, and the lack of
softwar e layers to “simplify things” or provide policy-related operations. Drivers of
this sort not only work better for their end users, but also turn out to be easier to
write and maintain as well. Being policy free is actually a common target for soft-
war e designers.

The Role of the Device Driver

3

22 June 2001 16:32



Chapter 1: An Introduction to Device Driver s

Many device drivers, indeed, are released together with user programs to help
with configuration and access to the target device. Those programs can range from
simple utilities to complete graphical applications. Examples include the tunelp
pr ogram, which adjusts how the parallel port printer driver operates, and the
graphical car dctl utility that is part of the PCMCIA driver package. Often a client
library is provided as well, which provides capabilities that do not need to be
implemented as part of the driver itself.

The scope of this book is the kernel, so we’ll try not to deal with policy issues, or
with application programs or support libraries. Sometimes we’ll talk about differ ent
policies and how to support them, but we won’t go into much detail about pro-
grams using the device or the policies they enforce. You should understand, how-
ever, that user programs are an integral part of a software package and that even
policy-fr ee packages are distributed with configuration files that apply a default
behavior to the underlying mechanisms.

Splitting the Ker nel
In a Unix system, several concurrent pr ocesses attend to differ ent tasks. Each pro-
cess asks for system resources, be it computing power, memory, network connec-
tivity, or some other resource. The ker nel is the big chunk of executable code in
charge of handling all such requests. Though the distinction between the differ ent
ker nel tasks isn’t always clearly marked, the kernel’s role can be split, as shown in
Figur e 1-1, into the following parts:

Pr ocess management
The kernel is in charge of creating and destroying processes and handling
their connection to the outside world (input and output). Communication
among differ ent pr ocesses (thr ough signals, pipes, or interprocess communica-
tion primitives) is basic to the overall system functionality and is also handled
by the kernel. In addition, the scheduler, which controls how processes share
the CPU, is part of process management. More generally, the kernel’s process
management activity implements the abstraction of several processes on top of
a single CPU or a few of them.

Memory management
The computer’s memory is a major resource, and the policy used to deal with
it is a critical one for system perfor mance. The kernel builds up a virtual
addr essing space for any and all processes on top of the limited available
resources. The differ ent parts of the kernel interact with the memory-manage-
ment subsystem through a set of function calls, ranging from the simple mal-
loc/fr ee pair to much more exotic functionalities.

Filesystems
Unix is heavily based on the filesystem concept; almost everything in Unix can
be treated as a file. The kernel builds a structured filesystem on top of
unstructur ed hardwar e, and the resulting file abstraction is heavily used

4

22 June 2001 16:32



features implemented as modules

Process
management

Memory
management

Filesystems Device
control

Networking

Arch-
dependent

Code

Memory
manager

Character
devices

Network
subsystem

CPU Memory

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

Kernel
subsystems

Features
implemented

Software
support

Hardware

IF driversBlock devices

File system
types

Ttys &
device access Connectivity

Disks & CDs Consoles,
etc.

Network
interfaces

The System Call Interface

Figur e 1-1. A split view of the kernel

thr oughout the whole system. In addition, Linux supports multiple filesystem
types, that is, differ ent ways of organizing data on the physical medium. For
example, diskettes may be formatted with either the Linux-standard ext2
filesystem or with the commonly used FAT filesystem.

Device control
Almost every system operation eventually maps to a physical device. With the
exception of the processor, memory, and a very few other entities, any and all
device control operations are per formed by code that is specific to the device
being addressed. That code is called a device driver. The kernel must have
embedded in it a device driver for every peripheral present on a system, from
the hard drive to the keyboard and the tape streamer. This aspect of the ker-
nel’s functions is our primary interest in this book.

Splitting the Ker nel

5

22 June 2001 16:32



Chapter 1: An Introduction to Device Driver s

Networking
Networking must be managed by the operating system because most network
operations are not specific to a process: incoming packets are asynchr onous
events. The packets must be collected, identified, and dispatched before a
pr ocess takes care of them. The system is in charge of delivering data packets
acr oss pr ogram and network interfaces, and it must control the execution of
pr ograms according to their network activity. Additionally, all the routing and
addr ess resolution issues are implemented within the kernel.

Toward the end of this book, in Chapter 16, you’ll find a road map to the Linux
ker nel, but these few paragraphs should suffice for now.

One of the good features of Linux is the ability to extend at runtime the set of fea-
tur es of fered by the kernel. This means that you can add functionality to the ker-
nel while the system is up and running.

Each piece of code that can be added to the kernel at runtime is called a module.
The Linux kernel offers support for quite a few differ ent types (or classes) of mod-
ules, including, but not limited to, device drivers. Each module is made up of
object code (not linked into a complete executable) that can be dynamically linked
to the running kernel by the insmod pr ogram and can be unlinked by the rmmod
pr ogram.

Figur e 1-1 identifies differ ent classes of modules in charge of specific tasks—a
module is said to belong to a specific class according to the functionality it offers.
The placement of modules in Figure 1-1 covers the most important classes, but is
far from complete because more and more functionality in Linux is being modular-
ized.

Classes of Devices and Modules
The Unix way of looking at devices distinguishes between three device types.
Each module usually implements one of these types, and thus is classifiable as a
char module, a block module, or a network module. This division of modules into
dif ferent types, or classes, is not a rigid one; the programmer can choose to build
huge modules implementing differ ent drivers in a single chunk of code. Good pro-
grammers, nonetheless, usually create a differ ent module for each new functional-
ity they implement, because decomposition is a key element of scalability and
extendability.

The three classes are the following:

Character devices
A character (char) device is one that can be accessed as a stream of bytes (like
a file); a char driver is in charge of implementing this behavior. Such a driver
usually implements at least the open, close, read, and write system calls. The

6

22 June 2001 16:32



text console (/dev/console) and the serial ports (/dev/ttyS0 and friends) are
examples of char devices, as they are well repr esented by the stream abstrac-
tion. Char devices are accessed by means of filesystem nodes, such as
/dev/tty1 and /dev/lp0. The only relevant differ ence between a char device and
a regular file is that you can always move back and forth in the regular file,
wher eas most char devices are just data channels, which you can only access
sequentially. There exist, nonetheless, char devices that look like data areas,
and you can move back and forth in them; for instance, this usually applies to
frame grabbers, where the applications can access the whole acquired image
using mmap or lseek.

Block devices
Like char devices, block devices are accessed by filesystem nodes in the /dev
dir ectory. A block device is something that can host a filesystem, such as a
disk. In most Unix systems, a block device can be accessed only as multiples
of a block, where a block is usually one kilobyte of data or another power of
2. Linux allows the application to read and write a block device like a char
device — it per mits the transfer of any number of bytes at a time. As a result,
block and char devices differ only in the way data is managed internally by
the kernel, and thus in the kernel/driver software inter face. Like a char device,
each block device is accessed through a filesystem node and the differ ence
between them is transparent to the user. A block driver offers the kernel the
same interface as a char driver, as well as an additional block-oriented inter-
face that is invisible to the user or applications opening the /dev entry points.
That block interface, though, is essential to be able to mount a filesystem.

Network interfaces
Any network transaction is made through an interface, that is, a device that is
able to exchange data with other hosts. Usually, an interface is a hardware
device, but it might also be a pure softwar e device, like the loopback inter-
face. A network interface is in charge of sending and receiving data packets,
driven by the network subsystem of the kernel, without knowing how individ-
ual transactions map to the actual packets being transmitted. Though both Tel-
net and FTP connections are str eam oriented, they transmit using the same
device; the device doesn’t see the individual streams, but only the data pack-
ets.

Not being a stream-oriented device, a network interface isn’t easily mapped to
a node in the filesystem, as /dev/tty1 is. The Unix way to provide access to
inter faces is still by assigning a unique name to them (such as eth0), but that
name doesn’t have a corresponding entry in the filesystem. Communication
between the kernel and a network device driver is completely differ ent fr om
that used with char and block drivers. Instead of read and write, the kernel
calls functions related to packet transmission.

Other classes of driver modules exist in Linux. The modules in each class exploit
public services the kernel offers to deal with specific types of devices. Therefor e,

Classes of Devices and Modules

7

22 June 2001 16:32



Chapter 1: An Introduction to Device Driver s

one can talk of universal serial bus (USB) modules, serial modules, and so on. The
most common nonstandard class of devices is that of SCSI* drivers. Although every
peripheral connected to the SCSI bus appears in /dev as either a char device or a
block device, the internal organization of the software is dif ferent.

Just as network interface cards provide the network subsystem with hardware-
related functionality, so a SCSI controller provides the SCSI subsystem with access
to the actual interface cable. SCSI is a communication protocol between the com-
puter and peripheral devices, and every SCSI device responds to the same proto-
col, independently of what controller board is plugged into the computer. The
Linux kernel therefor e embeds a SCSI implementation (i.e., the mapping of file
operations to the SCSI communication protocol). The driver writer has to imple-
ment the mapping between the SCSI abstraction and the physical cable. This map-
ping depends on the SCSI controller and is independent of the devices attached to
the SCSI cable.

Other classes of device drivers have been added to the kernel in recent times,
including USB drivers, FireWir e drivers, and I2O drivers. In the same way that they
handled SCSI drivers, kernel developers collected class-wide features and exported
them to driver implementers to avoid duplicating work and bugs, thus simplifying
and strengthening the process of writing such drivers.

In addition to device drivers, other functionalities, both hardware and software,
ar e modularized in the kernel. Beyond device drivers, filesystems are perhaps the
most important class of modules in the Linux system. A filesystem type determines
how information is organized on a block device in order to repr esent a tree of
dir ectories and files. Such an entity is not a device driver, in that there’s no explicit
device associated with the way the information is laid down; the filesystem type is
instead a software driver, because it maps the low-level data structures to higher-
level data structures. It is the filesystem that determines how long a filename can
be and what information about each file is stored in a directory entry. The filesys-
tem module must implement the lowest level of the system calls that access direc-
tories and files, by mapping filenames and paths (as well as other information,
such as access modes) to data structures stored in data blocks. Such an interface is
completely independent of the actual data transfer to and from the disk (or other
medium), which is accomplished by a block device driver.

If you think of how strongly a Unix system depends on the underlying filesystem,
you’ll realize that such a software concept is vital to system operation. The ability
to decode filesystem information stays at the lowest level of the kernel hierarchy
and is of utmost importance; even if you write a block driver for your new CD-
ROM, it is useless if you are not able to run ls or cp on the data it hosts. Linux
supports the concept of a filesystem module, whose software inter face declar es
the differ ent operations that can be perfor med on a filesystem inode, directory,

* SCSI is an acronym for Small Computer Systems Interface; it is an established standard in
the workstation and high-end server market.

8

22 June 2001 16:32



file, and superblock. It’s quite unusual for a programmer to actually need to write
a filesystem module, because the official kernel already includes code for the most
important filesystem types.

Secur ity Issues
Security is an increasingly important concern in moder n times. We will discuss
security-r elated issues as they come up throughout the book. There are a few gen-
eral concepts, however, that are worth mentioning now.

Security has two faces, which can be called deliberate and incidental. One security
pr oblem is the damage a user can cause through the misuse of existing programs,
or by incidentally exploiting bugs; a differ ent issue is what kind of (mis)functional-
ity a programmer can deliberately implement. The programmer has, obviously,
much more power than a plain user. In other words, it’s as dangerous to run a
pr ogram you got from somebody else from the root account as it is to give him or
her a root shell now and then. Although having access to a compiler is not a secu-
rity hole per se, the hole can appear when compiled code is actually executed;
everyone should be careful with modules, because a kernel module can do any-
thing. A module is just as powerful as a superuser shell.

Any security check in the system is enforced by kernel code. If the kernel has
security holes, then the system has holes. In the official kernel distribution, only
an authorized user can load modules; the system call cr eate_module checks if the
invoking process is authorized to load a module into the kernel. Thus, when run-
ning an official kernel, only the superuser,* or an intruder who has succeeded in
becoming privileged, can exploit the power of privileged code.

When possible, driver writers should avoid encoding security policy in their code.
Security is a policy issue that is often best handled at higher levels within the ker-
nel, under the control of the system administrator. Ther e ar e always exceptions,
however. As a device driver writer, you should be aware of situations in which
some types of device access could adversely affect the system as a whole, and
should provide adequate controls. For example, device operations that affect
global resources (such as setting an interrupt line) or that could affect other users
(such as setting a default block size on a tape drive) are usually only available to
suf ficiently privileged users, and this check must be made in the driver itself.

Driver writers must also be careful, of course, to avoid introducing security bugs.
The C programming language makes it easy to make several types of errors. Many
curr ent security problems are created, for example, by buf fer overrun err ors, in
which the programmer forgets to check how much data is written to a buffer, and
data ends up written beyond the end of the buffer, thus overwriting unrelated

* Version 2.0 of the kernel allows only the superuser to run privileged code, while version
2.2 has more sophisticated capability checks. We discuss this in “Capabilities and
Restricted Operations” in Chapter 5.

Secur ity Issues

9

22 June 2001 16:32



Chapter 1: An Introduction to Device Driver s

data. Such errors can compromise the entire system and must be avoided. Fortu-
nately, avoiding these errors is usually relatively easy in the device driver context,
in which the interface to the user is narrowly defined and highly controlled.

Some other general security ideas are worth keeping in mind. Any input received
fr om user processes should be treated with great suspicion; never trust it unless
you can verify it. Be careful with uninitialized memory; any memory obtained
fr om the kernel should be zeroed or otherwise initialized before being made avail-
able to a user process or device. Otherwise, information leakage could result. If
your device interprets data sent to it, be sure the user cannot send anything that
could compromise the system. Finally, think about the possible effect of device
operations; if there are specific operations (e.g., reloading the firmwar e on an
adapter board, formatting a disk) that could affect the system, those operations
should probably be restricted to privileged users.

Be careful, also, when receiving software from third parties, especially when the
ker nel is concerned: because everybody has access to the source code, everybody
can break and recompile things. Although you can usually trust precompiled ker-
nels found in your distribution, you should avoid running kernels compiled by an
untrusted friend—if you wouldn’t run a precompiled binary as root, then you’d
better not run a precompiled kernel. For example, a maliciously modified kernel
could allow anyone to load a module, thus opening an unexpected back door via
cr eate_module.

Note that the Linux kernel can be compiled to have no module support whatso-
ever, thus closing any related security holes. In this case, of course, all needed
drivers must be built directly into the kernel itself. It is also possible, with 2.2 and
later kernels, to disable the loading of kernel modules after system boot, via the
capability mechanism.

Version Numbering
Befor e digging into programming, we’d like to comment on the version number-
ing scheme used in Linux and which versions are cover ed by this book.

First of all, note that every softwar e package used in a Linux system has its own
release number, and there are often interdependencies across them: you need a
particular version of one package to run a particular version of another package.
The creators of Linux distributions usually handle the messy problem of matching
packages, and the user who installs from a prepackaged distribution doesn’t need
to deal with version numbers. Those who replace and upgrade system software,
on the other hand, are on their own. Fortunately, almost all modern distributions
support the upgrade of single packages by checking interpackage dependencies;
the distribution’s package manager generally will not allow an upgrade until the
dependencies are satisfied.

10

22 June 2001 16:32



To run the examples we introduce during the discussion, you won’t need particu-
lar versions of any tool but the kernel; any recent Linux distribution can be used
to run our examples. We won’t detail specific requir ements, because the file Docu-
mentation/Changes in your kernel sources is the best source of such information if
you experience any problem.

As far as the kernel is concerned, the even-numbered kernel versions (i.e., 2.2.x
and 2.4.x) are the stable ones that are intended for general distribution. The odd
versions (such as 2.3.x), on the contrary, are development snapshots and are quite
ephemeral; the latest of them repr esents the current status of development, but
becomes obsolete in a few days or so.

This book covers versions 2.0 through 2.4 of the kernel. Our focus has been to
show all the features available to device driver writers in 2.4, the current version at
the time we are writing. We also try to cover 2.2 thoroughly, in those areas where
the features differ between 2.2 and 2.4. We also note features that are not available
in 2.0, and offer workarounds where space permits. In general, the code we show
is designed to compile and run on a wide range of kernel versions; in particular, it
has all been tested with version 2.4.4, and, where applicable, with 2.2.18 and
2.0.38 as well.

This text doesn’t talk specifically about odd-numbered kernel versions. General
users will never have a reason to run development kernels. Developers experi-
menting with new features, however, will want to be running the latest develop-
ment release. They will usually keep upgrading to the most recent version to pick
up bug fixes and new implementations of features. Note, however, that there’s no
guarantee on experimental kernels,* and nobody will help you if you have prob-
lems due to a bug in a noncurrent odd-numbered kernel. Those who run odd-
number ed versions of the kernel are usually skilled enough to dig in the code
without the need for a textbook, which is another reason why we don’t talk about
development kernels here.

Another feature of Linux is that it is a platform-independent operating system, not
just “a Unix clone for PC clones” anymore: it is successfully being used with Alpha
and SPARC processors, 68000 and PowerPC platforms, as well as a few more. This
book is platform independent as far as possible, and all the code samples have
been tested on several platforms, such as the PC brands, Alpha, ARM, IA-64, M68k,
PowerPC, SPARC, SPARC64, and VR41xx (MIPS). Because the code has been tested
on both 32-bit and 64-bit processors, it should compile and run on all other plat-
for ms. As you might expect, the code samples that rely on particular hardware
don’t work on all the supported platforms, but this is always stated in the source
code.

* Note that there’s no guarantee on even-numbered kernels as well, unless you rely on a
commercial provider that grants its own warranty.

Version Numbering

11

22 June 2001 16:32



Chapter 1: An Introduction to Device Driver s

License Ter ms
Linux is licensed with the GNU General Public License (GPL), a document devised
for the GNU project by the Free Software Foundation. The GPL allows anybody to
redistribute, and even sell, a product covered by the GPL, as long as the recipient
is allowed to rebuild an exact copy of the binary files from source. Additionally,
any software product derived from a product covered by the GPL must, if it is
redistributed at all, be released under the GPL.

The main goal of such a license is to allow the growth of knowledge by permitting
everybody to modify programs at will; at the same time, people selling software to
the public can still do their job. Despite this simple objective, there’s a never-end-
ing discussion about the GPL and its use. If you want to read the license, you can
find it in several places in your system, including the directory /usr/sr c/linux, as a
file called COPYING.

Third-party and custom modules are not part of the Linux kernel, and thus you’re
not forced to license them under the GPL. A module uses the kernel through a
well-defined interface, but is not part of it, similar to the way user programs use
the kernel through system calls. Note that the exemption to GPL licensing applies
only to modules that use only the published module interface. Modules that dig
deeper into the kernel must adhere to the “derived work” terms of the GPL.

In brief, if your code goes in the kernel, you must use the GPL as soon as you
release the code. Although personal use of your changes doesn’t force the GPL on
you, if you distribute your code you must include the source code in the distribu-
tion — people acquiring your package must be allowed to rebuild the binary at
will. If you write a module, on the other hand, you are allowed to distribute it in
binary form. However, this is not always practical, as modules should in general
be recompiled for each kernel version that they will be linked with (as explained
in Chapter 2, in the section “Version Dependency,” and Chapter 11, in the section
“Version Control in Modules”). New kernel releases — even minor stable releases —
often break compiled modules, requiring a recompile. Linus Torvalds has stated
publicly that he has no problem with this behavior, and that binary modules
should be expected to work only with the kernel under which they were com-
piled. As a module writer, you will generally serve your users better by making
source available.

As far as this book is concerned, most of the code is freely redistributable, either
in source or binary form, and neither we nor O’Reilly & Associates retain any right
on any derived works. All the programs are available through FTP from
ftp://ftp.ora.com/pub/examples/linux/drivers/, and the exact license terms are stated
in the file LICENSE in the same directory.

12

22 June 2001 16:32



When sample programs include parts of the kernel code, the GPL applies: the
comments accompanying source code are very clear about that. This only happens
for a pair of source files that are very minor to the topic of this book.

Joining the Ker nel Development
Community
As you get into writing modules for the Linux kernel, you become part of a larger
community of developers. Within that community, you can find not only people
engaged in similar work, but also a group of highly committed engineers working
toward making Linux a better system. These people can be a source of help, of
ideas, and of critical review as well—they will be the first people you will likely
tur n to when you are looking for testers for a new driver.

The central gathering point for Linux kernel developers is the linux-ker nel mailing
list. All major kernel developers, from Linus Torvalds on down, subscribe to this
list. Please note that the list is not for the faint of heart: traffic as of this writing can
run up to 200 messages per day or more. Nonetheless, following this list is essen-
tial for those who are inter ested in kernel development; it also can be a top-qual-
ity resource for those in need of kernel development help.

To join the linux-kernel list, follow the instructions found in the linux-kernel mail-
ing list FAQ: http://www.tux.or g/lkml. Please read the rest of the FAQ while you
ar e at it; there is a great deal of useful information there. Linux kernel developers
ar e busy people, and they are much more inclined to help people who have
clearly done their homework first.

Over view of the Book
Fr om her e on, we enter the world of kernel programming. Chapter 2 introduces
modularization, explaining the secrets of the art and showing the code for running
modules. Chapter 3 talks about char drivers and shows the complete code for a
memory-based device driver that can be read and written for fun. Using memory
as the hardware base for the device allows anyone to run the sample code without
the need to acquire special hardware.

Debugging techniques are vital tools for the programmer and are intr oduced in
Chapter 4. Then, with our new debugging skills, we move to advanced features of
char drivers, such as blocking operations, the use of select, and the important ioctl
call; these topics are the subject of Chapter 5.

Befor e dealing with hardware management, we dissect a few more of the kernel’s
softwar e inter faces: Chapter 6 shows how time is managed in the kernel, and
Chapter 7 explains memory allocation.

Over view of the Book

13

22 June 2001 16:32



Chapter 1: An Introduction to Device Driver s

Next we focus on hardware. Chapter 8 describes the management of I/O ports and
memory buffers that live on the device; after that comes interrupt handling, in
Chapter 9. Unfortunately, not everyone will be able to run the sample code for
these chapters, because some hardware support is actually needed to test the soft-
war e inter face to interrupts. We’ve tried our best to keep requir ed hardwar e sup-
port to a minimum, but you still need to put your hands on the soldering iron to
build your hardware “device.” The device is a single jumper wire that plugs into
the parallel port, so we hope this is not a problem.

Chapter 10 offers some additional suggestions about writing kernel software and
about portability issues.

In the second part of this book, we get more ambitious; thus, Chapter 11 starts
over with modularization issues, going deeper into the topic.

Chapter 12 then describes how block drivers are implemented, outlining the
aspects that differ entiate them from char drivers. Following that, Chapter 13
explains what we left out from the previous treatment of memory management:
mmap and direct memory access (DMA). At this point, everything about char and
block drivers has been introduced.

The third main class of drivers is introduced next. Chapter 14 talks in some detail
about network interfaces and dissects the code of the sample network driver.

A few features of device drivers depend directly on the interface bus where the
peripheral fits, so Chapter 15 provides an overview of the main features of the bus
implementations most frequently found nowadays, with a special focus on PCI and
USB support offer ed in the kernel.

Finally, Chapter 16 is a tour of the kernel source: it is meant to be a starting point
for people who want to understand the overall design, but who may be scared by
the huge amount of source code that makes up Linux.

14

22 June 2001 16:32


