
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Table	of	Contents
Introduction

Preface

Chapter	1	-	The	Toolbox

Chapter	2	-	Sidebars

Chapter	3	-	The	ZeroMQ	Community

Chapter	4	-	The	ZeroMQ	Process:	C4

Chapter	5	-	Designing	for	Innovation

Chapter	6	-	Living	Systems

Postface

1

Social	Architecture	-	Building	On-line	Communities

Save	to	Kindle

Source	repo	is	https://github.com/hintjens/socialarchitecture,	pull	requests	are	welcome.

Cover	font:	Kontrapunkt	by	Bo	Linnemann,	Kontrapunkt	A/S.	Text	fonts:	EB	Garamond	by	Georg	Duffner,	MonospaceTypewriter	by
Manfred	Klein..

Pieter	Hintjens	is	a	programmer,	writer,	and	thinker	who	has	founded	many	on-line	communities.	In	2005	he	led	the	European	fight
against	software	patents,	helping	thousands	of	activists	to	organize	on-line.	In	2007	he	founded	the	successful	and	broad-ranging
ZeroMQ	community.

Other	books	by	the	same	author:	"ZeroMQ	-	Messaging	for	Many	Applications"	(O'Reilly),	"Culture	and	Empire:	Digital	Revolution"
(Amazon.com),	"The	Psychopath	Code"	(Amazon.com).

Introduction

2

http://hintjens.com/books
https://github.com/hintjens/socialarchitecture
http://www.amazon.com/ZeroMQ-Messaging-Applications-Pieter-Hintjens/dp/1449334067
http://cultureandempire.com
http://thepsychopathcode.com

Preface

The	Wisdom	of	Crowds

Niccolo	Machiavelli	observed,	in	"Discourses	on	the	First	Decade	of	Titus	Livius"	that:

"As	for	prudence	and	stability	of	purpose,	I	affirm	that	a	people	is	more	prudent,	more	stable,	and	of	better	judgment	than	a
prince.	Nor	is	it	without	reason	that	the	voice	of	the	people	has	been	likened	to	the	voice	of	God;	for	we	see	that	wide-spread
beliefs	fulfill	themselves,	and	bring	about	marvelous	results."

In	his	book	"The	Wisdom	of	Crowds,"	James	Surowiecki	wrote,	"under	the	right	circumstances,	groups	are	remarkably	intelligent,	and
are	often	smarter	than	the	smartest	people	in	them."	He	noted	that	a	collective	intelligence	usually	produces	better	outcomes	than	a
small	group	of	experts,	even	if	members	of	the	crowd	do	not	know	all	the	facts	or	choose,	individually,	to	act	irrationally.

To	put	it	another	way,	a	group	of	random	people	will	on	average	be	smarter	than	a	few	experts.	It's	a	counterintuitive	thesis	that	mocks
centuries	of	received	wisdom.	Experts	in	the	field	of	human	intelligence	(sociologists,	anthropologists,	psychologists)	did	not	embrace
Surowiecki's	opinions.	He	went	further:	adding	more	experts	to	an	expert	group	will	make	it	stupider,	while	adding	laymen	could	make
a	stupid	group	smarter	again.	Like	any	recipe,	it	only	works	in	specific	circumstances.

I	discovered	Surowiecki	when	I	started	working	on	a	reproducible	recipe	for	building	communities.	His	work	immediately	resonated
with	what	I'd	experienced,	and	it	seemed	testable.	I	had	both	the	opportunity	to	apply	it,	and	to	experiment	with	enough	communities	to
try	to	disprove	it:	the	basis,	thus,	for	real	science.

Out	of	that	work	came	a	process	for	building	smart,	self-guiding,	successful	on-line	communities	that	could	beat	expert	groups	every
time.	It	is	a	discipline	I	named	Social	Architecture,	which	for	a	while	let	me	call	myself	a	"Social	Architect."	(Today,	I'm	a	struggling
writer,	which	sounds	more	romantic.)

Social	Architecture,	by	analogy	with	conventional	architecture,	is	the	process	and	the	product	of	planning,	designing,	and	growing	an
on-line	community.	Social	Architectures	in	the	form	of	on-line	communities	are	the	cultural	and	political	symbols	and	works	of	art	of
digital	society.	The	twenty-first	century	will	be	identified	with	its	surviving	Social	Architectures.

As	Social	Architects,	we	participate	in	communities,	we	identify	successful	naturally	occurring	patterns	or	develop	new	patterns	(which
I	call	"tools"),	and	we	apply	these	deliberately	to	our	own	projects.	We	apply	psychology	(our	social	instincts),	economics	(how	we
create	common	wealth	through	specialization	and	trade),	politics	(how	we	collect	and	share	power),	and	technology	(how	we
communicate).	We	continually	adapt	our	toolkit	based	on	new	knowledge	and	experience.	Our	goal	is	to	create	on-line	communities	that
can	and	do	accurately	solve	the	problems	we	identify,	grow	healthily,	and	survive	on	their	own.

Successful	on-line	communities	tend	to	be	based	on	the	contract	of	mutual	benefit,	whether	implicit	or	explicit.	That	is,	it	is	possible	to
build	a	billion	dollar	business	based	on	volunteer	labor,	with	every	participant	contributing	for	selfish	reasons.	Often,	participants	do	not
realize	or	care	that	they	are	part	of	a	community.	However,	every	action	we	take	is	economic.	"Crowd	sourcing"	is	the	exploitation	for
profit	of	volunteer	labor.	And	it	only	works	when	the	crowd	really	wants	to	solve	the	problems	you	throw	at	it,	or	the	ones	it	discovers.

Wiser	and	More	Constant	than	a	Prince

Machiavelli	didn't	explain	or	provide	evidence	for	his	observation.	However	the	understanding	that	the	collective	will	is	accurate	and
honest	--	vox	populi,	vox	Dei	--	pervades	modern	culture.	It	underpins	our	sometimes	skeptical	appreciation	of	democracy,	and	it
justifies	our	demands	for	transparency	and	access	to	information.	It	is	the	basis	for	modern	economies,	based	on	free	choice	and	free
markets.

Surowiecki	identified	four	elements	necessary	for	a	wise	crowd:	diversity	of	opinion,	independence	of	members	from	one	another,
decentralization,	and	effective	ways	to	aggregate	opinions.	He	describes	the	ideal	wise	crowd	as	consisting	of	many	independently
minded	individuals	who	are	loosely	connected,	who	are	geographically	and	socially	diverse,	who	are	unemotional	about	their	subject,
who	each	have	many	sources	of	information,	and	who	have	some	way	to	bring	their	individual	judgments	together	into	a	collective
decision.

Preface

3

https://en.wikipedia.org/wiki/Wisdom_of_crowds

According	to	Surowiecki,	the	wise	crowd	makes	fast	and	accurate	judgments,	organizes	itself	to	make	the	best	use	of	resources,	and
cooperates	without	central	authority.	Some	examples	of	wise	crowds,	such	as	Wikipedia,	are	extraordinarily	successful	despite	intense
and	repeated	criticism	from	naysayers	and	attacks	from	vandals	and	infiltrators.	It's	such	a	compelling	proposition	that	we	might	wonder
why	we	don't	see	more	wise	crowds.	Indeed,	why	is	the	world	filled	with	so	much	stupidity	if	it's	so	easy	to	be	smart?

There	are	good	explanations	for	the	stupidity	of	many	crowds,	and	I'll	explore	this	in	detail	in	my	book	"Culture	&	Empire",	from	which
this	section	is	drawn.	Few	people	have	tried	to	explain	group	stupidity	in	terms	of	collective	wisdom.	And	without	a	clear	understanding
of	function,	how	can	we	hope	to	understand	dysfunction?

So	the	apparent	failure	of	collective	intelligence	convinces	many	that	this	is	just	a	fancy	theory	that	fails	in	practice.	And	yet	if	we	look
at	on-line	communities,	for	example	those	that	form	around	popular	open	source	software	projects	like	ZeroMQ,	we	see	groups	that
look	a	lot	like	Surowiecki's	wise	crowds.	While	it	may	be	hard	to	spot	wise	crowds	in	the	physical	world,	they	seem	to	be	the	dominant
model	on	line.	Through	trial	and	error,	digital	society	has	rediscovered	the	principles	of	wise	crowds	and	adopted	them	as	its	core
operating	principles.

Digital	society's	solution	to	the	ancient	problem	of	corrupt	authority	is	elegant	and	successful.	There	are	literally	millions	of
communities,	each	backed	by	the	authority	of	its	founders.	Citizens	of	digital	society	choose	freely	which	authorities	to	respect	and
which	to	ignore.	The	core	trick	is	to	accept	authority	without	giving	it	the	"right	to	command."

Thus	there	is	intense	competition	to	develop	fair	authority	that	does	not	command,	and	instead	enforces	necessary	rules.	It	is	a	deeply
subversive	truth.	Generations	that	learn	this	model	will	refuse	--	to	the	point	of	death	--	to	respect	industrial	society's	model	--	enforced
by	iron	curtains	and	armed	border	guards	if	needed	--	where	the	citizen	literally	belongs	to	the	State.

Origins	of	Social	Architecture
I've	bet	a	lot	of	money	on	Social	Architecture,	and	have	made	good	profits.	It	comes	close	to	hard	social	science,	proven	by	years	of
reproducible	experiments	on	living	cases	and	studies	of	existing	communities.	It	mixes	psychology,	economics,	politics,	technology,
humanism,	and	optimism	into	something	that	I've	found	can	make	a	lot	of	people	pretty	happy.

My	journey	into	Social	Architecture	began	in	the	late	1990's,	when	I	began	researching	a	book	about	how	cults	exploit	our	social
instincts.	Cults	are	not	happy	places,	of	course.	However,	humans	are	drawn	to	them	because	we're	social	animals	who,	over	the	last
million	years,	have	developed	instincts	for	joining	and	conforming	to	groups	in	order	to	survive.	It	has	become	second	nature	for	us	to
readily	respect	authority,	conform,	learn	common	languages,	and	adopt	shared	behavior.	Cult	groups	brainwash	their	members	by
exploiting	these	instincts.	They	separate	members	from	their	families,	eliminate	privacy,	flood	them	with	jargon,	create	arbitrary	rules,
and	punish	and	reward	randomly.

In	this	way,	cults	can	turn	most	ordinary	people	into	unthinking	followers	who	willingly	empty	their	bank	accounts,	steal	from	their
families,	and	work	for	years	without	pay.	As	a	student	watching	the	occasional	friend	disappear	into	the	caverns	of	Scientology	and
other	cults,	this	struck	me	as	malignant	and	confusing.	Later,	when	my	closest	cousin	dropped	out	and	lost	five	years	of	his	life	to
Scientology,	it	got	personal.

Studying	the	Cult	Information	Centre	(CIC)	website,	it	struck	me	that	these	brainwashing	techniques	all	have	several	things	in	common.
First,	they	were	all	clearly	focused	on	attacking	individual	thought	and	action,	and	destroying	that	which	makes	us	strong.	Second,	they
were	reminiscent	of	environments	in	which	I'd	worked	(big	business	often	functions	like	a	cult).	Third,	they	all	seemed	reversible	in	that
they	could	be	flipped	around	to	become	positive	patterns.

The	last	aspect	is	surprising.	If	a	hammer	breaks	a	window,	you	can	hardly	make	a	window	stronger	by	reversing	the	hammer.	Some
examples	make	it	clear.	Take	this	technique	from	the	CIC	site:	"Peer	Group	Pressure	--	Suppressing	doubt	and	resistance	to	new	ideas
by	exploiting	the	need	to	belong."	The	reverse	is,	by	lowering	the	cost	of	joining	and	leaving	the	group,	we	encourage	new	ideas	and
criticism.	Or,	consider	"Removal	of	Privacy	--	Achieving	loss	of	ability	to	evaluate	logically	by	preventing	private	contemplation."	Its
reverse	is:	give	people	private	space	and	time	to	think,	and	they'll	become	better	at	thinking	logically.

My	conclusions	persist.	We	survive	by	attaching	to	groups,	following	others,	and	trying	to	make	sense	of	the	world.	Some	groups	work
by	domesticating	and	brutalizing	us.	Other	groups	work	by	giving	us	freedom	and	allowing	us	to	be	stronger,	smarter,	and	more
independent.

Preface

4

http://zeromq.org
http://www.cultinformation.org.uk/question_what-is-mind-control.html

In	2000,	the	Internet	had	not	yet	become	cheap	enough	for	mass-market	use,	and	open	source	communities	were	small	and	often
regional,	frequently	focused	around	universities.	Open	source	communities	such	as	the	Debian	Foundation	still	operated	as	classic	not-
for-profit	organizations,	as	legal	entities	with	boards,	treasurers,	and	the	like.

In	2005,	I	joined	a	number	of	collaborative	projects.	On	the	one	hand,	I	was	involved	with	the	FFII,	working	to	stop	software	patents	in
Europe.	We	(the	good	guys)	spoke	in	the	European	Parliament,	debated	with	the	European	Patent	Office	(the	bad	guys),	organized
seminars,	tabled	amendments,	got	votes,	and	broadly,	took	part	in	the	largest	lobbying	effort	ever	to	hit	Brussels.

On	the	other	hand,	I	was	developing	open	standards,	starting	with	the	Advanced	Message	Queuing	Protocol	(AMQP).	The	contrast
between	the	cultures	of	these	organizations	was	sharp.	The	FFII	was	a	group	of	crazy	volunteers,	creative	beyond	belief,	and	filled	with
hard	cold	determination	to	stop	SAP,	Siemens,	Microsoft,	and	Nokia	(more	bad	guys)	from	changing	European	law	to	legalize	the	gray
market	in	patents	on	software.	The	AMQP	workgroup	included	banks	and	large	software	firms,	who	turned	out	to	be	crazy	in	a	different
and	less	enjoyable	way.

With	insanity	surrounding	me	on	all	sides,	research	on	social	instincts	and	cult	techniques	suddenly	seemed	relevant	again.	With	my
friends	in	the	FFII,	we	launched	campaign	after	campaign.	Websites,	petitions,	email	lists,	conferences	...	it	never	stopped.	Most	of	our
campaigns	failed	to	get	any	real	scale	though	a	few	did.	Above	all,	for	about	three	years,	we	experimented,	and	we	collected	results.

We	learned	two	broad	things.	First,	a	cult	is	the	flipside	of	a	wise	crowd.	The	cult	patterns	seemed	accurate,	and	I	watched	people
applying	the	cult	model	to	others	over	and	over.	Any	intense	group,	family,	business,	or	team	starts	to	resemble	a	cult,	in	little	or	larger
ways.	It's	a	matter	of	degree.	However,	as	soon	as	you	spend	your	free	time	on	someone	else's	project,	you	are	essentially	starting	to
slide	down	that	slope.	I	watched	as	entire	groups	went	off	the	rails,	unable	to	think	straight	or	produce	accurate	results.	There	was	a
straight	causal	effect:	as	the	group	became	more	cult-like,	they	became	more	useless.

The	second	thing	is	that	just	reversing	the	cult	techniques	isn't	enough.	It	does	make	a	good	start	to	promote	individual	strength	and
creativity,	yet	that	is	not	the	same	as	building	a	solid	community.	For	that,	you	need	more	explicit	patterns.	Define	a	powerful	mission	to
attract	newcomers.	Make	it	really	easy	for	people	to	get	involved.	Embrace	argument	and	conflict;	it's	where	good	ideas	come	from.
Delegate	systematically,	and	create	competition.	Work	with	volunteers	more	than	employees.	Get	diversity	and	scale.	Make	people	own
the	work;	don't	let	the	work	own	the	people.

It	is	of	course	much	cheaper	and	faster	to	do	large-scale	experiments	with	people	on	line	than	in	the	real	world.	To	prove	or	disprove	a
recipe	for	building	a	community,	all	you	have	to	do	is	create	a	space,	define	some	rules	for	play,	announce	it	to	the	world,	and	sit	back
and	watch.

My	largest	and	most	successful	experiment	to	date,	which	I'll	refer	to	often	in	this	book,	is	the	ZeroMQ	software	community.	It	has
grown	from	a	team	in	a	Slovak	cellar	to	a	global	community,	and	is	used	by	thousands	of	organizations.	Above	all,	ZeroMQ	is	entirely
built	and	steered	by	its	community:	over	a	hundred	contributors	to	the	core	library,	and	a	hundred	other	projects	around	that.

Preface

5

http://www.debian.org/doc/manuals/project-history/ch-detailed.en.html
http://ffii.org
http://zeromq.org

Chapter	1.	The	Toolbox
In	my	Social	Architect's	toolbox,	I	have	20	tools,	each	covering	one	aspect	of	a	community	or	group.	These	tools	work	in	two	ways.
First,	you	can	use	them	to	measure	an	existing	community,	giving	a	rating	of	zero	or	more.	Second,	you	can	use	them	when	you	design
a	community,	to	help	you	focus	your	effort	on	where	it	will	be	most	useful.

Strong	mission	--	the	stated	reason	for	the	group's	existence
Free	entry	--	how	easy	it	is	for	people	to	join	the	group
Transparency	--	how	openly	and	publicly	decisions	are	made
Free	contributors	--	how	far	people	are	paid	to	contribute
Full	remixability	--	how	far	contributors	can	remix	each	others'	work
Strong	protocols	--	how	well	the	rules	are	written
Fair	authority	--	how	well	the	rules	are	enforced
Non-tribalism	--	how	far	the	group	claims	to	own	its	participants
Self-organization	--	how	far	individuals	can	assign	their	own	tasks
Tolerance	--	how	the	group	embraces	conflicts
Measurable	success	--	how	well	the	group	can	measure	its	progress
High	scoring	--	how	the	group	rewards	its	participants
Decentralization	--	how	widely	the	group	is	spread	out
Free	workspaces	--	how	easy	it	is	to	create	new	projects
Smooth	learning	--	how	easy	it	is	to	get	started	and	keep	learning
Regular	structure	--	how	regular	and	predictable	the	overall	structure	is
Positivity	--	how	far	the	group	is	driven	by	positive	goals
Sense	of	humor	--	how	seriously	the	group	takes	itself
Minimalism	--	how	much	excess	work	the	group	does
Sane	funding	--	how	the	group	survives	economically

We	will	look	at	these	tools	one	by	one	and	see	how	they	work	in	various	communities.	First,	some	general	advice	about	building	a
community.	Be	brutally	honest	with	yourself	and	with	others.	Your	biggest	challenge	is	overcoming	your	own	prejudices	and	biases,
and	then	those	of	everyone	you	work	with.

Whatever	toolkit	I	can	provide	you	with,	you'll	want	to	adapt	and	extend	it	for	your	own	needs.	Social	Architecture	is	still	a	very	young
science	and	many	of	my	tools	will	be	too	complex,	or	incomplete.	Here's	the	best	way	I	know	to	do	that:

Consume	your	own	product.	If	you	are	not	a	fanatical	user	of	whatever	your	group	is	making,	you	are	half-blind.	I	learned	this
when	working	for	Nigerian	Breweries	in	the	1990's:	by	enjoying	beer,	I	learned	to	appreciate	the	business	of	selling	beer	so	much
better.

Practice	and	repeat.	It	is	cheap	to	experiment,	and	failure	is	healthy.	By	definition,	if	you	start	a	project	and	it	fails,	no	one	notices.
So	start	many	projects	and	change	or	fix	your	tools	if	they	don't	work.

Do	first-line	support.	All	communities	have	a	place	where	newcomers	arrive	and	ask	questions.	Be	there,	observe	how	new	visitors
get	lost,	what	mistakes	they	make,	and	improve	your	designs	accordingly.	Perhaps	the	mission	confuses	them.	Or	maybe	the
structures	are	confusing.	A	good	designer	sympathizes	with	his	users,	feels	their	pain,	and	works	to	relieve	it.

Release	early,	release	often.	This	is	a	mantra	from	free	software	communities.	It's	accurate.	You	want	to	do	your	design	work	in	the
open,	and	get	critical	feedback	as	early	as	possible.	In	ZeroMQ,	we	release	every	patch	as	it	happens.

Learn	and	teach	all	the	time.	Teaching	gives	you	perspective,	and	learning	lets	you	pick	up	new	tools	over	time.	Social
Architecture	is	a	young	craft,	and	though	the	basics	are	solidly	anchored	in	human	psychology,	there	are	still	many	unknowns.

Strong	Mission

Chapter	1	-	The	Toolbox

6

The	starting	point	for	any	community	is	a	stated	mission.	The	mission	defines	the	goals	that	we	can	all	agree	on	in	advance,	before	we
join	the	project.	It's	like	the	title	of	a	website	or	the	slogan	for	a	movie.	For	instance,	Reddit's	title	is:	"the	front	page	of	the	Internet,"	an
ambitious	mission	that	it	nonetheless	achieved.	Facebook's	slogan	is:	"helps	you	connect	and	share	with	the	people	in	your	life."

TIP:	Use	your	mission	as	a	slogan,	on	your	website,	marketing,	presentations,	and	so	on.	If	you	are	investing	money	in	your
community,	you	may	want	to	trademark	the	mission	statement.

Without	a	clear	mission,	an	on-line	community	won't	grow.	A	group	of	friends	who	start	a	project	may	agree	what	they	want	to	do,	yet
anyone	new	coming	on	board	has	to	guess	what	they	had	in	mind.	People	will	guess	wrong,	and	will	change	their	minds	over	time.	This
leads	to	confusion,	disagreement,	and	disappointment	as	people	find	that	their	hard	work	was	wasted	because	the	rest	of	the	group
headed	off	in	a	different	direction.

A	good	mission	saunters	past	"sane"	and	steps	into	"you	cannot	be	serious!"	Wikipedia's	mission,	"the	free	encyclopedia	that	anyone	can
edit"	is	a	good	example.	It	was,	initially,	a	goal	that	everyone,	except	a	few	idealists,	found	impossible	and	crazy.	Those	idealists	were
precisely	who	Wikipedia	needed	to	get	on	board	on	day	one.	Impossible	missions	attract	the	right	kind	of	people	for	a	young	project.

TIP:	Change	your	mission	as	your	community	matures.	At	first,	you	will	want	to	attract	idealists	and	pioneers,	then	the	leading	edge,
and	then	early	adopters,	the	mass	market,	and	finally,	the	late	adopters.	Each	of	these	groups	wants	different	things.	Understand	that,
and	tune	your	mission	to	suit.

To	formulate	a	good	mission,	think	in	terms	of	the	single	main	problem	your	project	is	solving.	Reddit,	for	instance,	is	solving	the
problem	of	how	to	get	the	news	off	an	Internet	with	far	too	many	interesting	sources	of	information.	Its	"front	page"	represents	the
digital	newspaper	of	the	twenty-first	century.	Wikipedia	is	solving	the	problem	of	how	to	collect	knowledge	from	the	minds	of	billions.
"Anyone	can	edit"	represents	vox	populi,	vox	Dei,	the	understanding	that	truth,	if	it	exists,	comes	only	from	the	minds	of	many.

TIP:	When	proposing	action,	small	or	large,	try	always	to	start	by	identifying	the	problems	you	want	to	solve.	Only	when	you	have	a
clear	and	real	problem	on	which	everyone	can	agree,	move	to	discussing	solutions.	A	solution	for	an	assumed	problem	is	like	a	group
without	a	clear	mission.

You	may	have	multiple	missions,	by	accident	or	deliberately.	This	can	be	traumatic	if	the	missions	pull	in	different	directions.	For
example,	growing	a	group	larger	may	require	subsidies,	which	conflicts	with	making	profits.	If	Wikipedia	became	a	for-profit	entity
with	advertising	and	an	expensive	tranche	of	managers,	do	you	think	its	community	would	grow	or	shrink?

For	ZeroMQ,	our	stated	mission	was	"Fastest.	Messaging.	Ever."	This	is	a	nice,	and	nearly	impossible	answer	to	a	problem	we	could	all
agree	on:	namely,	the	slow,	bloated	technology	available	at	that	time.	However,	my	co-founder	Martin	and	I	had	conflicting	goals.	He
wanted	to	build	the	best	software	possible,	while	I	wanted	to	build	the	largest	community	possible.	As	the	user	base	grew,	his	dramatic
changes,	which	broke	existing	applications,	caused	increasing	pain.

In	that	case,	we	were	able	to	make	everyone	happy	(Martin	went	off	to	build	a	new	library	called	"Nano").	However	if	you	cannot
resolve	mission	conflicts,	it	can	damage	the	project	severely.	Projects	can	survive	a	lot	of	arguments,	however	fights	between	founders
are	traumatic.

TIP:	If	the	founders	agree	that	"success"	is	defined	as	"having	the	most	participants	possible,"	it	can	help	in	keeping	your	focus	over	the
years.	It	also	makes	it	easy	to	measure	your	success	as	you	grow.

Free	Entry

Once	you	have	agreed	on	your	mission,	you	need	to	test	this	against	the	real	world.	That	is,	you	have	to	make	a	minimal	yet	plausible
answer	to	the	problem	you	identified.	I	call	this	a	"seed."	With	the	seed,	you	have	two	main	goals.	First,	to	start	to	collect	idealists	and
pioneers	(basically,	anyone	mad	enough	to	trust	you)	into	a	community.	Second,	to	prove	or	disprove	your	mission.

Projects	fail	for	many	reasons.	A	major	cause	of	failure	is	that	the	original	idea	or	mission	wasn't	as	amazing	as	people	felt.	Failure	is
fine,	even	excellent,	unless	it	costs	years	of	your	life.	Making	a	seed	and	showing	it	to	a	few	people	isn't	enough	because	most	people
won't	be	really	critical.	They	feel	it's	hurtful.	However,	ask	people	to	invest	even	a	few	hours	of	their	time	in	making	it	better,	and	if
they	don't	say	"yes,"	you	know	how	they	really	feel.

TIP:	Build	a	"seed"	product	in	public	view	and	encourage	others	to	get	involved	from	the	start.	If	people	do	get	involved,	promote	them
rapidly.	If	they	don't,	treat	that	as	a	sign	your	mission	may	be	wrong.	Use	the	seed	product	to	build	the	community.

Chapter	1	-	The	Toolbox

7

https://en.wikipedia.org/wiki/Main_Page

Once	people	agree	to	help	you,	they	need	somewhere	to	work	together.	You	need	a	"collaboration	platform."	My	two	favorites	are
Wikidot	for	knowledge	communities,	and	GitHub	for	software	projects.	The	platform	has	to	be	free	to	use.	It	has	to	be	easy	to	learn	and
work	with.	Your	seed	project	has	to	be	visible	to	anonymous	visitors.	It	has	to	work	for	anyone	no	matter	his	or	her	age,	gender,
education,	or	physical	location.

All	this	makes	it	possible	for	interesting	strangers	to	walk	up	and	look	at	your	work	and,	if	they	like	it	and	feel	challenged	by	it,	get
involved	little	by	little.	You	want	to	be	working	on	your	seed	in	public	view,	and	talking	about	your	new	project,	from	the	very	start.
This	means	people	can	make	suggestions,	and	feel	involved,	from	day	one.

If	we,	as	founders	of	a	group,	choose	those	we	work	with,	we're	building	in	"selection	bias."	It	is	much	easier	to	work	with	those	nice,
smart	people	who	agree	with	us,	than	the	idiots	and	critics	who	disagree.	And	when	you	agree	with	me,	you	just	confirm	all	of	my
biases	and	assumptions	and	I	know	from	experience	that	those	can	be	wrong	in	the	most	amazing	ways.

Over	time,	collecting	people	who	share	the	same	broken	assumptions	and	biases	can	kill	a	project.	For	example,	when	making	software
protocols,	the	requirements	for	large	firms	can	be	very	different	from	those	for	small	open	source	teams.	So	if	a	protocol	committee	is
built	entirely	out	of	large	firms,	what	they	make	will	be	indigestible	by	the	mass	of	the	market.

The	answer	is	free	entry	to	anyone	who	is	interested,	no	matter	how	different	or	apparently	crazy	their	perspectives.	This	gives	us,
potentially,	that	broad	and	diverse	community	which	is	the	raw	material	for	a	wise	crowd.	In	ZeroMQ,	we	never	turn	away	anyone	who
wants	to	contribute.	I	pull	people	in,	even	if	their	contributions	are	poor	or	incorrect.	The	community	is	more	important	than	the
product.

When	the	community	has	matured	around	the	seed	product,	they	will	want	to	build	a	second	generation	of	it.	As	Social	Architect,	your
goal	is	to	time	and	guide	this	properly	so	that	you	can	use	the	wise	crowd	to	help	design	the	"real"	product.	It's	possible	that	around	this
point	you	will	want	to	find	a	good	domain	name	and	make	a	"proper"	website.

TIP:	If	people	are	not	joining	in	your	seed,	don't	continue	working	on	it.	Instead,	discover	what's	stopping	them	from	joining	and	fix
that.	Start	again	from	scratch	if	necessary.	Don't	prematurely	kill	seeds;	it	can	take	time	for	people	to	appreciate	what	you	are	trying	to
do.

Transparency

Transparency	is	very	important	to	get	rapid	criticism	of	ideas	and	work	in	progress.	If	a	few	people	in	a	team	go	off	and	work	on
something	together	for	some	time	--	a	few	days	seems	harmless,	a	few	weeks	is	not	--	then	what	they	make	can	be	presented	to	the
group	as	a	fait	accompli.	When	one	person	does	that,	the	group	can	just	shrug	it	off.	When	two	or	more	people	do	that,	it	becomes	much
harder	to	back	off	from	bad	ideas.	Secrecy	and	incompetence	seem	bound	together.	Groups	that	work	in	secret	do	not	achieve	wisdom.

TIP:	When	one	person	does	something	in	a	dark	corner,	that's	an	experiment.	When	two	or	more	people	do	something	in	a	dark	corner,
that's	a	conspiracy.

With	ZeroMQ,	it	took	us	some	years	to	come	to	a	really	open	and	transparent	situation.	Before	that,	the	core	contributors	mostly	worked
in	secret,	publishing	their	work	when	they	felt	it	was	ready	for	public	view.	By	the	time	they	did	that,	it	was	very	hard	for	the	rest	of	the
community	to	say	"no."	And	often	the	work	was	off	course,	a	brilliant	solution	to	a	problem	no	one	really	cared	about.	In	the	end,	we
explicitly	banned	this	kind	of	thing.

It	is	ironic	that	secrets	seem	essential	to	certain	business	models.	Profits	often	come	from	the	ignorance	of	customers.	Most	profit-
making	businesses,	even	large	communities	like	Twitter,	depend	on	a	strict	division	between	"them"	and	"us."	However,	digital	society
grows	best	by	putting	scale	before	profits,	and	by	treating	all	ignorance	as	a	problem	to	solve.	If	your	clients	are	ignorant	of	your
internal	thought	processes,	then	you	will	be	ignorant	of	where	those	processes	are	wrong.

Free	Contributors
Money	is	a	funny	thing.	Too	little,	and	the	community	starves	(I'll	return	to	this	later).	Too	much,	and	it	rots.	It	is	important	to
understand	why	each	contributor	is	there	at	all.	What	are	their	economic	motives?	Even	in	a	volunteer	community,	every	person	is	there
for	self-interested	reasons.

Chapter	1	-	The	Toolbox

8

http://wikidot.com
http://github.com

In	ZeroMQ,	we	originally	started	with	a	small	paid	team	and	moved	after	two	years	to	a	community	of	volunteers	through	the	pragmatic
--	if	not	very	gentle	--	tactic	of	running	out	of	money	and	having	to	fire	the	developers.	A	few	disappeared	to	other	jobs,	some	came
back	as	contributors,	and	the	project	became	more	exciting	and	fun	than	before.	People	contribute	to	ZeroMQ	because	they	need	it	in
their	own	projects,	and	if	they	spend	a	little	time	making	it	better,	that	can	earn	them	or	save	them	many	times	more.

When	you	work	for	someone	else,	you	will	make	what	he	or	she	wants.	When	you	work	for	yourself,	you	will	make	what	you	need.	It	is
so	very	different.	People	with	money	yet	no	skill	or	taste	are	the	riffraff	of	society.	We	despise	paid	contributors	to	Wikipedia,	paid
bloggers,	and	paid	moderators	on	Reddit,	because	we	know	that	the	opinions	they	express	are	almost	by	definition	false.	Would	a
blogger	paid	by	Hollywood	criticize	the	new	summer	blockbuster?

I've	nothing	against	employees.	However,	if	you	are	aiming	for	the	largest,	most	successful	community,	you	want	contributors	who	are
there	for	honest,	transparent	reasons.	If	a	filmmaker	comes	to	Reddit	to	discuss	his	work,	that	is	fantastic.	If	his	marketing	staff	come	to
downvote	critical	comments,	that	is	despicable.

TIP:	One	free	contributor	is	worth	10	paid	contributors.

Full	Remixability

A	group	needs	a	lot	of	agreements	for	working	together.	I	call	these	"protocols."	Perhaps	the	most	important	one	for	any	creative
community	is	remixability.	Whether	it's	music,	art,	images,	video,	comments,	software,	or	wiki	pages,	the	following	question	will	arise:
"What	is	the	copyright	license	on	this	work,	and	how	does	that	affect	the	community?"

Broadly,	there	are	three	types	of	agreement	for	copyright:

1.	 A	"locked	down"	license	that	does	not	allow	remixing.	This	is	the	old	way	of	working,	and	still	the	dominant	model	in	for-profit
work.

2.	 A	"free	to	take"	license	that	allows	one-way	remixing.	This	is	the	dominant	model	for	many	open	source	software	communities.

3.	 A	"share-alike"	license	that	enforces	two-way	remixing.	This	is	the	dominant	model	for	free	software	communities	like	ZeroMQ,
and	for	many	artistic	communities	(though	it	may	be	an	unwritten	agreement).

Users	prefer	the	"free	to	take"	model	because	it	lets	them	use	the	content	in	any	way	they	like	without	reciprocity.	Imagine	a	DJ	who
releases	a	popular	track	under	the	"free	to	take"	model.	Then	a	company	makes	a	remix	and	uses	that	for	an	advert.	And	that	remix	will
be	locked	down.	Now,	the	DJ	cannot	remix	that	new	work,	and	may	find	himself	unable	even	to	play	the	remix.

Communities,	however,	work	better	with	the	third	model	because	it	converts	users	into	contributors.	With	a	share-alike	license,	the	DJ
would	be	able	to	take	the	remix,	mix	that	further,	and	turn	it	into	a	dance	club	success.	Knowledge	and	ideas	flow	in	all	directions,
rather	than	leaking	out	of	the	community	into	closed	dead-ends.	The	shift	is	powerful,	especially	for	those	of	us	building	communities
with	a	minimal	budget.	If	you're	a	large	firm	putting	a	lot	of	money	into	a	community,	the	"free	to	take"	model	can	work	better.

TIP:	If	every	contributor	owns	their	specific	contributions,	and	you	use	a	share-alike	license,	you	don't	need	copyright	assignments	or
re-licensing	from	contributors.

Strong	Protocols

Good	protocols	let	strangers	collaborate	without	up-front	agreement.	They	resolve	destructive	conflict,	and	turn	it	into	valuable
competition.	The	insight	that	lets	anarchists	join	wise	crowds	as	happily	as	anyone	is	that	the	crowd	can	develop	its	own	rules.
Typically,	these	rules	govern	remixing,	identity,	ranking,	and	so	on.	No	matter	what	their	form,	good	rules	are	simple,	clear,	explicitly
written	down,	and	agreed	upon	by	all.

If	you're	building	a	software	project,	you	might	take	an	existing	rulebook,	like	the	C4	protocol	we	built	for	ZeroMQ.	Otherwise,	you
can	start	with	a	minimal	rulebook	and	grow	it	over	time	as	you	see	what	problems	hit	the	community.	This	is,	for	example,	how	the
Wikipedia	rulebook	grew	up.

Some	rules	must	be	established	very	early	(such	as	licenses	for	contributions).	Others	can	be	developed	when	needed	(such	as	processes
for	resolving	conflicts).	Complex,	pointless,	or	unwritten	rules	are	toxic	to	groups.	They	create	space	for	argument,	confuse	people,	and
make	it	expensive	to	join	or	leave	a	group.

Chapter	1	-	The	Toolbox

9

http://rfc.zeromq.org/spec:2
http://simple.wikipedia.org/wiki/Wikipedia:Rules

TIP:	Write	your	rules	very	carefully,	starting	with	choosing	a	license	for	content,	and	measure	how	much	they	help	people.	Change
them	over	time	as	you	need	to.

Fair	Authority

Without	authority,	rules	have	no	strength.	The	community	founders	and	main	contributors	are	its	de	facto	authority.	If	they	abuse	this
position,	they	lose	contributors	and	the	project	dies	or	gets	forked	under	different	rules.	Authority	needs	to	be	scalable	(that	is,	work
with	any	size	of	group)	and	transferable	as	the	group	grows	and	changes	over	time.

While	we	need	authority	to	build	a	flat	playing	field,	many	groups	use	authority	as	a	way	of	controlling	members,	keeping	them	in	the
group,	and	making	them	conform.	A	favorite	cult	technique	is	to	randomly	punish	and	reward	people	so	they	become	confused	and	stop
questioning	authority.

TIP:	Promote	the	most	active	contributors	into	positions	of	authority,	and	do	this	rapidly.	You	have	a	short	window	for	promoting	new
contributors	before	they	disappear	to	other	projects.

You	have	to	be	a	part	of	your	community,	and	you	must	follow	your	own	rules.	If	you	find	yourself	breaking,	or	wanting	to	break,	your
own	rules,	they	are	faulty	and	need	fixing.

In	the	ZeroMQ	community,	we've	had	fights	over	who	had	the	right	to	define	the	rules,	and	in	the	end	it	came	to	the	trademark	and
domain	name.	The	person	or	company	who	owns	the	project	name	is	the	ultimate	authority	for	the	rules.	If	they're	nuts,	the	project	will
die.

TIP:	If	you	are	investing	money	in	the	community,	then	consider	taking	a	US	trademark	so	that	you	can	stop	people	from	making
similarly-named	imitations	that	don't	follow	your	processes.	It	costs	about	$750.

Non-Tribalism

Membership	must	be	a	badge	to	collect,	not	an	identity.	As	Mr.	Spock	so	often	observed,	emotions	are	not	logical.	Some	groups	are
driven	by	logical	purpose,	and	others	by	more	emotional	factors	such	as	peer	pressure,	the	herd	instinct,	and	even	collective	hysteria.
The	main	factor	seems	to	be	the	relationship	between	the	group	and	its	members.	We	can	quantify	this:	Do	members	"belong
exclusively"	to	the	group?	Exclusive	membership	means	putting	the	group's	existence	above	its	work.	Exclusive	membership	ends	in
conflict	with	other	groups.

TIP:	Stay	away	from	formal	membership	models,	especially	those	that	try	to	convert	people	to	belonging	to	the	group.	Allow
anonymous	or	unidentified	participation.	Encourage	people	to	create	their	own	competing	projects	as	spaces	to	experiment	and	learn.

Industrial-age	groups,	like	cults,	specialize	in	owning	their	members.	An	employee	belongs	to	his	or	her	company.	In	some	cases,	even
ideas	you	have	in	the	shower	are	property	of	your	employer.	And	when	a	group	owns	its	members,	it	motivates	them	with	emotions	like
fear,	hate,	jealousy,	and	anger,	instead	of	purposeful	logic.	The	threat	of	expulsion	is	widely	used	to	get	people	to	conform.	"Do	what	I
say	or	I'll	fire	you!"

TIP:	To	measure	how	tribal	a	group	is,	just	start	a	competing	project.	If	the	response	is	negative	and	emotional,	the	group	is	tribal.	A
sane	group	will	applaud	its	new	competitors.

Self-Organization

Some	people	like	to	be	told	what	to	do.	The	best	contributors	and	teams	choose	their	own	tasks.	A	successful	community	recognizes
problems	and	organizes	itself	to	solve	them.	Further,	it	does	that	faster	and	more	accurately	than	any	top-down	management	structure.
This	means	the	community	should	accept	contributions	in	any	area,	without	limit.

Top-down	task	assignment	is	an	anti-pattern	with	many	weaknesses.	It	makes	it	impossible	for	individuals	to	act	when	they	recognize
new	problems.	It	creates	fiefdoms	where	work	and	the	necessary	resources	belong	to	specific	people.	It	creates	long	communication
chains	that	can't	react	rapidly.	It	requires	layers	of	managers	just	to	connect	decision-makers	with	those	doing	the	work.

TIP:	Write	rules	to	raise	the	quality	of	work	and	to	explicitly	allow	anyone	to	work	on	anything	they	find	interesting.

Chapter	1	-	The	Toolbox

10

In	ZeroMQ,	we	removed	all	assigned	tasks	from	the	community.	For	example,	we	don't	accept	feature	requests.	If	someone	wants	a
feature,	they	either	send	us	a	patch,	or	offer	someone	money	to	make	the	change,	or	they	wait.	This	means	people	only	make	changes
they	really	need	to	make.

TIP:	Communities	need	power	hierarchies.	However,	they	should	be	fluid	and	heavily	delegated.	That	is,	choose	the	people	you	work
with,	and	let	them	choose	the	people	they	work	with.	Power	structures	are	like	liquid	cement;	they	harden	and	stop	people	from	moving
around	as	they	need	to.	Any	structure	defends	itself.

Tolerance

A	diverse	group	has	conflicting	opinions,	and	a	healthy	group	has	to	embrace	and	digest	these	conflicts.	Critics,	iconoclasts,	vandals,
spies,	and	trolls	keep	a	group	on	its	toes.	They	can	be	a	catalyst	for	others	to	stay	involved.	Wikipedia	thrives	thanks	to,	not	in	spite	of,
those	who	click	Edit	to	make	a	mess	of	articles.

It's	a	classic	anti-pattern	to	suppress	minority	ideas	and	views	on	the	basis	that	they	are	"dangerous."	This	inevitably	means	suppressing
new	ideas	as	well.	The	logic	is	usually	that	group	coherence	is	more	important	than	diversity.	What	then	happens	is	that	mistakes	aren't
challenged,	and	get	solidified	into	policy.	In	fact,	the	group	can	be	more	important	than	the	results,	if	it	is	diverse	and	open	to
arguments.	This	is	a	difficult	lesson	that	applies	to	broad	society	as	well:	there	are	no	dangerous	opinions,	only	dangerous	responses.

The	way	communities	deal	with	trolls	and	vandals	is	one	thing.	To	deal	with	fundamental	differences	in	viewpoint	is	something	else.
I've	said	before	that	conflicting	missions	can	be	a	problem.	The	best	answer	I	know	is	to	turn	the	conflict	into	competition.

In	software,	we	do	this	by	making	standards	that	teams	can	build	on.	Take	for	example	the	HTTP	standard	that	powers	the	web.	Any
team	can	build	a	web	server	or	a	web	browser.	This	lets	teams	compete.	So	Google's	Chrome	browser	emerged	as	a	lightweight,	faster
alternative	to	Firefox,	which	was	getting	bloated	and	slow.	Then,	the	Firefox	team	took	performance	seriously,	and	now	Firefox	is	faster
than	Chrome.

TIP:	When	there	is	an	interesting	problem,	try	to	get	multiple	teams	competing	to	solve	it.	Competition	is	great	fun	and	can	produce
better	answers	than	monopolized	problems.	You	can	even	explicitly	create	competitions	with	prizes	for	the	best	solutions.

Measurable	Success

It's	all	very	well	to	try	to	turn	conflict	into	competition.	However,	you	also	need	to	provide	teams	with	a	way	to	know	how	well	they	are
doing.	The	best	tools,	like	GitHub,	show	you	precisely	how	many	people	are	watching	or	have	"starred"	or	"forked"	a	particular	project
(revealing	different	levels	of	interest	and	commitment).

The	Web,	of	course,	has	always	been	obsessed	with	"hits"	and	traffic	analysis,	which	show	exactly	how	popular	a	specific	site	or	page
is.	This	makes	it	very	easy	to	measure	success	of	on-line	projects.	In	the	old	industrial-era	business,	teams	get	their	feedback	from	their
bosses.	This	turns	into	an	exercise	in	power:	you'll	be	scored	higher	for	compliance	than	for	accuracy.	Making	your	bosses	happy	so
they	give	you	a	pay	raise	is	not	healthy.

TIP:	If	your	platform	does	not	support	it	directly,	find	ways	to	tell	contributors	how	well	their	projects	are	doing.

High	Scoring
There	are	many	reasons	why	people	contribute	to	communities.	An	overriding	motivation	is	to	be	admired	for	success.	That	can	be	as
an	individual,	or	as	part	of	a	team.	Success	is	relative	so	we	need	metrics,	some	high	score	that	people	can	see	and	track.

In	the	ZeroMQ	community,	we	don't	emphasize	high	scoring	much,	though	contributors	do	get	more	love	when	they	contribute	more.	It
goes	on	their	permanent	record.	Contributing	to	ZeroMQ	can	land	you	a	good	job.

Reddit,	like	many	sites,	uses	"karma"	that	shows	how	many	votes	a	profile	got	for	its	posts	and	submissions.	It	works	pretty	well.	Some
sites	don't	show	all	karma	in	order	to	stop	people	playing	the	system	to	just	get	a	higher	score.	Some	sites,	like	StackOverflow,	have
taken	"gamification"	to	an	extreme	level,	with	badges,	high	scores,	achievements,	and	so	on.	I	think	this	is	manipulative	and	distorts	the
mission	of	the	community.	People	should	be	contributing	because	they	need	the	project	to	succeed,	not	to	earn	toy	points.

Chapter	1	-	The	Toolbox

11

Having	said	that,	social	credit	--	making	groups	of	strangers	happy	--	is	enormously	satisfying	and	does	not	pollute	the	planet.	Industrial
society	focuses	on	material	rewards	(higher	salary,	larger	house,	nicer	car)	tied	into	a	hierarchical	structure.	It	is	effective	because	we	all
like	wealth,	or	we	have	a	daddy	complex;	whatever	the	reason,	wanting	to	make	the	boss	happy	means	taking	fewer	risks.

TIP:	When	there	is	something	that	people	are	asking	for,	and	you	don't	know	how	to	do	it	yourself,	announce	publicly	that	it	is
"impossible."	Or,	propose	a	solution	that	is	so	awkward	and	hopeless	that	it	annoys	real	experts	into	stepping	up.

Decentralization

In	his	book,	Surowiecki	explained	how	the	Columbia	Space	Shuttle	disaster	was	caused	by	a	hierarchical	NASA	management
bureaucracy	that	ignored	the	knowledge	of	low-level	engineers.	If	a	group	is	decentralized,	its	members	are	more	independent,	they
receive	more	diverse	inputs,	and	they	are	also	likely	to	be	more	diverse	from	the	start.

If	a	group	is	geographically	concentrated,	it	becomes	homogenized,	where	all	members	get	pretty	much	the	same	inputs	and	triggers.
Close	proximity	also	lets	a	minority	dominate	the	mindset	of	the	group	and	quash	unorthodox	ideas.	It	lets	them	literally	bully	or	bluff
the	majority	into	compliance.	Insisting	that	all	members	of	a	group	sit	in	the	same	office,	department,	or	building	is	an	old	anti-pattern
that	is	hard	to	break.	There's	a	reason	cults	have	compounds.

TIP:	Do	you	need	meetings	to	get	work	done	as	a	group?	This	is	a	sign	that	you	have	deeper	problems	in	how	you	work	together.	You
are	excluding	people	who	are	not	physically	close	by.

It	can	be	hard	to	move	away	from	the	old	discuss-then-execute	model	of	working	together.	Certainly	it's	easier	if	you	are	building
groups	from	scratch	than	if	you	are	trying	to	change	existing	groups.

Free	Workspaces
A	community	needs	space	in	which	to	grow.	In	Internet	terms,	this	is	typically	a	website	or	collection	of	sites,	and	related	structures	like
email	lists,	blogs,	and	so	on.	We've	seen	that	it's	become	very	cheap,	or	free,	to	create	"space"	in	digital	society.	The	question	is,	can
individuals	create	their	own	spaces	within	the	community?	If	so,	they	will	invest	more	in	the	collective	project.

The	freedom	to	create	structure	annoys	people	who	feel	that	it	creates	chaos	and	disorder.	However,	if	you	use	regular	structures	(see
the	next	section),	there's	no	real	cost	to	participants.	What	is	toxic	is	speculatively	creating	structure	based	on	the	assumption	that	people
might	need	it.	When	I	took	charge	of	the	FFII	association	in	2005,	the	previous	president	had	created	several	hundred	email	lists,
representing	all	the	projects	he	felt	people	should	be	working	on.	It	didn't	fit	how	people	wanted	to	organize,	and	it	was	very	hard	to
delete	these	lists	and	create	the	ones	we	actually	needed.

Of	course,	industrial-era	groups	do	assign	work,	and	assign	the	resources	to	carry	it	out.	Any	new	infrastructure	--	such	as	a	website,
email	list,	or	wiki	--	requires	approval	and	a	decision.	It	might	even	need	legal	review	due	to	copyright	and	patent	concerns.	The	cost	is
high,	so	people	are	reluctant	to	take	the	risk.	Thus,	they	don't	experiment	and	often	work	with	one	hand	tied	behind	their	backs.

In	the	ZeroMQ	software	community,	it	takes	a	single	click	to	create	a	new	project.	In	Wikipedia,	you	can	create	a	new	page	simply	by
clicking	"create	this	page."	Both	projects	have	mechanisms	to	stop	random	garbage	from	accumulating.	Wikipedia	purges	new	pages
quite	aggressively.	ZeroMQ	has	an	extra	manual	step	to	bring	a	new	project	into	the	official	community	organization.

TIP:	Make	it	absolutely	simple	for	logged-in	users	to	create	new	projects.	If	projects	are	organized	per	user,	you	don't	need	to	worry
about	junk.	If	they're	in	a	shared	space,	you	may	need	tools	to	purge	junk	and	abandoned	projects.

Regular	Structure

As	a	community	grows	larger,	it	can	become	harder	to	navigate.	If	you	make	a	single,	ever-growing	project,	this	becomes	more	and
more	complex	over	time,	consisting	mainly	of	special	cases.	Think	of	a	medieval	castle.	This	problem	is	particularly	bad	in	projects
built	by	larger	firms	that	seem	to	lack	a	sense	of	cost.

Chapter	1	-	The	Toolbox

12

Complexity	turns	people	away	because	it's	so	difficult	to	learn.	The	solution	is	to	use	very	regular	structures	that	you	can	learn	once	and
then	predict	many	times.	Not	any	structure	will	do.	We	seem	bad	at	learning	structures	deeper	than	three	or	four	levels.	However,	we're
happy	to	explore	very	wide	structures	with	thousands	or	millions	of	boxes	if	those	boxes	correspond	to	separate	units	of	work,	or
projects.	Think	of	a	city.

The	successful	on-line	communities	are	cities,	not	castles.	Wikipedia	consists	of	a	few	language-specific	wikis,	each	broken	into
millions	of	pages	(the	projects),	each	structured	into	sections,	discussion,	history,	footnotes,	and	so	on.	Several	people	may	be	working
on	a	page	at	once,	and	one	person	may	be	slowly	editing	or	caring	for	dozens	or	hundreds	of	pages.

GitHub	manages	millions	of	software	repositories	or	"repos,"	grouped	under	user	profiles	or	organizations,	and	each	broken	into	some
further	structure	(source	files,	documentation,	etc.)	that	usually	depends	on	the	language	(Java	repos	use	one	style,	C	repos	use	another,
and	so	on).	One	repo	may	have	a	handful	of	contributors,	and	people	will	work	on	a	few	to	a	dozen	repos.	The	ZeroMQ	community
consists	of	an	organization	that	contains	a	growing	number	of	projects.

TIP:	Design	your	community	as	a	searchable	city	of	projects,	where	anyone	can	start	a	new	project,	projects	represent	perhaps	a	dozen
people's	work,	and	all	have	familiar	structure,	as	much	as	possible.

Businesses	love	their	castles,	which	inevitably	describe	Important	People,	not	projects,	and	certainly	not	the	major	business	problems.
Their	organizations	are	huge	and	irregular.	There's	no	way	to	understand	them	except	by	memorizing	them	in	detail.	Then	again,	you
can't	simply	move	around	the	castle,	so	there's	little	benefit	in	learning	its	layout.

Smooth	Learning
When	ZeroMQ	started,	it	was	one	project	with	a	single	"README"	page.	Today,	it's	a	hundred	or	so	smaller	projects,	each	with	its	own
documentation,	community,	and	process.	To	get	into	a	mature	project	can	be	painful.	As	I've	said,	regular	structures	are	essential.	More
than	that,	you	need	a	fairly	specific	learning	curve	that	goes	from	simple	to	hard	as	people	progress	from	idle	passer-by	to	expert
contributor.

Think	of	your	community	as	a	video	game	with	levels	that	become	increasingly	difficult,	and	have	bigger	and	bigger	payoffs.	People
will	play	"up	to	their	level."	If	you	can	do	this	right,	you	attract	the	most	people.	If	you	do	this	wrong,	you'll	bore	experts	by	making	it
too	easy,	or	you'll	turn	off	others	by	making	it	too	hard	to	get	started.

TIP:	Use	classic	training	tools	--	presentations,	videos,	answers	to	frequently	asked	questions	(FAQs),	tutorials	--	to	get	people	started.
It	helps	if	you	are	part	of	the	community	so	you	can	see	what	kinds	of	questions	people	ask	when	they	start.

Many	existing	organizations	make	no	effort	to	create	a	smooth	curve.	Everything	starts	complex	and	stays	there.	To	participate,	you
might	need	weeks	of	training.	It's	inefficient,	frustrating,	and	expensive	to	scale.

Positivity
It's	tempting	to	try	to	provoke	people	into	joining	a	group	by	being	aggressive.	After	all,	many	people	enjoy	a	good	heated	argument,
especially	when	they	feel	they're	right.	Some	groups	thrive	on	being	quite	hostile	and	negative	towards	other	groups,	particularly	if
there	is	some	history	involved.	The	tone	you	set	as	founder	will	last	a	long	time.	If	you	promote	your	community	by	attacking
competitors,	you	will	attract	people	of	a	certain	mindset,	and	the	culture	will	spread.	Sooner	or	later,	the	negativity	will	turn	inwards	and
can	be	very	damaging	for	the	community.

TIP:	When	you	talk	about	people,	products,	or	organizations,	be	polite	and	stay	balanced.	When	you	promote	your	product	or
community,	talk	about	the	problems	you	solve,	not	how	you	are	better	than	your	competitors.

It's	better	in	my	experience	to	set	a	positive	tone	from	the	start.	Competitors	are	good	because	they	give	you	resistance.	Copycats	are
good,	because	they	prove	your	market	is	a	real	one.	Trolls	and	vandals	are	good,	because	they	give	sincere	people	an	extra	chance	to
prove	their	value.	And	so	on.	It	seems	like	hard	work	to	look	for	a	positive	outcome	for	every	event.	However,	it's	really	just	a	mindset.

TIP:	Welcome	everyone,	and	only	intervene	when	there	are	irredeemable	troublemakers.	It's	a	small	minority	that	really	can't	find	a
place	in	an	open,	diverse	community.	You	can	ask	such	people	to	leave	and,	if	necessary,	ban	them.

Chapter	1	-	The	Toolbox

13

A	positive	culture	is	more	tolerant	and	reduces	emotions	and	arguments.	It	also	makes	it	easier	to	experiment,	make	mistakes,	and	self-
criticize,	and	all	these	help	a	community	think	through	difficult	problems.

Sense	of	Humor

Have	you	ever	wondered	why	humans	have	an	instinct	for	humor,	and	why	people	who	never	laugh	seem	odd	or	unfriendly?	My	theory
is	that	we	evolved	humor	as	a	way	of	defusing	conflict	(which	has	obvious	survival	value).	People	don't	punch	the	joker	unless	the	joke
is	old	or	badly	told.	More	subtly,	humor	defuses	tribalism	and	emotion,	and	lets	people	work	together	even	when	they	have	huge
differences.	A	shared	joke	creates	strong	bonds	because	it	proves	the	intersection	of	minds.	Humor	is	an	essential	part	of	a	community
and	reduces	stress.

TIP:	The	more	serious	your	message,	the	more	you	need	humor.	In	my	ZeroMQ	book,	I	wrote	a	lot	of	silly	nonsense	mixed	with	the
heavy	technical	explanations.	Most	people	enjoyed	and	appreciated	this.

If	it	weren't	for	alcohol,	the	grim-faced	industrial	economy	would	barely	ever	laugh.	It	takes	itself	so	seriously.	The	lack	of	humor	in	an
organization	is	a	sure	sign	that	everyone	there	is	fundamentally	miserable.	Worse,	it	makes	the	group	vulnerable	to	conflict	and	fracture.

Minimalism
You	make	a	racing	car	faster	by	removing	weight,	not	by	adding	power.	You	can	make	your	community	lighter,	faster,	and	more	agile
by	being	dogmatically	minimalist	about	the	work	you	do.	Though	it	sounds	lazy,	it's	often	harder	to	not	do	something	that	seems	fun
than	to	just	go	ahead	and	do	it.

The	general	rule	is	do	the	absolute	minimum	that	probably	works.	Then	invest	more	only	as	people	start	to	use	your	work	and	complain.
Never	invest	more	than	the	absolute	minimum	you	need	to	get	a	"bite"	from	users.	This	applies	to	your	seed	product	as	well	as	every
change	you	make.	User	feedback	--	more	than	your	own	vision	--	is	the	best	guide	for	where	to	make	further	investments.

TIP:	Perfection	precludes	participation.	Releasing	buggy,	half-finished	work	is	an	excellent	way	to	provoke	people	into	contributing.
Though	it	can	be	hard	for	big	egos	to	accept,	flaws	are	usually	more	attractive	to	contributors	than	perfection,	which	attracts	users.

The	culture	of	minimalism	can,	and	should,	extend	to	your	community	itself.	In	the	past,	we	used	to	make	legal	entities	for	serious
projects	so	there	would	be	a	place	to	hold	copyrights,	trademarks,	and	money.	However,	legal	entities	are	expensive	and	time-
consuming	to	manage.	Tax	reporting	by	itself	can	be	an	unbearable	burden.

One	of	my	communities,	Digistan,	was	designed,	grown,	and	did	its	work	(building	a	new	generation	of	legal	templates	and	political
arguments	for	open	standards)	in	about	six	months.	All	of	our	ZeroMQ	protocols	are	based	on	the	Digistan	work.	The	Open	Web
Foundation	--	solving	the	same	problem	--	spent	two	years	simply	building	a	legal	entity,	defining	bylaws,	and	electing	officers.

Sane	Funding

If	there's	not	enough	money,	a	community	will	starve.	If	there's	too	much,	it	will,	as	I've	said,	rot.	It	is	a	delicate	balance.	We	can
motivate	people	with	money	up	to	a	certain	degree.	After	that,	only	sociopaths	respond	proportionally.	This	is	a	flaw	in	the	naive	"more
money	is	always	good"	theory	of	capitalism.	In	my	business,	it's	always	been	those	I	paid	best	who	turned	out	to	be	the	most
treacherous.

The	first	thing	is	to	reduce	your	costs	by	not	setting	up	legal	entities,	offices,	and	staff	unless	you	really	need	them.	Not	only	will	these
eat	any	funding	you	might	have,	they	will	work	against	you	as	you	try	to	build	a	pure	on-line	community.	Secondly,	invest	your	time
and	money	in	the	community	minimally	when	you	see	that	there's	no	choice.	It	could	be	taking	a	trademark,	paying	for	hosting	services,
or	doing	some	particularly	difficult	work	no	one	else	is	able	to	undertake.	Finally,	watch	out	for	individuals	who	take	on	too	much	risk
without	adequate	reward	--	they	can	be	vulnerable	to	burnout,	something	I'll	talk	about	in	the	next	chapter.

TIP:	Every	time	you	find	it	necessary	to	spend	money	on	the	community,	ask	if	you	could	have	found	a	way	to	get	others	to	help
instead.

Chapter	1	-	The	Toolbox

14

http://www.digistan.org
https://en.wikipedia.org/wiki/Open_Web_Foundation

Chapter	1	-	The	Toolbox

15

Chapter	2.	Sidebars
In	the	previous	chapter,	I	examined	my	toolbox	for	building	on-line	communities.	Now	I'll	look	at	few	other	key	ideas	that	are	worth
knowing	about.

The	Market	Curve

The	market	curve	is	a	well-known	theory	of	marketing	that	is	less	known	in	engineering	and	community	building.	However	it's
important	to	understanding	how	communities	develop	over	time.	In	the	classic	market	curve,	a	new	technology,	idea,	or	product	enters
the	market	as	a	wave,	starting	with	ice-breaking	enthusiasts	and	pioneers,	then	the	early	adopters,	then	the	mass	market,	then	the	late
adopters,	and	finally	the	skeptics.

Each	of	these	groups	has	different	motivations	for	coming	to	a	project,	joining	in,	and	eventually,	leaving.	If	we	take	an	exciting	new
technology	like	ZeroMQ,	we	can	explore	this	and	understand	how	it	works:

When	the	project	is	young	and	experimental,	it	attracts	pundits	and	researchers	whose	business	is	new	stuff,	in	general.	These
people	need	to	know	why	the	project	is	different	from	what	exists,	what	its	goals	are,	and	why	it	is	exciting.	They	will	never	use	it,
nor	will	they	become	contributors.	They	are	your	evangelists.	They	often	lose	interest	rapidly.

When	you	have	a	seed	product,	it	attracts	pioneers.	These	are	hard-core	hackers	who	want	the	latest	stuff	and	don't	care	about
documentation,	marketing,	or	tutorials.	They're	very	good	at	managing	the	risk	of	new	things.	These	are	your	first	wave	of
contributors.	Often	they	are	building	frameworks	for	other	developers.

When	you	have	a	real,	usable	product,	it	attracts	early	adopters.	These	are	people	making	real	products	yet	who	are	good	at	taking
and	managing	risk.	They	still	don't	need	much	help,	though	they	do	expect	some	guarantee	that	things	won't	break	randomly.	This
is	the	bulk	of	your	community.

When	you	are	in	version	two	or	three,	you	will	start	to	attract	the	mass	market.	These	are	people	who	expect	stability	and
reliability.	They'll	ask	questions	like,	"Do	you	offer	support?"	Some	of	these	will	become	contributors.	Mostly,	however,	they	are
the	target	paying	customers.

Finally,	when	you	are	in	later	versions,	the	laggards	and	skeptics	will	finally	pick	up	older	versions	and	try	them.

It's	more	complex	than	this,	as	you	can	have	multiple	overlapping	curves.	You	need	to	keep	the	whole	market	interested,	or	you	lose
valuable	sections	of	your	community.	Each	section	sells	to	the	next,	so	you	should	aim	new	versions	at	the	evangelists	so	they	can	sell
them	to	the	pioneers,	and	so	on.

Once	you	understand	the	market	curve,	you	see	why	it's	counterproductive	to,	for	instance,	write	perfect	tutorials	for	the	early	versions.
You	won't	get	the	mass	market	regardless	and	it	will	feel	patronizing	to	the	pioneers.

Volunteer	Burnout

I've	emphasized	the	value	of	volunteer	work	as	being	more	accurate,	honest,	and	creative	than	paid	work.	There's	a	strong	caveat	here.
Some	of	the	Social	Architecture	tools	can	be	dangerous.	When	you	define	a	compelling	mission,	you	can	motivate	people	close	to	self-
destruction.	This	was	a	major	problem	in	the	FFII	before	I	took	over,	made	worse	by	the	highly	emotional	and	tribal	culture	of	the
organization	at	that	time.	Many	core	members	were	in	a	state	of	deep	exhaustion	and	burnout.	It	was	familiar	to	me	from	my	own	past.

Research	into	burnout	--	which	you	can	read	on	Wikipedia	--	doesn't	seem	to	match	what	I've	observed	in	the	real	world.	Data	trumps
theory,	however.	Here's	what	I've	seen	many	times	about	the	specific	type	of	burnout	we	see	in	volunteer	communities:

It	manifests	as	a	deep	disgust	with	a	specific	project.	We	push	the	project	aside,	stop	answering	emails,	and	might	even	leave	the
community.	Other	people	observe	that	"he's	acting	strange...	depressed,	or	tired..."

It	is	project-related.	That	is,	we	burn	out	on	specific	projects	and	not	on	others.	In	severe	cases,	we	become	dysfunctional	for	a	few
months,	then	begin	working	again	by	abandoning	the	project	and	starting	something	else.

Chapter	2	-	Sidebars

16

https://www.google.com/search?q=marketing+curve
https://en.wikipedia.org/wiki/Occupational_burnout

It	hits	after	a	period	of	one	to	three	years,	depending	on	our	character	and	the	situation.	Very	stubborn,	driven	individuals	may	take
longer	to	burn	out,	and	when	they	do,	it's	worse.

It	is	curable.	This	is	the	weirdest	aspect,	which	I	proved	by	taking	burned-out	volunteers	and	finding	money	to	pay	them	for	what
they	had	been	doing	for	free.	They	came	back	happily	and	carried	on	successfully.

It	is	preventable.	Paid	staff	don't	suffer	the	same	kind	of	burnout.	They	can	definitely	get	depressed,	yet	they	don't	usually	just
switch	off.

Which	leads	me	to	conclude	that	this	is	about	the	economics	of	professional	investment.	Here's	my	hypothesis	of	the	mechanisms	at
play.

Many	people	invest	heavily	in	their	professions,	taking	great	risks	especially	while	young	in	the	hope	of	reaping	rewards	later	in	life.
We're	able	to	postpone	material	rewards	for	a	long	time	if	we	think	we're	on	the	right	track.	For	example,	a	young	writer	or	musician
will	tolerate	being	poor	for	many	years	if	he	thinks	he's	on	the	path	to	eventual	fame	and	fortune.

No	matter	how	subtle,	the	carrot	at	the	end	of	the	stick	is	always	present	in	our	subconscious.	We	are	essentially	economic	animals.	All
of	life	is	economic.	We	can	lie	to	ourselves	really	well,	yet	beneath	every	act	and	decision	is	an	economic	motive.	We	invest	in	projects
because	we	feel	they	will	propel	us	to	success,	even	if	it	takes	years.	We	compete	with	others,	trying	to	find	niches	where	our	particular
talents	can	shine.

So	it	happens	that	the	young	mind	striving	to	invest	in	the	right	places	finds	itself	in	a	situation	where	the	weight	of	lies	accumulates
and	reaches	a	tipping	point.	The	path	suddenly	proves	itself	to	be	a	dead	end.	The	people	it	was	following	are	manipulative	liars.	The
mission	was	a	fraud.	The	praise	of	others	is	emotional	blackmail.	The	years	of	investment	were	a	waste,	and	even	a	further	minute
would	be	wasted.

This	type	of	burnout	is	like	a	reckoning.	We	abandon	the	project	as	though	it	were	suddenly	toxic,	with	much	the	same	feeling	as	if	we
had	eaten	something	spoiled.	Here	are	some	ways	to	reduce	the	risk	of	this	happening:

We	cannot	work	alone	on	projects.	The	concentration	of	all	of	the	responsibility	on	one	person	who	does	not	set	limits	often	leads
to	burnout.

Projects	need	a	business	plan.	As	long	as	there	is	an	eventual	prospect	of	economic	reward,	the	mind	can	survive	hard	work
without	material	reward	for	some	time.

Preventative	education	on	burnout	can	help.	When	we	explain	to	people	what	burnout	is,	they	recognize	it	faster	and	call	for	help
before	it	is	too	late.

Good	tools	and	processes	let	us	work	with	less	stress	and	with	less	dependence	on	any	one	person.

The	Myth	of	Individual	Intelligence

You	will	have	gathered	by	now	that	I'm	not	a	great	fan	of	the	brilliance	of	individuals.	Mostly	this	is	because	despite	being	a	Mensa
member,	I've	seen	myself	make	such	amazingly	clever	mistakes.	Over	time	I've	come	to	think	that	the	very	notion	of	individual
intelligence	is	a	dangerously	simplified	myth.

In	this	myth,	brilliant	individuals	think	about	important	problems,	and	then	by	hard	work	and	labor,	they	create	solutions	and	refine
those	until	they	are	perfect.	Sometimes	they	will	have	"eureka"	moments	where	they	"get"	brilliantly	simple	answers	to	large	problems.
The	inventor,	and	the	process	of	invention	are	rare,	precious,	and	can	command	a	monopoly.	History	is	full	of	such	heroic	individuals.
We	owe	them	our	modern	world.

Look	more	closely,	however,	and	one	discovers	that	this	story	does	not	match	the	facts.	History	doesn't	show	lone	inventors.	It	shows
lucky	people	who	steal	or	claim	ownership	of	ideas	that	are	being	worked	on	by	many.	It	shows	brilliant	people	striking	lucky,	and	then
spending	decades	on	fruitless	and	pointless	quests.	The	best-known	large-scale	inventors	like	Thomas	Edison	were	good	at	systematic
broad	research	done	by	large	teams.	It's	like	claiming	that	Steve	Jobs	invented	every	tool	made	by	Apple.	It	is	a	nice	myth,	good	for
marketing,	and	utterly	untrue.

Chapter	2	-	Sidebars

17

Recent	history,	better	recorded	and	less	easy	to	manipulate,	shows	this	well.	The	Internet	is	surely	one	of	the	most	innovative	and	fast-
moving	areas	of	technology,	and	one	of	the	best	documented.	It	has	no	inventor.	Instead,	it	has	a	massive	economy	of	people	who	have
carefully	and	progressively	solved	a	long	series	of	immediate	problems,	documented	their	answers,	and	made	those	available	to	all.

The	innovative	nature	of	the	Internet	comes	not	from	a	small,	select	band	of	Einsteins.	It	comes	from	RFCs	anyone	can	use	and
improve,	made	by	hundreds	and	thousands	of	smart,	though	not	uniquely	smart,	individuals.	It	comes	from	open	source	software	that
anyone	can	use	and	improve.	It	comes	from	sharing,	remixing,	and	scale	of	community.	It	comes	from	the	continuous	accretion	of	good
solutions,	and	the	disposal	of	bad	ones.

Here	thus	is	an	alternative	theory	of	innovation:

1.	 There	is	an	infinite	problem/solution	terrain.	It	is	like	a	landscape	of	hills	and	valleys	that	we	are	trying	to	climb.	The	solutions	to
interesting	problems	are	at	the	tops	of	the	hills.

2.	 This	terrain	changes	over	time	according	to	external	conditions.	Mountains	can	become	flat,	and	new	mountains	appear,	over	time.
3.	 We	can	only	accurately	perceive	problems	to	which	we	are	close.	We	do	not	have	very	long-range	vision,	only	guesses.	Our

metaphorical	landscape	is	very	misty.
4.	 We	can	rank	the	cost/benefit	economics	of	problems	using	a	market	for	solutions.	That	is,	we	can	measure	how	high	we	are	on	any

given	peak.
5.	 There	is	an	optimal	solution	to	any	solvable	problem.	That	is,	every	slope	has	a	top.
6.	 We	can	approach	this	optimal	solution	mechanically,	by	applying	the	method	of	taking	a	step	in	some	approximately	good

direction,	and	seeing	whether	we	are	now	higher	or	lower	than	before.
7.	 Our	intelligence	can	make	this	process	faster,	yet	does	not	replace	it.	Being	smarter	maybe	lets	us	step	faster,	or	see	a	little	further

into	the	mist,	and	that's	it.

There	are	a	few	corollaries	to	this:

Individual	creativity	matters	less	than	process.	Smarter	people	may	work	faster,	and	they	may	also	work	in	the	wrong	direction.	It's
the	collective	vision	of	reality	that	keeps	us	honest	and	relevant.

We	don't	need	road	maps	if	we	have	a	good	process.	Functionality	will	emerge	and	evolve	over	time	as	solutions	compete	for
market	shares.

We	don't	invent	solutions	so	much	as	discover	them.	All	sympathies	to	the	creative	soul:	it	is	just	an	information	processing
machine	that	likes	to	polish	its	own	ego	and	collect	karma.

Intelligence	is	a	social	effect,	though	it	feels	personal.	A	person	cut	off	from	others	eventually	stops	thinking.	We	can	neither
collect	problems	nor	measure	solutions	without	other	people.

The	size	and	diversity	of	the	community	is	a	key	factor.	Larger,	more	diverse	communities	collect	more	relevant	problems,	solve
them	more	accurately,	and	do	this	faster	than	a	small	expert	group.

So	when	we	trust	the	solitary	experts,	they	make	classic	mistakes.	They	focus	on	ideas,	not	problems.	They	focus	on	the	wrong
problems.	They	make	misjudgments	about	the	value	of	solving	problems.	And	they	don't	use	their	own	work.

The	Collective	Intelligence	Index,	or	CII

I'm	going	to	propose	a	tool	to	measure	the	intelligence	of	a	community,	in	other	words,	how	accurately	and	efficiently	the	community	is
working	at	any	given	time.	It	also	measures	how	enjoyable	it	will	be	to	participate	in	the	community.

To	demonstrate,	I'm	going	to	rank	a	few	networks,	organizations,	websites,	and	on-line	communities.	It's	not	science;	it's	more	like
creative	abuse	of	numbers.	As	everyone	knows,	87%	of	statistics	are	invented	on	the	spot	and	91%	of	people	accept	them	without
question.	I've	chosen	the	following	victims:

Wikipedia
Twitter
Reddit
Facebook
The	fashion	industry

Chapter	2	-	Sidebars

18

The	Nigerian	movie	industry,	aka	Nollywood
The	military	(in	some	random	western	nation)
The	Fox	News	network
Lawyers,	as	a	profession
The	Hollywood	movie	industry

I'm	not	going	to	make	any	judgment	about	the	value	of	any	specific	community.	It's	impossible,	and	would	be	deceptive.	Twitter's
implied	mission	is	"collect	the	most	followers,"	which	sounds	weak	when	compared	to	Wikipedia's	"assemble	the	world's	knowledge."
Once	formed,	a	smart	and	agile	crowd	can	just	as	easily	create	new	missions	like	"bring	down	the	dictator."	Arguably,	the	value	(to
society)	of	an	on-line	community	is	not	their	products,	rather	it	is	the	community	itself.	With	Wikipedia	or	ZeroMQ,	it's	hard	to	separate
the	crowd	from	the	content.	With	Twitter,	it's	really	obvious.	The	content	is	transient	and	mostly	worthless,	the	crowd	is	not.

Here's	the	scorecard	I	came	up	with:

|	Criteria	|	Wk	|	Tw	|	Rd	|	Fb	|	Fa	|	Nw	|	Lw	|	Hw	|	FN	|	Ml	|	|	Strong	mission	|	5	|	3	|	2	|	1	|	2	|	1	|	0	|	0	|	0	|	2	|	|	Free	entry	|	5	|	5	|	5	|	5	|	4	|	3
|	0	|	1	|	2	|	2	|	|	Transparency	|	5	|	3	|	5	|	1	|	2	|	1	|	0	|	0	|	0	|	0	|	|	Free	contributors	|	5	|	5	|	5	|	5	|	2	|	3	|	3	|	2	|	1	|	0	|	|	Full	remixability	|	5	|	5	|	5
|	4	|	4	|	3	|	3	|	1	|	1	|	0	|	|	Strong	protocols	|	5	|	5	|	5	|	4	|	4	|	3	|	2	|	3	|	1	|	4	|	|	Fair	authority	|	5	|	4	|	5	|	3	|	4	|	3	|	1	|	1	|	0	|	1	|	|	Non-tribalism	|	4
|	5	|	5	|	5	|	3	|	3	|	0	|	2	|	0	|	0	|	|	Self-organization	|	5	|	5	|	5	|	5	|	4	|	4	|	2	|	2	|	0	|	0	|	|	Tolerance	|	5	|	5	|	5	|	5	|	4	|	3	|	2	|	3	|	0	|	0	|	|	Measurable
success	|	5	|	5	|	5	|	5	|	5	|	5	|	4	|	5	|	5	|	2	|	|	High	scoring	|	3	|	5	|	5	|	5	|	4	|	3	|	3	|	2	|	1	|	1	|	|	Decentralization	|	5	|	5	|	5	|	5	|	5	|	1	|	1	|	1	|	0	|	1	|	|
Free	workspaces	|	5	|	5	|	5	|	5	|	3	|	2	|	0	|	0	|	0	|	0	|	|	Smooth	learning	|	4	|	5	|	5	|	5	|	3	|	3	|	0	|	1	|	0	|	0	|	|	Regular	structure	|	5	|	5	|	5	|	4	|	3	|	2	|
3	|	3	|	1	|	5	|	|	Positivity	|	5	|	5	|	5	|	5	|	5	|	3	|	0	|	2	|	0	|	0	|	|	Sense	of	humor	|	5	|	5	|	5	|	5	|	2	|	3	|	0	|	1	|	1	|	0	|	|	Minimalism	|	5	|	5	|	4	|	4	|	3	|	4	|
1	|	1	|	3	|	0	|	|	Sane	funding	|	5	|	4	|	3	|	3	|	5	|	3	|	3	|	3	|	2	|	2	|	|	Final	score	|	96	|	94	|	94	|	84	|	71	|	56	|	28	|	34	|	18	|	20	|

Once	we	can	measure	the	CII	of	a	community	or	organization,	we	can	increase	it	by	looking	at	the	tools	that	score	low.	In	theory,	this
should	make	the	organization	smarter,	and	its	participants	happier.	Of	course	it's	quite	likely	that	a	military	organization	can	only	work
with	a	low	CII.	A	smart	army	would	quite	likely	all	go	home	and	switch	to	Reddit.

How	to	Capture	an	Open	Source	Project
Ars	Technica	has	an	interesting	article	on	how	Google	is	closing	off	Android	piece	by	piece.	It	is	a	classic	game	of	"capture	the	flag",
played	against	an	open	source	community.	I'm	going	to	explain	how	this	capture	works,	and	how	to	prevent	it.

Why	Capture	the	Flag?

As	Ars	Technica	says,	"It's	easy	to	give	something	away	when	you're	in	last	place	with	zero	marketshare,	precisely	where	Android
started.	When	you're	in	first	place	though,	it's	a	little	harder	to	be	so	open	and	welcoming."

Android	is,	to	be	fair,	largely	Google's	investment.	You	could	argue	that	they	are	entirely	justified	to	turn	it	from	an	open	system	into	a
closed	one,	and	you'd	be	right.	However,	it	is	like	arguing	that	a	central	bank	is	entirely	justified	in	issuing	too	much	currency	and
creating	devaluation.	Sure,	there	is	a	justification.	However	there	is	also	a	cost,	paid	by	other	people.	The	question	is	not,	is	this	act
justified,	but	is	the	price	paid	by	wider	society	acceptable,	and	if	not,	how	do	we	prevent	it?

Android	is,	like	any	"open	source"	system	sold	to	the	market	on	that	basis,	common	property.	When	someone	privatizes	it,	they	are
increasing	their	profits,	like	a	money-printing	central	bank,	at	the	expense	of	everyone	else.	By	forking	Android	applications	like
search,	calendar,	music,	and	making	their	own	better	versions,	Google	is	competing	with	other	firms	using	Android	on	their	devices.

The	question	of	capture,	how	it	happens,	and	how	to	prevent	it,	is	especially	important	if	you	are	not	Google,	i.e.	if	you	are	the	user	of,
or	a	contributor	to,	an	open	source	project.	Android	contains	many	patches	from	other	firms,	like	LG,	Samsung,	and	so	on.	As	Google
turns	the	operating	system	into	its	own	private	garden,	those	patches	start	to	be	used	against	the	very	people	who	made	them.

I	believe	Google	is	making	a	huge	mistake	in	moving	the	goalposts	like	this,	simply	because	it	will	encourage	competition	against
Android.	However,	that's	not	my	point.	I'm	just	interested	in	applying	any	lessons	I	can	learn	to	my	own	work,	and	my	own	projects.

Two	things	stand	out:

Out	of	pure	self-interest,	I	will	not	contribute	to	an	open	source	project	that	does	not	guarantee	me,	as	contributor,	that	my	patches
and	changes	will	never	be	turned	into	private	code,	and	used	against	me.

Chapter	2	-	Sidebars

19

http://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-open-source-by-any-means-necessary/

Out	of	a	sense	of	ethics,	I	will	never	create	an	open	source	project	that	does	not	provide	these	guarantees	to	anyone	contributing	to
it.

The	Use	Case

Let	me	be	very	explicit	about	the	use	case.	It	is	the	Android	case:	one	firm	starting	an	open	source	project	as	loss	leader,	to	break	an
existing	market,	and	asking	for	help	from	others	to	do	so.	It	is	a	classic	strategy	and	can	be	very	successful.	However	this	is	most
definitely	not	the	same	as	a	student's	research	project,	a	"let's	open	source	our	legacy	payroll	system"	dump,	or	a	"five	of	us	got	together
in	a	garage	and	decided	to	make	a	new	framework"	case.

These	overlap,	and	I	think	the	lessons	here	do	apply	more	widely	(and	I	certainly	apply	them	systematically)	yet	again,	my	use-case	is
the	"open	source	as	market	breaker"	one.

The	important	thing	about	an	open	source	market	breaker	is	that	it	depends	on	a	community	to	pitch	in.	Any	market	follows	a	power
curve	where	a	few	players	dominate	the	market,	and	a	majority	of	players	are	frustrated.	It's	by	promising	this	frustrated	crowd	a	way
out,	that	you	can	convince	them	to	invest	in	something	new	and	open	and	potentially	game-changing.

Most	open	source	is	a	failure	(seriously,	go	read	some	random	GitHub	projects	and	see	how	many	are	relevant),	and	even	most
successes	are	modest	successes	that	barely	matter.	As	long	as	there's	no	serious	shift	in	power,	the	project	can	remain	a	potential	market
breaker	for	a	long	time.	It	can	look	very	stable	and	happy.	Well,	it's	easy	to	be	friendly	when	there's	no	money	on	the	table.

If	and	when	the	project	succeeds,	the	game	changes,	and	the	clever	guys	who	launched	the	market	breaker	seek	to	pluck	the	fruit,	and
keep	it	for	themselves.	And	only	now	do	things	get	interesting.

A	Level	Playing	Field	is	Not	"Restrictive"

There	are	several	ways	to	capture	an	open	source	project,	including	trademarks	and	patents.	I'm	going	to	look	only	at	copyrights,
because	this	is	the	most	common	case.	The	key	agreements	that	govern	the	copyright	status	of	an	open	source	project	are	(a)	the	license
and	(b)	the	contribution	policy.

It's	a	common	misconception	that	"open	source"	means	the	code	cannot	be	captured.	That	is	simply	wrong.	Broadly,	there	are	three
types	of	agreement	for	copyright:

1.	 A	"locked	down"	license	that	does	not	allow	remixing,	in	other	words,	classic	copyright	plus	some	restrictive	license.
2.	 A	"free	to	take"	license	that	allows	one-way	remixing,	such	as	Apache/BSD/MIT.
3.	 A	"share-alike"	license	that	enforces	two-way	remixing,	such	as	GPL,	LGPL,	and	cc-by-sa.

Imagine	a	DJ	who	releases	a	popular	beat	under	the	"free	to	take"	model.	A	major	record	label	takes	his	beat	and	makes	a	remix,	and
releases	it.	It	becomes	a	massive	hit.	Now	that	new	version	is	locked	down.	The	DJ	cannot	remix	that	new	work,	and	may	find	himself
unable	even	to	play	the	remix.	Sure,	he	can	take	his	old	version	and	improve	it,	yet	it's	the	commercial	version	that	will	get	the	money.

I	trust	you	see	what	I	am	getting	at	here.	Even	the	best	individual	talent	cannot	compete	equally	with	a	large	firm	with	marketing	and
money.	The	only	way	I	know	to	guarantee	a	level	playing	field	in	a	war	of	control	over	culture	is	a	bilateral	guarantee	of	remixing.
Bilateral	means	it	goes	two	ways.

When	people	call	that	guarantee	"restrictive",	I	sigh.	It's	like	calling	the	lock	in	my	car	"restrictive"	because	it	stops	others	from	making
my	car	theirs.	To	call	protection	from	thieves	"restrictive"	is...	well,	a	failure	to	think	things	through,	at	least.	Making	rules	apply	both
ways	is	not	restrictive,	OK!?

How	Does	the	Capture	Work?

Let's	clearly	restate	the	goal	again,	with	this	exercise.	It	is	to	prevent	the	capture	of	an	open	source	project	by	someone	with	lots	of
money	and	power,	who	is	determined	to	harvest	the	fruits	of	the	project	for	their	own	benefit,	at	the	cost	of	the	community	who	helped
make,	or	who	made	the	project.	I	don't	care	how	"justified"	such	a	capture	might	be,	it's	what	I'm	explaining	how	to	prevent.

The	license	and	contribution	policy	are	two	halves	of	one	puzzle.

Chapter	2	-	Sidebars

20

Who	owns	the	copyrights?	Are	they	"centralized"	by	the	project	founders,	or	are	they	shared	by	all	contributors?	It's	a	vital	question.	If
they	are	centralized	then	it	is	a	trivial	exercise	to	buy	the	copyrights,	fork	the	project,	change	the	license	unilaterally,	and	move	off	in	a
closed	direction.	However,	if	the	copyrights	are	shared,	i.e.	many	people	own	the	work,	together,	you	need	all	of	their	agreement	(not	a
majority,	but	100%	consensus)	to	change	the	license.	And	that	is	logistically	impossible.

As	an	aside,	if	you	knew	how	many	people	had	offered	me	money	for	a	commercial	license	for	ZeroMQ,	you	would	be	astonished	(it	is
a	lot).	The	notion	is	simple:	I	sell	them	a	non-LGPL	license,	they	pay	me	good	money,	and	they	make	their	own	versions	of	ZeroMQ.	If
I'd	not	made	this	impossible,	on	purpose,	a	long	time	ago,	I'd	be	very	wealthy.	As	it	is,	I	have	to	settle	with	poor	but	happy	in	the
knowledge	that	ZeroMQ	will	survive	me.

Let's	examine	again	the	problem	with	offering	commercial	licenses	to	a	collaborative	work	on	the	side.	Imagine	a	club	that	hosts	DJs,
who	mix	their	beats.	But	the	club	keeps	the	copyrights,	and	sells	them	to	a	record	label,	which	makes	its	own	remixed	album	that	the
original	DJs	cannot	play	for	free.	So	yes,	I	consider	dual	GPL/commercial	licensing	to	be	a	corrupt	practice.

No-one	will	pay	for	a	commercial	license	for	a	"free	to	take"	project,	since	they	can	just	take	the	code	and	use	it.	To	some	extent	I	think
that	is	already	corrupt,	since	it	breaks	the	level	playing	field.	A	large	firm	can	obviously	benefit	more	from	such	a	license	than	small
teams.	Again,	imagine	your	independent	DJs	against	a	record	label	with	their	marketing	and	media	connections	and	concert	venues.

Now	we	come	to	step	two	of	the	capture:	hire	the	developers.

"But	the	code	is	still	free!",	people	say.	Sure.	Back	to	the	record	label	vs.	the	DJs.	Let's	say	the	label	hires	just	one	DJ,	the	key	man,	and
uses	him	to	push	the	new	commercial	mix	album.	Where	is	the	public	going	to	go?

You	don't	need	to	hire	all	the	contributors	to	a	community	in	order	to	0wn	it.	In	any	random	project	there	will	be	at	most	2-3	top
contributors	and	a	large	mass	of	minor	ones.	Hire	the	top	two,	and	you	can	take	the	project	anywhere	you	like.	If	the	results	are
remixable,	that	journey	will	be	entirely	fair	to	those	who	contributed	before.	And	if	not	remixable,	all	other	contributors	will	find	their
own	investments	used	against	them.

Preventing	Capture

There	is	only	one	model	I	know	that	prevents	capture	of	an	open	source	software	project,	and	that	is:

1.	 A	GPL-family	license	(or	MPLv2,	which	works	the	same).
2.	 Distributed	copyrights.

This	is	how	I	construct	the	open	source	projects	I	start,	and	it's	the	requirement	for	any	community	I	join.	Your	right	to	make	money
does	not	include	the	right	to	use	my	work	in	a	competing	product,	unless	that's	reciprocal.

Legal	primer:	Trademarks

Trademarks.	What	are	they,	do	you	need	them,	and	how	much	do	they	cost?	These	are	questions	that	often	crop	up	when	we	build	open
source	projects.	Trademarks	can	be	key	to	protecting	a	project	from	bad	actors.	Yet	there	is	little	advice	on	line.	So	here	is	my	guide	to
using	trademarks	in	open	source.	This	is	practical	advice,	IANAL,	and	certainly	not	your	lawyer.

A	Background	to	Trademarks

Definitions	first.	A	trademark	is	a	name,	phrase,	logo,	or	even	a	specific	color	(the	"mark")	that	you're	using	for	business	("trade").	The
simple	fact	of	using	a	mark	for	some	period	of	time	establishes	the	trademark.	However	as	with	all	property,	the	devil	lies	in
enforcement.	The	question	is,	always,	if	you	go	before	a	judge	with	a	complaint,	what	standards	of	evidence	will	the	judge	expect	and
demand?

No	matter	the	case,	criminal	or	civil,	it	always	comes	down	to	convincing	one	or	more	humans.	If	you	ever	go	to	court,	keep	this	in
mind.	The	facts	of	a	case,	as	each	party	knows	them,	are	irrelevant.	How	those	facts	are	documented	and	presented	is	all	that	matters.

Let's	back	up	a	little	and	ask	why	courts	even	care	about	protecting	businesses'	trademarks.	First,	it's	to	protect	consumers	from
misleading	sales	tactics.	Just	selling	junk	isn't	an	offense	as	such,	except	when	there	are	legal	minimum	standards	for	health	and	safety.
However	selling	junk	that	claims	to	be	a	more	expensive,	well-known	brand	is	an	offense.	So	secondly,	trademarks	let	businesses
distinguish	themselves	and	stop	unfair	competition.

Chapter	2	-	Sidebars

21

So	the	judge	in	a	trademark	violation	case	will	ask,	"Was	the	intent	to	deceive	the	consumer?	Would	a	reasonable	consumer	be
deceived?"	And	then	the	judge	will	ask,	"Who	owned	the	trademark,	and	can	they	prove	it?"	Even	though	the	simple	act	using	a	mark
creates	it	(under	so-called	Common	Law),	that	can	be	hard	to	establish.

For	instance,	business	A	creates	a	chain	of	restaurants.	Business	B	opens	a	competing	chain	using	the	same	colors	and	similar	name.	B
is	clearly	hijacking	A's	investment	in	branding,	stealing	goodwill.	Yet	when	A	takes	B	to	court,	B	produces	a	document	showing	their
restaurant	plans,	a	full	year	before	A	started.	How	does	the	judge	know	who	is	the	liar?

In	clear	cut	cases,	you	can	convince	a	judge	that	a	copycat	is	deceiving	consumers	and	stealing	your	goodwill.	Yet	the	risk	of	losing
such	a	case	is	high.	It's	also	costly	for	courts	to	deal	with	such	cases.	Judges	may	simply	refuse	to	hear	them.

Hence	most	countries	provide	a	way	to	register	your	marks,	for	a	fee.	Registration	gives	you	a	dated	document	that	establishes	your
claim	to	the	mark.	The	trademark	office	does	the	job	of	searching	for	prior	marks	in	the	same	area.	Before	it	grants	you	the	registration,
it	publishes	your	claim	and	gives	others	a	chance	to	dispute	it.	So	after	a	search,	and	if	there	are	no	disputes,	a	judge	will	take	the
trademark	registration	as	solid	evidence.

It	is	not	that	simple.	A	competitor	can	still	claim	that	their	Common	Law	mark	outweighs	your	registered	trademark.	They	can	argue
that	the	registration	does	not	represent	real	goodwill.	This	is	often	understood	as,	"if	you	don't	enforce	your	mark,	you	will	lose	it,"
which	is	inaccurate.	As	trademark	holder	you're	not	expected	to	police	the	world.	However	you	are	expected	to	be	truthful	in	court
when	the	judge	asks	you,	"are	you	using	your	mark,	and	suffering	real	damage	due	to	the	unfair	competition?"

Finally,	courts	consider	trademarks	to	apply	per	segment	of	the	market.	So	you	can	have	XYZ	Car	Co,	and	XYZ	Clothing	Co,	with	no
confusion	to	the	market.	When	you	register	a	mark	you'll	need	to	explain	what	"classes"	you're	using	it	in.	You'll	probably	want
international	class	9,	which	is	anything	that	beeps.

Where	and	How	to	Register

If	you	are	large	enough	to	need	to	register	in	multiple	countries	then	you	are	large	enough	to	have	trademark	lawyers.	For	the	rest	of	us,
it's	a	bit	like	buying	a	domain	name.	Sure,	there	are	hundreds	of	domain	extensions.	Yet	we	still	want	a	dot-com	for	our	main	business.

So	it	is	with	trademarks.	If	you	decide	to	register	a	mark,	do	it	in	the	US	(via	the	USPTO)	first.	That's	cheap,	and	simple.	Then	over
time	you	can	register	in	the	EU	(via	the	OHIM),	if	you	find	your	project	is	worth	it.

The	cost	for	a	US	registration	is	around	USD	1500,	depending	on	what	lawyer	you	use.	You	can	find	trademark	attorneys	on	line.
They'll	ask	you	for	details	of	the	mark,	proof	that	it's	being	used,	name	and	address	of	the	registrant,	and	credit	card	details.	The	process
takes	about	six	months.	After	nine	years	(and	before	ten	years	have	passed)	you	can	renew	the	mark.

Getting	a	US	registration	will	speed	up	registration	in	other	countries,	if	you	decide	to	apply	for	that	later.	The	risk,	and	it's	a	small	one,
is	that	a	troll	will	register	your	trademark	in	some	other	country,	effectively	excluding	you	from	doing	business	under	that	name,	there.

Before	you	register,	however,	ask	yourself	"what	is	the	chance	someone	would	rip	off	my	name	and	logo?"	If	it's	low,	don't	bother.	If	it's
high,	then	ask	"what	is	the	chance	a	cheat	would	take	this	to	court?"	If	that	is	still	low,	then	don't	bother	either.

Instead	of	registering	a	mark	you	can	raise	its	visibility.	This	means	being	explicit	on	your	website	and	other	materials.	"X,	Y,	and	Z	are
trademarks	of	MyCorp."	This	scares	off	potential	cheats,	improves	your	case,	if	you	do	try	to	defend	the	mark	in	court,	and	makes	it
easier	to	get	registration	if	and	when	you	need	it.

How	to	Enforce	your	Trademark

Registered	or	not,	you	enforce	your	mark	by	telling	the	other	party,	in	writing,	"stop	now,	or	else."	If	they	do	not	stop,	you	repeat	the
warning,	with	initial	claims	of	damages.	If	they	do	not	stop,	you	add	on	more	damages	and	when	you	have	a	solid	file,	you	take	it	to
court.

The	vast	majority	of	people	will	back-off	at	once.	The	trouble	is	when	you	face	someone	who's	well	aware	of	trademark	law,	has	cheap
legal	resources,	and	enjoys	time	in	court.

If	you	are	facing	such	a	firm,	and	you	did	not	register	your	mark,	you	should	probably	fold	your	hand,	and	change	your	name.	The	risks
are	high	that	you	would	lose,	and	have	high	legal	fees	and	possibly	damages	to	pay.	Judges	don't	always	get	it	right.

Chapter	2	-	Sidebars

22

If	you	did	register	your	mark,	then	you	should	push	ahead	and	claim	damages.	You	will	win,	if	you	stick	to	the	basic	rules	(you're	still
using	the	mark,	the	damages	are	real.)	Do	I	need	to	say,	any	court	case	will	have	to	happen	in	the	country	of	registration?	Judges	in
Belgium	won't	accept	paper	from	the	USPTO.

Trademarks	For	Open	Source	Projects

The	common	misconception	about	open	source	is	that	because	the	code	is	free,	it	does	represents	no	property	nor	value.	The	opposite	is
true:	successful	projects	represent	considerable	value,	owned	by	many.	How	does	a	trademark	represent	and	protect	that	value?

It	comes	down	to	authenticity	and	reputation.	If	you	download	a	package	calling	itself	"XYZ	v2.0",	then	you	may	have	expectations.	It
is	compatible;	it	works;	it	has	no	trojans	or	advertising;	it	is	from	the	same	people	as	"XYZ	v1.0".

If	a	successful	project	does	not	register	its	name,	then	anyone	can	fork	it,	repackage	it,	and	use	the	same	name.	Imagine	competing,
incompatible	versions	of	"Linux."

When	a	person	or	a	business	registers	the	name	as	a	trademark,	those	incompatible	forks	may	still	exist.	However	they	may	not	use	the
mark.	If	they	try	to	do	that,	it's	damages	time.

I've	had	this	happen	at	least	once	in	my	own	projects,	and	the	trademark	was	the	tool	I	used	to	stop	the	incompatible	forks	and	punish
the	perpetrators.	Trademark	law	is	clear	enough	that	saying	"trademark	violation"	will	stop	99%	of	cheats	dead	still.	Producing	a
registration	filing	number	stops	99%	of	the	remainder.

In	a	serious	project	like	ZeroMQ	you'll	end	up	with	three	or	four	marks	you	want	to	register,	over	a	period	of	five	to	ten	years.	Register
only	when	it's	worth	it.	That	is,	to	protect	real	trademarks	that	you	would	be	willing	to	defend	in	court.	Consider	that	in	the	worst	case
you	might	have	to	spend	ten	or	twenty	times	the	cost	of	registration,	to	defend	your	mark.	You	might	get	that	back,	or	you	might	not.

I	hope	this	small	brief	has	helped	you	understand	trademarks,	and	how	to	use	them	(or	not)	in	your	open	source	projects.	And,	if
someone	claims	you're	infringing	on	their	trademark,	how	to	defend	yourself.	(Hint:	ask	them	for	a	registration	number.)

Chapter	2	-	Sidebars

23

Chapter	3.	The	ZeroMQ	Community
People	sometimes	ask	me	what's	so	special	about	ZeroMQ.	My	standard	answer	is	that	ZeroMQ	is	arguably	the	best	answer	we	have	to
the	vexing	question	of	"How	do	we	make	the	distributed	software	that	the	21st	century	demands?"	But	more	than	that,	ZeroMQ	is
special	because	of	its	community.	This	is	ultimately	what	separates	the	wolves	from	the	sheep.

There	are	three	main	open	source	patterns.	The	first	is	the	large	firm	dumping	code	to	break	the	market	for	others.	This	is	the	Apache
Foundation	model.	The	second	is	tiny	teams	or	small	firms	building	their	dream.	This	is	the	most	common	open	source	model,	which
can	be	very	successful	commercially.	The	last	is	aggressive	and	diverse	communities	that	swarm	over	a	problem	landscape.	This	is	the
Linux	model,	and	the	one	to	which	we	aspire	with	ZeroMQ.

It's	hard	to	overemphasize	the	power	and	persistence	of	a	working	open	source	community.	There	really	does	not	seem	to	be	a	better
way	of	making	software	for	the	long	term.	Not	only	does	the	community	choose	the	best	problems	to	solve,	it	solves	them	minimally,
carefully,	and	it	then	looks	after	these	answers	for	years,	decades,	until	they're	no	longer	relevant,	and	then	it	quietly	puts	them	away.

To	really	benefit	from	ZeroMQ,	you	need	to	understand	the	community.	At	some	point	down	the	road	you'll	want	to	submit	a	patch,	an
issue,	or	an	add-on.	You	might	want	to	ask	someone	for	help.	You	will	probably	want	to	bet	a	part	of	your	business	on	ZeroMQ,	and
when	I	tell	you	that	the	community	is	much,	much	more	important	than	the	company	that	backs	the	product,	even	though	I'm	CEO	of
that	company,	this	should	be	significant.

In	this	section	I'm	going	to	look	at	our	community	from	several	angles	and	conclude	by	explaining	in	detail	our	contract	for
collaboration,	which	we	call	"C4".	You	should	find	the	discussion	useful	for	your	own	work.	We've	also	adapted	the	ZeroMQ	C4
process	for	closed	source	projects	with	good	success.

Architecture	of	the	ZeroMQ	Community
You	know	that	ZeroMQ	is	an	LGPL-licensed	project	(author's	note:	we	are	moving	towards	the	Mozilla	Public	License	v2,	which	has
the	same	effect	yet	is	simpler).	In	fact	it's	a	collection	of	projects,	built	around	the	core	library,	libzmq.	I'll	visualize	these	projects	as

an	expanding	galaxy:

At	the	core,	libzmq	is	the	ZeroMQ	core	library.	It's	written	in	C++,	with	a	low-level	C	API.	The	code	is	nasty,	mainly	because	it's

highly	optimized	but	also	because	it's	written	in	C++,	a	language	that	lends	itself	to	subtle	and	deep	nastiness.	Martin	Sustrik	wrote
the	bulk	of	the	original	code.	Today	it	has	dozens	of	people	who	maintain	different	parts	of	it.

Around	libzmq,	there	are	about	50	bindings.	These	are	individual	projects	that	create	higher-level	APIs	for	ZeroMQ,	or	at	least

map	the	low-level	API	into	other	languages.	The	bindings	vary	in	quality	from	experimental	to	utterly	awesome.	Probably	the	most
impressive	binding	is	PyZMQ,	which	was	one	of	the	first	community	projects	on	top	of	ZeroMQ.	If	you	are	a	binding	author,	you
should	really	study	PyZMQ	and	aspire	to	making	your	code	and	community	as	great.

A	lot	of	languages	have	multiple	bindings	(Erlang,	Ruby,	C#,	at	least)	written	by	different	people	over	time,	or	taking	varying
approaches.	We	don't	regulate	these	in	any	way.	There	are	no	"official"	bindings.	You	vote	by	using	one	or	the	other,	contributing
to	it,	or	ignoring	it.

There	are	a	series	of	reimplementations	of	libzmq,	starting	with	JeroMQ,	a	full	Java	translation	of	the	library,	which	is	now	the

basis	for	NetMQ,	a	C#	stack.	These	native	stacks	offer	similar	or	identical	APIs,	and	speak	the	same	protocol	(ZMTP)	as	libzmq.

On	top	of	the	bindings	are	thousands	of	projects	that	use	ZeroMQ	or	build	on	it.	Some	of	these	like	Zyre	and	Malamute	are	part	of
the	"official"	community,	most	are	not.

Libzmq,	most	of	the	bindings,	and	some	of	the	outer	projects	sit	in	the	ZeroMQ	community	"organization"	on	GitHub.	This

organization	is	"run"	by	a	group	consisting	of	the	most	senior	binding	authors.	There's	very	little	to	run	as	it's	almost	all	self-managing
and	there's	zero	conflict	these	days.

Chapter	3	-	The	ZeroMQ	Community

24

http://rfc.zeromq.org/spec:42
https://github.com/zeromq/pyzmq
https://github.com/organizations/zeromq

iMatix,	my	firm,	plays	a	specific	role	in	the	community.	We	own	the	trademarks	and	enforce	them	discretely	in	order	to	make	sure	that
if	you	download	a	package	calling	itself	"ZeroMQ",	you	can	trust	what	you	are	getting.	People	have	on	rare	occasion	tried	to	hijack	the
name,	maybe	believing	that	"free	software"	means	there	is	no	property	at	stake	and	no	one	willing	to	defend	it.	One	thing	you'll
understand	from	this	article	is	how	seriously	we	take	the	process	behind	our	software	(and	I	mean	"us"	as	a	community,	not	a	company).
iMatix	backs	the	community	by	enforcing	that	process	on	anything	calling	itself	"ZeroMQ"	or	"ZeroMQ".	We	also	put	money	and	time
into	the	software	and	packaging	for	reasons	I'll	explain	later.

It	is	not	a	charity	exercise.	ZeroMQ	is	a	for-profit	project,	and	a	very	profitable	one.	The	profits	are	widely	distributed	among	all	those
who	invest	in	it.	It's	really	that	simple:	take	the	time	to	become	an	expert	in	ZeroMQ,	or	build	something	useful	on	top	of	ZeroMQ,	and
you'll	find	your	value	as	an	individual,	or	team,	or	company	increasing.	iMatix	enjoys	the	same	benefits	as	everyone	else	in	the
community.	It's	win-win	to	everyone	except	our	competitors,	who	find	themselves	facing	a	threat	they	can't	beat	and	can't	really	escape.
ZeroMQ	dominates	the	future	world	of	massively	distributed	software.

My	firm	doesn't	just	have	the	community's	back--we	also	built	the	community.	This	was	deliberate	work;	in	the	original	ZeroMQ	white
paper	from	2007,	there	were	two	projects.	One	was	technical,	how	to	make	a	better	messaging	system.	The	second	was	how	to	build	a
community	that	could	take	the	software	to	dominant	success.	Software	dies,	but	community	survives.

How	to	Make	Really	Large	Architectures
There	are,	it	has	been	said	(at	least	by	people	reading	this	sentence	out	loud),	two	ways	to	make	really	large-scale	software.	Option	One
is	to	throw	massive	amounts	of	money	and	problems	at	empires	of	smart	people,	and	hope	that	what	emerges	is	not	yet	another	career
killer.	If	you're	very	lucky	and	are	building	on	lots	of	experience,	have	kept	your	teams	solid,	and	are	not	aiming	for	technical	brilliance,
and	are	furthermore	incredibly	lucky,	it	works.

But	gambling	with	hundreds	of	millions	of	others'	money	isn't	for	everyone.	For	the	rest	of	us	who	want	to	build	large-scale	software,
there's	Option	Two,	which	is	open	source,	and	more	specifically,	free	software.	If	you're	asking	how	the	choice	of	software	license	is
relevant	to	the	scale	of	the	software	you	build,	that's	the	right	question.

The	brilliant	and	visionary	Eben	Moglen	once	said,	roughly,	that	a	free	software	license	is	the	contract	on	which	a	community	builds.
When	I	heard	this,	about	ten	years	ago,	the	idea	came	to	me--Can	we	deliberately	grow	free	software	communities?

Ten	years	later,	the	answer	is	"yes",	and	there	is	almost	a	science	to	it.	I	say	"almost"	because	we	don't	yet	have	enough	evidence	of
people	doing	this	deliberately	with	a	documented,	reproducible	process.	It	is	what	I'm	trying	to	do	with	Social	Architecture.	ZeroMQ
came	after	Wikidot,	after	the	Digital	Standards	Organization	(Digistan)	and	after	the	Foundation	for	a	Free	Information	Infrastructure
(aka	the	FFII,	an	NGO	that	fights	against	software	patents).	This	all	came	after	a	lot	of	less	successful	community	projects	like	Xitami
and	Libero.	My	main	takeaway	from	a	long	career	of	projects	of	every	conceivable	format	is:	if	you	want	to	build	truly	large-scale	and
long-lasting	software,	aim	to	build	a	free	software	community.

Psychology	of	Software	Architecture

Dirkjan	Ochtman	pointed	me	to	Wikipedia's	definition	of	Software	Architecture	as	"the	set	of	structures	needed	to	reason	about	the
system,	which	comprise	software	elements,	relations	among	them,	and	properties	of	both".	For	me	this	vapid	and	circular	jargon	is	a
good	example	of	how	miserably	little	we	understand	what	actually	makes	a	successful	large	scale	software	architecture.

Architecture	is	the	art	and	science	of	making	large	artificial	structures	for	human	use.	If	there	is	one	thing	I've	learned	and	applied
successfully	in	30	years	of	making	larger	and	larger	software	systems,	it	is	this:	software	is	about	people.	Large	structures	in	themselves
are	meaningless.	It's	how	they	function	for	human	use	that	matters.	And	in	software,	human	use	starts	with	the	programmers	who	make
the	software	itself.

The	core	problems	in	software	architecture	are	driven	by	human	psychology,	not	technology.	There	are	many	ways	our	psychology
affects	our	work.	I	could	point	to	the	way	teams	seem	to	get	stupider	as	they	get	larger	or	when	they	have	to	work	across	larger
distances.	Does	that	mean	the	smaller	the	team,	the	more	effective?	How	then	does	a	large	global	community	like	ZeroMQ	manage	to
work	successfully?

Chapter	3	-	The	ZeroMQ	Community

25

http://cultureandempire.com/cande.html#/4/6
http://www.digistan.org
http://www.ffii.org
http://en.wikipedia.org/wiki/Software_architecture

The	ZeroMQ	community	wasn't	accidental.	It	was	a	deliberate	design,	my	contribution	to	the	early	days	when	the	code	came	out	of	a
cellar	in	Bratislava.	The	design	was	based	on	my	pet	science	of	"Social	Architecture",	which	Wikipedia	defines	as	"the	conscious	design
of	an	environment	that	encourages	a	desired	range	of	social	behaviors	leading	towards	some	goal	or	set	of	goals."	I	define	this	as	more
specifically	as	"the	process,	and	the	product,	of	planning,	designing,	and	growing	an	online	community."

One	of	the	tenets	of	Social	Architecture	is	that	how	we	organize	is	more	significant	than	who	we	are.	The	same	group,	organized
differently,	can	produce	wholly	different	results.	We	are	like	peers	in	a	ZeroMQ	network,	and	our	communication	patterns	have	a
dramatic	impact	on	our	performance.	Ordinary	people,	well	connected,	can	far	outperform	a	team	of	experts	using	poor	patterns.	If
you're	the	architect	of	a	larger	ZeroMQ	application,	you're	going	to	have	to	help	others	find	the	right	patterns	for	working	together.	Do
this	right,	and	your	project	can	succeed.	Do	it	wrong,	and	your	project	will	fail.

The	two	most	important	psychological	elements	are	that	we're	really	bad	at	understanding	complexity	and	that	we	are	so	good	at
working	together	to	divide	and	conquer	large	problems.	We're	highly	social	apes,	and	kind	of	smart,	but	only	in	the	right	kind	of	crowd.

So	here	is	my	short	list	of	the	Psychological	Elements	of	Software	Architecture:

Stupidity:	our	mental	bandwidth	is	limited,	so	we're	all	stupid	at	some	point.	The	architecture	has	to	be	simple	to	understand.	This
is	the	number	one	rule:	simplicity	beats	functionality,	every	single	time.	If	you	can't	understand	an	architecture	on	a	cold	gray
Monday	morning	before	coffee,	it	is	too	complex.

Selfishness:	we	act	only	out	of	self-interest,	so	the	architecture	must	create	space	and	opportunity	for	selfish	acts	that	benefit	the
whole.	Selfishness	is	often	indirect	and	subtle.	For	example,	I'll	spend	hours	helping	someone	else	understand	something	because
that	could	be	worth	days	to	me	later.

Laziness:	we	make	lots	of	assumptions,	many	of	which	are	wrong.	We	are	happiest	when	we	can	spend	the	least	effort	to	get	a
result	or	to	test	an	assumption	quickly,	so	the	architecture	has	to	make	this	possible.	Specifically,	that	means	it	must	be	simple.

Jealousy:	we're	jealous	of	others,	which	means	we'll	overcome	our	stupidity	and	laziness	to	prove	others	wrong	and	beat	them	in
competition.	The	architecture	thus	has	to	create	space	for	public	competition	based	on	fair	rules	that	anyone	can	understand.

Fear:	we're	unwilling	to	take	risks,	especially	if	it	makes	us	look	stupid.	Fear	of	failure	is	a	major	reason	people	conform	and
follow	the	group	in	mass	stupidity.	The	architecture	should	make	silent	experimentation	easy	and	cheap,	giving	people	opportunity
for	success	without	punishing	failure.

Reciprocity:	we'll	pay	extra	in	terms	of	hard	work,	even	money,	to	punish	cheats	and	enforce	fair	rules.	The	architecture	should	be
heavily	rule-based,	telling	people	how	to	work	together,	but	not	what	to	work	on.

Conformity:	we're	happiest	to	conform,	out	of	fear	and	laziness,	which	means	if	the	patterns	are	good,	clearly	explained	and
documented,	and	fairly	enforced,	we'll	naturally	choose	the	right	path	every	time.

Pride:	we're	intensely	aware	of	our	social	status,	and	we'll	work	hard	to	avoid	looking	stupid	or	incompetent	in	public.	The
architecture	has	to	make	sure	every	piece	we	make	has	our	name	on	it,	so	we'll	have	sleepless	nights	stressing	about	what	others
will	say	about	our	work.

Greed:	we're	ultimately	economic	animals	(see	selfishness),	so	the	architecture	has	to	give	us	economic	incentive	to	invest	in
making	it	happen.	Maybe	it's	polishing	our	reputation	as	experts,	maybe	it's	literally	making	money	from	some	skill	or	component.
It	doesn't	matter	what	it	is,	but	there	must	be	economic	incentive.	Think	of	architecture	as	a	market	place,	not	an	engineering
design.

These	strategies	work	on	a	large	scale	but	also	on	a	small	scale,	within	an	organization	or	team.

The	Importance	of	Contracts

Let	me	discuss	a	contentious	but	important	area,	which	is	what	license	to	choose.	I'll	say	"BSD"	to	cover	MIT,	X11,	BSD,	Apache,	and
similar	licenses,	and	"GPL"	to	cover	GPLv3,	LGPLv3,	and	AGPLv3.	The	significant	difference	is	the	obligation	to	share	back	any
forked	versions,	which	prevents	any	entity	from	capturing	the	software,	and	thus	keeps	it	"free".

A	software	license	isn't	technically	a	contract	since	you	don't	sign	anything.	But	broadly,	calling	it	a	contract	is	useful	since	it	takes	the
obligations	of	each	party,	and	makes	them	legally	enforceable	in	court,	under	copyright	law.

Chapter	3	-	The	ZeroMQ	Community

26

http://en.wikipedia.org/wiki/Social_architecture

You	might	ask,	why	do	we	need	contracts	at	all	to	make	open	source?	Surely	it's	all	about	decency,	goodwill,	people	working	together
for	selfless	motives.	Surely	the	principle	of	"less	is	more"	applies	here	of	all	places?	Don't	more	rules	mean	less	freedom?	Do	we	really
need	lawyers	to	tell	us	how	to	work	together?	It	seems	cynical	and	even	counter-productive	to	force	a	restrictive	set	of	rules	on	the
happy	communes	of	free	and	open	source	software.

But	the	truth	about	human	nature	is	not	that	pretty.	We're	not	really	angels,	nor	devils,	just	self-interested	winners	descended	from	a
billion-year	unbroken	line	of	winners.	In	business,	marriage,	and	collective	works,	sooner	or	later,	we	either	stop	caring,	or	we	fight	and
we	argue.

Put	this	another	way:	a	collective	work	has	two	extreme	outcomes.	Either	it's	a	failure,	irrelevant,	and	worthless,	in	which	case	every
sane	person	walks	away,	without	a	fight.	Or,	it's	a	success,	relevant,	and	valuable,	in	which	case	we	start	jockeying	for	power,	control,
and	often,	money.

What	a	well-written	contract	does	is	to	protect	those	valuable	relationships	from	conflict.	A	marriage	where	the	terms	of	divorce	are
clearly	agreed	up-front	is	much	less	likely	to	end	in	divorce.	A	business	deal	where	both	parties	agree	how	to	resolve	various	classic
conflicts--such	as	one	party	stealing	the	others'	clients	or	staff--is	much	less	likely	to	end	in	conflict.

Similarly,	a	software	project	that	has	a	well-written	contract	that	defines	the	terms	of	breakup	clearly	is	much	less	likely	to	end	in
breakup.	The	alternative	seems	to	be	to	immerse	the	project	into	a	larger	organization	that	can	assert	pressure	on	teams	to	work	together
(or	lose	the	backing	and	branding	of	the	organization).	This	is	for	example	how	the	Apache	Foundation	works.	In	my	experience
organization	building	has	its	own	costs,	and	ends	up	favoring	wealthier	participants	(who	can	afford	those	sometimes	huge	costs).

In	an	open	source	or	free	software	project,	breakup	usually	takes	the	form	of	a	fork,	where	the	community	splits	into	two	or	more
groups,	each	with	different	visions	of	the	future.	During	the	honeymoon	period	of	a	project,	which	can	last	years,	there's	no	question	of
a	breakup.	It	is	as	a	project	begins	to	be	worth	money,	or	as	the	main	authors	start	to	burn	out,	that	the	goodwill	and	generosity	tends	to
dry	up.

So	when	discussing	software	licenses,	for	the	code	you	write	or	the	code	you	use,	a	little	cynicism	helps.	Ask	yourself,	not	"which
license	will	attract	more	contributors?"	because	the	answer	to	that	lies	in	the	mission	statement	and	contribution	process.	Ask	yourself,
"if	this	project	had	a	big	fight,	and	split	three	ways,	which	license	would	save	us?"	Or,	"if	the	whole	team	was	bought	by	a	hostile	firm
that	wanted	to	turn	this	code	into	a	proprietary	product,	which	license	would	save	us?"

Long-term	survival	means	enduring	the	bad	times,	as	well	as	enjoying	the	good	ones.

When	BSD	projects	fork,	they	cannot	easily	merge	again.	Indeed,	one-way	forking	of	BSD	projects	is	quite	systematic:	every	time	BSD
code	ends	up	in	a	commercial	project,	this	is	what's	happened.	When	GPL	projects	fork,	however,	re-merging	is	trivial.

The	GPL's	story	is	relevant	here.	Though	communities	of	programmers	sharing	their	code	openly	were	already	significant	by	the	1980's,
they	tended	to	use	minimal	licenses	that	worked	as	long	as	no	real	money	got	involved.	There	was	an	important	language	stack	called
Emacs,	originally	built	in	Lisp	by	Richard	Stallman.	Another	programmer,	James	Gosling	(who	later	gave	us	Java),	rewrote	Emacs	in	C
with	the	help	of	many	contributors,	on	the	assumption	that	it	would	be	open.	Stallman	got	that	code	and	used	it	as	the	basis	for	his	own
C	version.	Gosling	then	sold	the	code	to	a	firm	which	turned	around	and	blocked	anyone	distributing	a	competing	product.	Stallman
found	this	sale	of	the	common	work	hugely	unethical,	and	began	developing	a	reusable	license	that	would	protect	communities	from
this.

What	eventually	emerged	was	the	GNU	General	Public	License,	which	used	traditional	copyright	to	force	remixability.	It	was	a	neat
hack	that	spread	to	other	domains,	for	instance	the	Creative	Commons	for	photography	and	music.	In	2007,	we	saw	version	3	of	the
license,	which	was	a	response	to	belated	attacks	from	Microsoft	and	others	on	the	concept.	It	has	become	a	long	and	complex	document
but	corporate	copyright	lawyers	have	become	familiar	with	it	and	in	my	experience,	few	companies	mind	using	GPL	software	and
libraries,	so	long	as	the	boundaries	are	clearly	defined.

Thus,	a	good	contract--and	I	consider	the	modern	GPL	to	be	the	best	for	software--lets	programmers	work	together	without	upfront
agreements,	organizations,	or	assumptions	of	decency	and	goodwill.	It	makes	it	cheaper	to	collaborate,	and	turns	conflict	into	healthy
competition.	GPL	doesn't	just	define	what	happens	with	a	fork,	it	actively	encourages	forks	as	a	tool	for	experimentation	and	learning.
Whereas	a	fork	can	kill	a	project	with	a	"more	liberal"	license,	GPL	projects	thrive	on	forks	since	successful	experiments	can,	by
contract,	be	remixed	back	into	the	mainstream.

Yes,	there	are	many	thriving	BSD	projects	and	many	dead	GPL	ones.	It's	always	wrong	to	generalize.	A	project	will	thrive	or	die	for
many	reasons.	However,	in	a	competitive	sport,	one	needs	every	advantage.

Chapter	3	-	The	ZeroMQ	Community

27

The	other	important	part	of	the	BSD	vs.	GPL	story	is	what	I	call	"leakage",	which	is	the	effect	of	pouring	water	into	a	pot	with	a	small
but	real	hole	in	the	bottom.

Eat	Me

Here	is	a	story.	It	happened	to	the	eldest	brother-in-law	of	the	cousin	of	a	friend	of	mine's	colleague	at	work.	His	name	was,	and	still	is,
Patrick.

Patrick	was	a	computer	scientist	with	a	PhD	in	advanced	network	topologies.	He	spent	two	years	and	his	savings	building	a	new
product,	and	choose	the	BSD	license	because	he	believed	that	would	get	him	more	adoption.	He	worked	in	his	attic,	at	great	personal
cost,	and	proudly	published	his	work.	People	applauded,	for	it	was	truly	fantastic,	and	his	mailing	lists	were	soon	abuzz	with	activity
and	patches	and	happy	chatter.	Many	companies	told	him	how	they	were	saving	millions	using	his	work.	Some	of	them	even	paid	him
for	consultancy	and	training.	He	was	invited	to	speak	at	conferences	and	started	collecting	badges	with	his	name	on	them.	He	started	a
small	business,	hired	a	friend	to	work	with	him,	and	dreamed	of	making	it	big.

Then	one	day,	someone	pointed	him	to	a	new	project,	GPL	licensed,	which	had	forked	his	work	and	was	improving	on	it.	He	was
irritated	and	upset,	and	asked	how	people--fellow	open	sourcers,	no	less!--would	so	shamelessly	steal	his	code.	There	were	long
arguments	on	the	list	about	whether	it	was	even	legal	to	relicense	their	BSD	code	as	GPL	code.	Turned	out,	it	was.	He	tried	to	ignore	the
new	project,	but	then	he	soon	realized	that	new	patches	coming	from	that	project	couldn't	even	be	merged	back	into	his	work!

Worse,	the	GPL	project	got	popular	and	some	of	his	core	contributors	made	first	small,	and	then	larger	patches	to	it.	Again,	he	couldn't
use	those	changes,	and	he	felt	abandoned.	Patrick	went	into	a	depression,	his	girlfriend	left	him	for	an	international	currency	dealer
called,	weirdly,	Patrice,	and	he	stopped	all	work	on	the	project.	He	felt	betrayed,	and	utterly	miserable.	He	fired	his	friend,	who	took	it
rather	badly	and	told	everyone	that	Patrick	was	a	closet	banjo	player.	Finally,	Patrick	took	a	job	as	a	project	manager	for	a	cloud
company,	and	by	the	age	of	forty,	he	had	stopped	programming	even	for	fun.

Poor	Patrick.	I	almost	felt	sorry	for	him.	Then	I	asked	him,	"Why	didn't	you	choose	the	GPL?"	"Because	it's	a	restrictive	viral	license",
he	replied.	I	told	him,	"You	may	have	a	PhD,	and	you	may	be	the	eldest	brother-in-law	of	the	cousin	of	a	friend	of	my	colleague,	but
you	are	an	idiot	and	Monique	was	smart	to	leave	you.	You	published	your	work	inviting	people	to	please	steal	your	code	as	long	as	they
kept	this	'please	steal	my	code'	statement	in	the	resulting	work",	and	when	people	did	exactly	that,	you	got	upset.	Worse,	you	were	a
hypocrite	because	when	they	did	it	in	secret,	you	were	happy,	but	when	they	did	it	openly,	you	felt	betrayed."

Seeing	your	hard	work	captured	by	a	smarter	team	and	then	used	against	you	is	enormously	painful,	so	why	even	make	that	possible?
Every	proprietary	project	that	uses	BSD	code	is	capturing	it.	A	public	GPL	fork	is	perhaps	more	humiliating,	but	it's	fully	self-inflicted.

BSD	is	like	food.	It	literally	(and	I	mean	that	metaphorically)	whispers	"eat	me"	in	the	little	voice	one	imagines	a	cube	of	cheese	might
use	when	it's	sitting	next	to	an	empty	bottle	of	the	best	beer	in	the	world,	which	is	of	course	Orval,	brewed	by	an	ancient	and	almost
extinct	order	of	silent	Belgian	monks	called	Les	Gars	Labas	Qui	Fabrique	l'Orval.	The	BSD	license,	like	its	near	clone	MIT/X11,	was
designed	specifically	by	a	university	(Berkeley)	with	no	profit	motive	to	leak	work	and	effort.	It	is	a	way	to	push	subsidized	technology
at	below	its	cost	price,	a	dumping	of	under-priced	code	in	the	hope	that	it	will	break	the	market	for	others.	BSD	is	an	excellent	strategic
tool,	but	only	if	you're	a	large	well-funded	institution	that	can	afford	to	use	Option	One.	The	Apache	license	is	BSD	in	a	suit.

For	us	small	businesses	who	aim	our	investments	like	precious	bullets,	leaking	work	and	effort	is	unacceptable.	Breaking	the	market	is
great,	but	we	cannot	afford	to	subsidize	our	competitors.	The	BSD	networking	stack	ended	up	putting	Windows	on	the	Internet.	We
cannot	afford	battles	with	those	we	should	naturally	be	allies	with.	We	cannot	afford	to	make	fundamental	business	errors	because	in	the
end,	that	means	we	have	to	fire	people.

It	comes	down	to	behavioral	economics	and	game	theory.	The	license	we	choose	modifies	the	economics	of	those	who	use	our	work.	In
the	software	industry,	there	are	friends,	foes,	and	food.	BSD	makes	most	people	see	us	as	lunch.	Closed	source	makes	most	people	see
us	as	enemies	(do	you	like	paying	people	for	software?)	GPL,	however,	makes	most	people,	with	the	exception	of	the	Patricks	of	the
world,	our	allies.	Any	fork	of	ZeroMQ	is	license	compatible	with	ZeroMQ,	to	the	point	where	we	encourage	forks	as	a	valuable	tool	for
experimentation.	Yes,	it	can	be	weird	to	see	someone	try	to	run	off	with	the	ball	but	here's	the	secret,	I	can	get	it	back	any	time	I	want.

The	Process

Chapter	3	-	The	ZeroMQ	Community

28

If	you've	accepted	my	thesis	up	to	now,	great!	Now,	I'll	explain	the	rough	process	by	which	we	actually	build	an	open	source
community.	This	was	how	we	built	or	grew	or	gently	steered	the	ZeroMQ	community	into	existence.

Your	goal	as	leader	of	a	community	is	to	motivate	people	to	get	out	there	and	explore;	to	ensure	they	can	do	so	safely	and	without
disturbing	others;	to	reward	them	when	they	make	successful	discoveries;	and	to	ensure	they	share	their	knowledge	with	everyone	else
(and	not	because	we	ask	them,	not	because	they	feel	generous,	but	because	it's	The	Law).

It	is	an	iterative	process.	You	make	a	small	product,	at	your	own	cost,	but	in	public	view.	You	then	build	a	small	community	around	that
product.	If	you	have	a	small	but	real	hit,	the	community	then	helps	design	and	build	the	next	version,	and	grows	larger.	And	then	that
community	builds	the	next	version,	and	so	on.	It's	evident	that	you	remain	part	of	the	community,	maybe	even	a	majority	contributor,
but	the	more	control	you	try	to	assert	over	the	material	results,	the	less	people	will	want	to	participate.	Plan	your	own	retirement	well
before	someone	decides	you	are	their	next	problem.

Crazy,	Beautiful,	and	Easy
You	need	a	goal	that's	crazy	and	simple	enough	to	get	people	out	of	bed	in	the	morning.	Your	community	has	to	attract	the	very	best
people	and	that	demands	something	special.	With	ZeroMQ,	we	said	we	were	going	to	make	"the	Fastest.	Messaging.	Ever.",	which
qualifies	as	a	good	motivator.	If	we'd	said,	we're	going	to	make	"a	smart	transport	layer	that'll	connect	your	moving	pieces	cheaply	and
flexibly	across	your	enterprise",	we'd	have	failed.

Then	your	work	must	be	beautiful,	immediately	useful,	and	attractive.	Your	contributors	are	users	who	want	to	explore	just	a	little
beyond	where	they	are	now.	Make	it	simple,	elegant,	and	brutally	clean.	The	experience	when	people	run	or	use	your	work	should	be	an
emotional	one.	They	should	feel	something,	and	if	you	accurately	solved	even	just	one	big	problem	that	until	then	they	didn't	quite
realize	they	faced,	you'll	have	a	small	part	of	their	soul.

It	must	be	easy	to	understand,	use,	and	join.	Too	many	projects	have	barriers	to	access:	put	yourself	in	the	other	person's	mind	and	see
all	the	reasons	they	come	to	your	site,	thinking	"Um,	interesting	project,	but..."	and	then	leave.	You	want	them	to	stay	and	try	it,	just
once.	Use	GitHub	and	put	the	issue	tracker	right	there.

If	you	do	these	things	well,	your	community	will	be	smart	but	more	importantly,	it	will	be	intellectually	and	geographically	diverse.
This	is	really	important.	A	group	of	like-minded	experts	cannot	explore	the	problem	landscape	well.	They	tend	to	make	big	mistakes.
Diversity	beats	education	any	time.

Stranger,	Meet	Stranger

How	much	up-front	agreement	do	two	people	need	to	work	together	on	something?	In	most	organizations,	a	lot.	But	you	can	bring	this
cost	down	to	near-zero,	and	then	people	can	collaborate	without	having	ever	met,	done	a	phone	conference,	meeting,	or	business	trip	to
discuss	Roles	and	Responsibilities	over	way	too	many	bottles	of	cheap	Korean	rice	wine.

You	need	well-written	rules	that	are	designed	by	cynical	people	like	me	to	force	strangers	into	mutually	beneficial	collaboration	instead
of	conflict.	The	GPL	is	a	good	start.	GitHub	and	its	fork/merge	strategy	is	a	good	follow-up.	And	then	you	want	something	like	our	C4
rulebook	to	control	how	work	actually	happens.

C4	(which	I	now	use	for	every	new	open	source	project)	has	detailed	and	tested	answers	to	a	lot	of	common	mistakes	people	make,	such
as	the	sin	of	working	offline	in	a	corner	with	others	"because	it's	faster".	Transparency	is	essential	to	get	trust,	which	is	essential	to	get
scale.	By	forcing	every	single	change	through	a	single	transparent	process,	you	build	real	trust	in	the	results.

Another	cardinal	sin	that	many	open	source	developers	make	is	to	place	themselves	above	others.	"I	founded	this	project	thus	my
intellect	is	superior	to	that	of	others".	It's	not	just	immodest	and	rude,	and	usually	inaccurate,	it's	also	poor	business.	The	rules	must
apply	equally	to	everyone,	without	distinction.	You	are	part	of	the	community.	Your	job,	as	founder	of	a	project,	is	not	to	impose	your
vision	of	the	product	over	others,	but	to	make	sure	the	rules	are	good,	honest,	and	enforced.

Infinite	Property

Chapter	3	-	The	ZeroMQ	Community

29

http://rfc.zeromq.org/spec:42

One	of	the	saddest	myths	of	the	knowledge	business	is	that	ideas	are	a	sensible	form	of	property.	It's	medieval	nonsense	that	should
have	been	junked	along	with	slavery,	but	sadly	it's	still	making	too	many	powerful	people	too	much	money.

Ideas	are	cheap.	What	does	work	sensibly	as	property	is	the	hard	work	we	do	in	building	a	market.	"You	eat	what	you	kill"	is	the	right
model	for	encouraging	people	to	work	hard.	Whether	it's	moral	authority	over	a	project,	money	from	consulting,	or	the	sale	of	a
trademark	to	some	large,	rich	firm:	if	you	make	it,	you	own	it.	But	what	you	really	own	is	"footfall",	participants	in	your	project,	which
ultimately	defines	your	power.

To	do	this	requires	infinite	free	space.	Thankfully,	GitHub	solved	this	problem	for	us,	for	which	I	will	die	a	grateful	person	(there	are
many	reasons	to	be	grateful	in	life,	which	I	won't	list	here	because	we	only	have	a	hundred	or	so	pages	left,	but	this	is	one	of	them).

You	cannot	scale	a	single	project	with	many	owners	like	you	can	scale	a	collection	of	many	small	projects,	each	with	fewer	owners.
When	we	embrace	forks,	a	person	can	become	an	"owner"	with	a	single	click.	Now	they	just	have	to	convince	others	to	join	by
demonstrating	their	unique	value.

So	in	ZeroMQ,	we	aimed	to	make	it	easy	to	write	bindings	on	top	of	the	core	library,	and	we	stopped	trying	to	make	those	bindings
ourselves.	This	created	space	for	others	to	make	those,	become	their	owners,	and	get	that	credit.

Care	and	Feeding
I	wish	a	community	could	be	100%	self-steering,	and	perhaps	one	day	this	will	work,	but	today	it's	not	the	case.	We're	very	close	with
ZeroMQ,	but	from	my	experience	a	community	needs	four	types	of	care	and	feeding:

First,	simply	because	most	people	are	too	nice,	we	need	some	kind	of	symbolic	leadership	or	owners	who	provide	ultimate
authority	in	case	of	conflict.	Usually	it's	the	founders	of	the	community.	I've	seen	it	work	with	self-elected	groups	of	"elders",	but
old	men	like	to	talk	a	lot.	I've	seen	communities	split	over	the	question	"who	is	in	charge?",	and	setting	up	legal	entities	with
boards	and	such	seems	to	make	arguments	over	control	worse,	not	better.	Maybe	because	there	seems	to	be	more	to	fight	over.	One
of	the	real	benefits	of	free	software	is	that	it's	always	remixable,	so	instead	of	fighting	over	a	pie,	one	simply	forks	the	pie.

Second,	communities	need	living	rules,	and	thus	they	need	a	lawyer	able	to	formulate	and	write	these	down.	Rules	are	critical;
when	done	right,	they	remove	friction.	When	done	wrong,	or	neglected,	we	see	real	friction	and	argument	that	can	drive	away	the
nice	majority,	leaving	the	argumentative	core	in	charge	of	the	burning	house.	One	thing	I've	tried	to	do	with	the	ZeroMQ	and
previous	communities	is	create	reusable	rules,	which	perhaps	means	we	don't	need	lawyers	as	much.

Thirdly,	communities	need	some	kind	of	financial	backing.	This	is	the	jagged	rock	that	breaks	most	ships.	If	you	starve	a
community,	it	becomes	more	creative	but	the	core	contributors	burn	out.	If	you	pour	too	much	money	into	it,	you	attract	the
professionals,	who	never	say	"no",	and	the	community	loses	its	diversity	and	creativity.	If	you	create	a	fund	for	people	to	share,
they	will	fight	(bitterly)	over	it.	With	ZeroMQ,	we	(iMatix)	spend	our	time	and	money	on	marketing	and	packaging	(like	this
book),	and	the	basic	care,	like	bug	fixes,	releases,	and	websites.

Lastly,	sales	and	commercial	mediation	are	important.	There	is	a	natural	market	between	expert	contributors	and	customers,	but
both	are	somewhat	incompetent	at	talking	to	each	other.	Customers	assume	that	support	is	free	or	very	cheap	because	the	software
is	free.	Contributors	are	shy	at	asking	a	fair	rate	for	their	work.	It	makes	for	a	difficult	market.	A	growing	part	of	my	work	and	my
firm's	profits	is	simply	connecting	ZeroMQ	users	who	want	help	with	experts	from	the	community	able	to	provide	it,	and	ensuring
both	sides	are	happy	with	the	results.

I've	seen	communities	of	brilliant	people	with	noble	goals	dying	because	the	founders	got	some	or	all	of	these	four	things	wrong.	The
core	problem	is	that	you	can't	expect	consistently	great	leadership	from	any	one	company,	person,	or	group.	What	works	today	often
won't	work	tomorrow,	yet	structures	become	more	solid,	not	more	flexible,	over	time.

The	best	answer	I	can	find	is	a	mix	of	two	things.	One,	the	GPL	and	its	guarantee	of	remixability.	No	matter	how	bad	the	authority,	no
matter	how	much	they	try	to	privatize	and	capture	the	community's	work,	if	it's	GPL	licensed,	that	work	can	walk	away	and	find	a	better
authority.	Before	you	say,	"all	open	source	offers	this,"	think	it	through.	I	can	kill	a	BSD-licensed	project	by	hiring	the	core	contributors
and	not	releasing	any	new	patches.	But	even	with	a	billion	of	dollars,	I	cannot	kill	a	GPL-licensed	project.	Two,	the	philosophical
anarchist	model	of	authority,	which	is	that	we	choose	it,	it	does	not	own	us.

Chapter	3	-	The	ZeroMQ	Community

30

Chapter	3	-	The	ZeroMQ	Community

31

Chapter	4.	The	ZeroMQ	Process:	C4
When	we	say	ZeroMQ	we	sometimes	mean	libzmq,	the	core	library.	In	early	2012,	we	synthesized	the	libzmq	process	into	a	formal

and	reusable	protocol	for	collaboration	that	we	called	the	Collective	Code	Construction	Contract,	or	C4.	You	can	see	this	as	a	layer
above	the	license	(e.g.	MPLv2).	These	are	our	rules,	and	I'll	explain	the	reasoning	behind	each	one.

C4	is	an	evolution	of	the	GitHub	Fork	+	Pull	Model.	You	may	get	the	feeling	I'm	a	fan	of	git	and	GitHub.	This	would	be	accurate:	these
two	tools	have	made	such	a	positive	impact	on	our	work	over	the	last	years,	especially	when	it	comes	to	building	community.

Language

The	key	words	"MUST",	"MUST	NOT",	"REQUIRED",	"SHALL",	"SHALL	NOT",	"SHOULD",	"SHOULD	NOT",
"RECOMMENDED",	"MAY",	and	"OPTIONAL"	in	this	document	are	to	be	interpreted	as	described	in	RFC	2119.

By	starting	with	the	RFC	2119	language,	the	C4	text	makes	very	clear	its	intention	to	act	as	a	protocol	rather	than	a	randomly	written	set
of	recommendations.	A	protocol	is	a	contract	between	parties	that	defines	the	rights	and	obligations	of	each	party.	These	can	be	peers	in
a	network	or	they	can	be	strangers	working	in	the	same	project.

I	think	C4	is	the	first	time	anyone	has	attempted	to	codify	a	community's	rulebook	as	a	formal	and	reusable	protocol	spec.	Previously,
our	rules	were	spread	out	over	several	wiki	pages,	and	were	quite	specific	to	libzmq	in	many	ways.	But	experience	teaches	us	that	the

more	formal,	accurate,	and	reusable	the	rules,	the	easier	it	is	for	strangers	to	collaborate	up-front.	And	less	friction	means	a	more
scalable	community.	At	the	time	of	C4,	we	also	had	some	disagreement	in	the	libzmq	project	over	precisely	what	process	we	were

using.	Not	everyone	felt	bound	by	the	same	rules.	Let's	just	say	some	people	felt	they	had	a	special	status,	which	created	friction	with
the	rest	of	the	community.	So	codification	made	things	clear.

It's	easy	to	use	C4:	just	host	your	project	on	GitHub,	get	one	other	person	to	join,	and	open	the	floor	to	pull	requests.	In	your	README,
put	a	link	to	C4	and	that's	it.	We've	done	this	in	quite	a	few	projects	and	it	does	seem	to	work.	I've	been	pleasantly	surprised	a	few	times
just	applying	these	rules	to	my	own	work,	like	CZMQ.	None	of	us	are	so	amazing	that	we	can	work	without	others.

Goals
C4	is	meant	to	provide	a	reusable	optimal	collaboration	model	for	open	source	software	projects.

The	short	term	reason	for	writing	C4	was	to	end	arguments	over	the	libzmq	contribution	process.	The	dissenters	went	off	elsewhere.

The	ZeroMQ	community	blossomed	smoothly	and	easily,	as	I'd	predicted.	Most	people	were	surprised,	but	gratified.	There's	been	no
real	criticisms	of	C4	except	its	branching	policy,	which	I'll	come	to	later	as	it	deserves	its	own	discussion.

There's	a	reason	I'm	reviewing	history	here:	as	founder	of	a	community,	you	are	asking	people	to	invest	in	your	property,	trademark,	and
branding.	In	return,	and	this	is	what	we	do	with	ZeroMQ,	you	can	use	that	branding	to	set	a	bar	for	quality.	When	you	download	a
product	labeled	"ZeroMQ",	you	know	that	it's	been	produced	to	certain	standards.	It's	a	basic	rule	of	quality:	write	down	your	process;
otherwise	you	cannot	improve	it.	Our	processes	aren't	perfect,	nor	can	they	ever	be.	But	any	flaw	in	them	can	be	fixed,	and	tested.

Making	C4	reusable	is	therefore	really	important.	To	learn	more	about	the	best	possible	process,	we	need	to	get	results	from	the	widest
range	of	projects.

It	has	these	specific	goals:	To	maximize	the	scale	of	the	community	around	a	project,	by	reducing	the	friction	for	new
Contributors	and	creating	a	scaled	participation	model	with	strong	positive	feedbacks;

The	number	one	goal	is	size	and	health	of	the	community--not	technical	quality,	not	profits,	not	performance,	not	market	share.	The
goal	is	simply	the	number	of	people	who	contribute	to	the	project.	The	science	here	is	simple:	the	larger	the	community,	the	more
accurate	the	results.

To	relieve	dependencies	on	key	individuals	by	separating	different	skill	sets	so	that	there	is	a	larger	pool	of	competence	in	any
required	domain;

Chapter	4	-	The	ZeroMQ	Process:	C4

32

http://rfc.zeromq.org/spec:42
http://help.github.com/send-pull-requests/
https://github.com/zeromq/libzmq/graphs/contributors

Perhaps	the	worst	problem	we	faced	in	libzmq	was	dependence	on	people	who	could	understand	the	code,	manage	GitHub	branches,

and	make	clean	releases--all	at	the	same	time.	It's	like	looking	for	athletes	who	can	run	marathons	and	sprint,	swim,	and	also	lift
weights.	We	humans	are	really	good	at	specialization.	Asking	us	to	be	really	good	at	two	contradictory	things	reduces	the	number	of
candidates	sharply,	which	is	a	Bad	Thing	for	any	project.	We	had	this	problem	severely	in	libzmq	in	2009	or	so,	and	fixed	it	by

splitting	the	role	of	maintainer	into	two:	one	person	makes	patches	and	another	makes	releases.

To	allow	the	project	to	develop	faster	and	more	accurately,	by	increasing	the	diversity	of	the	decision	making	process;

This	is	theory--not	fully	proven,	but	not	falsified.	The	diversity	of	the	community	and	the	number	of	people	who	can	weigh	in	on
discussions,	without	fear	of	being	criticized	or	dismissed,	the	faster	and	more	accurately	the	software	develops.	Speed	is	quite	subjective
here.	Going	very	fast	in	the	wrong	direction	is	not	just	useless,	it's	actively	damaging	(and	we	suffered	a	lot	of	that	in	libzmq	before

we	switched	to	C4).

To	support	the	natural	life	cycle	of	project	versions	from	experimental	through	to	stable,	by	allowing	safe	experimentation,	rapid
failure,	and	isolation	of	stable	code;

It's	quite	an	interesting	effect	of	the	process:	the	git	master	is	almost	always	perfectly	stable.	This	has	to	do	with	the	size	of	changes	and
their	latency,	i.e.,	the	time	between	someone	writing	the	code	and	someone	actually	using	it	fully.	However,	the	healthy	design	learning
process	tends	to	cycle	through	drafts	until	becoming	stable,	and	inviolable.

To	reduce	the	internal	complexity	of	project	repositories,	thus	making	it	easier	for	Contributors	to	participate	and	reducing	the
scope	for	error;

Curious	observation:	people	who	thrive	in	complex	situations	like	to	create	complexity	because	it	keeps	their	value	high.	It's	the	Cobra
Effect	(Google	it).	Git	made	branches	easy	and	left	us	with	the	all	too	common	syndrome	of	"git	is	easy	once	you	understand	that	a	git
branch	is	just	a	folded	five-dimensional	lepton	space	that	has	a	detached	history	with	no	intervening	cache".	Developers	should	not	be
made	to	feel	stupid	by	their	tools.	I've	seen	too	many	top-class	developers	confused	by	repository	structures	to	accept	conventional
wisdom	on	git	branches.	We'll	come	back	to	dispose	of	git	branches	shortly,	dear	reader.

To	enforce	collective	ownership	of	the	project,	which	increases	economic	incentive	to	Contributors	and	reduces	the	risk	of	hijack
by	hostile	entities.

Ultimately,	we're	economic	creatures,	and	the	sense	that	"we	own	this,	and	our	work	can	never	be	used	against	us"	makes	it	much	easier
for	people	to	invest	in	an	open	source	project	like	ZeroMQ.	And	it	can't	be	just	a	feeling,	it	has	to	be	real.	There	are	a	number	of	aspects
to	making	collective	ownership	work,	we'll	see	these	one-by-one	as	we	go	through	C4.

Preliminaries

The	project	SHALL	use	the	git	distributed	revision	control	system.

Git	has	its	faults.	Its	command-line	API	is	horribly	inconsistent,	and	it	has	a	complex,	messy	internal	model	that	it	shoves	in	your	face	at
the	slightest	provocation.	But	despite	doing	its	best	to	make	its	users	feel	stupid,	git	does	its	job	really,	really	well.	More	pragmatically,
I've	found	that	if	you	stay	away	from	certain	areas	(branches!),	people	learn	git	rapidly	and	don't	make	many	mistakes.	That	works	for
me.

The	project	SHALL	be	hosted	on	github.com	or	equivalent,	herein	called	the	"Platform".

I'm	sure	one	day	some	large	firm	will	buy	GitHub	and	break	it,	and	another	platform	will	rise	in	its	place.	Until	then,	Github	serves	up	a
near-perfect	set	of	minimal,	fast,	simple	tools.	I've	thrown	hundreds	of	people	at	it,	and	they	all	stick	like	flies	stuck	in	a	dish	of	honey.

The	project	SHALL	use	the	Platform	issue	tracker.

We	made	the	mistake	in	libzmq	of	switching	to	Jira	because	we	hadn't	learned	yet	how	to	properly	use	the	GitHub	issue	tracker.	Jira	is

a	great	example	of	how	to	turn	something	useful	into	a	complex	mess	because	the	business	depends	on	selling	more	"features".	But
even	without	criticizing	Jira,	keeping	the	issue	tracker	on	the	same	platform	means	one	less	UI	to	learn,	one	less	login,	and	smooth
integration	between	issues	and	patches.

The	project	SHOULD	have	clearly	documented	guidelines	for	code	style.

Chapter	4	-	The	ZeroMQ	Process:	C4

33

This	is	a	protocol	plug-in:	insert	code	style	guidelines	here.	If	you	don't	document	the	code	style	you	use,	you	have	no	basis	except
prejudice	to	reject	patches.

A	"Contributor"	is	a	person	who	wishes	to	provide	a	patch,	being	a	set	of	commits	that	solve	some	clearly	identified	problem.	A
"Maintainer"	is	a	person	who	merge	patches	to	the	project.	Maintainers	are	not	developers;	their	job	is	to	enforce	process.

Now	we	move	on	to	definitions	of	the	parties,	and	the	splitting	of	roles	that	saved	us	from	the	sin	of	structural	dependency	on	rare
individuals.	This	worked	well	in	libzmq,	but	as	you	will	see	it	depends	on	the	rest	of	the	process.	C4	isn't	a	buffet;	you	will	need	the

whole	process	(or	something	very	like	it),	or	it	won't	hold	together.

Contributors	SHALL	NOT	have	commit	access	to	the	repository	unless	they	are	also	Maintainers.	Maintainers	SHALL	have
commit	access	to	the	repository.

What	we	wanted	to	avoid	was	people	pushing	their	changes	directly	to	master.	This	was	the	biggest	source	of	trouble	in	libzmq

historically:	large	masses	of	raw	code	that	took	months	or	years	to	fully	stabilize.	We	eventually	followed	other	ZeroMQ	projects	like
PyZMQ	in	using	pull	requests.	We	went	further,	and	stipulated	that	all	changes	had	to	follow	the	same	path.	No	exceptions	for	"special
people".

Everyone,	without	distinction	or	discrimination,	SHALL	have	an	equal	right	to	become	a	Contributor	under	the	terms	of	this
contract.

We	had	to	state	this	explicitly.	It	used	to	be	that	the	libzmq	maintainers	would	reject	patches	simply	because	they	didn't	like	them.

Now,	that	may	sound	reasonable	to	the	author	of	a	library	(though	libzmq	was	not	written	by	any	one	person),	but	let's	remember	our

goal	of	creating	a	work	that	is	owned	by	as	many	people	as	possible.	Saying	"I	don't	like	your	patch	so	I'm	going	to	reject	it"	is
equivalent	to	saying,	"I	claim	to	own	this	and	I	think	I'm	better	than	you,	and	I	don't	trust	you".	Those	are	toxic	messages	to	give	to
others	who	are	thinking	of	becoming	your	co-investors.

I	think	this	fight	between	individual	expertise	and	collective	intelligence	plays	out	in	other	areas.	It	defined	Wikipedia,	and	still	does,	a
decade	after	that	work	surpassed	anything	built	by	small	groups	of	experts.	For	me,	we	make	software	by	slowly	synthesizing	the	most
accurate	knowledge,	much	as	we	make	Wikipedia	articles.

Licensing	and	Ownership
The	project	SHALL	use	a	share-alike	license	such	as	the	MPLv2,	or	a	GPLv3	variant	thereof	(GPL,	LGPL,	AGPL).

I've	already	explained	how	full	remixability	creates	better	scale	and	why	MPLv2	or	GPL	and	its	variants	seems	the	optimal	contract	for
remixable	software.	If	you're	a	large	business	aiming	to	dump	code	on	the	market,	you	won't	want	C4,	but	then	you	won't	really	care
about	community	either.

All	contributions	to	the	project	source	code	("patches")	SHALL	use	the	same	license	as	the	project.

This	removes	the	need	for	any	specific	license	or	contribution	agreement	for	patches.	You	fork	the	MPLv2	or	GPL	code,	you	publish
your	remixed	version	on	GitHub,	and	you	or	anyone	else	can	then	submit	that	as	a	patch	to	the	original	code.	BSD	doesn't	allow	this.
Any	work	that	contains	BSD	code	may	also	contain	unlicensed	proprietary	code	so	you	need	explicit	action	from	the	author	of	the	code
before	you	can	remix	it.

All	patches	are	owned	by	their	authors.	There	SHALL	NOT	be	any	copyright	assignment	process.

Here	we	come	to	the	key	reason	people	trust	their	investments	in	ZeroMQ:	it's	logistically	impossible	to	buy	the	copyrights	to	create	a
closed	source	competitor	to	ZeroMQ.	iMatix	can't	do	this	either.	And	the	more	people	that	send	patches,	the	harder	it	becomes.	ZeroMQ
isn't	just	free	and	open	today--this	specific	rule	means	it	will	remain	so	forever.	Note	that	it's	not	the	case	in	all	MPLv2/GPL	projects,
many	of	which	still	ask	for	copyright	transfer	back	to	the	maintainers.

Each	Contributor	SHALL	be	responsible	for	identifying	themselves	in	the	project	Contributor	list.

In	other	words,	the	maintainers	are	not	karma	accountants.	Anyone	who	wants	credit	has	to	claim	it	themselves.

Patch	Requirements

Chapter	4	-	The	ZeroMQ	Process:	C4

34

In	this	section,	we	define	the	obligations	of	the	contributor:	specifically,	what	constitutes	a	"valid"	patch,	so	that	maintainers	have	rules
they	can	use	to	accept	or	reject	patches.

Maintainers	and	Contributors	MUST	have	a	Platform	account	and	SHOULD	use	their	real	names	or	a	well-known	alias.

In	the	worst	case	scenario,	where	someone	has	submitted	toxic	code	(patented,	or	owned	by	someone	else),	we	need	to	be	able	to	trace
who	and	when,	so	we	can	remove	the	code.	Asking	for	real	names	or	a	well-known	alias	is	a	theoretical	strategy	for	reducing	the	risk	of
bogus	patches.	We	don't	know	if	this	actually	works	because	we	haven't	had	the	problem	yet.

A	patch	SHOULD	be	a	minimal	and	accurate	answer	to	exactly	one	identified	and	agreed	problem.

This	implements	the	Simplicity	Oriented	Design	process	that	I'll	come	to	later	in	this	chapter.	One	clear	problem,	one	minimal	solution,
apply,	test,	repeat.

A	patch	MUST	adhere	to	the	code	style	guidelines	of	the	project	if	these	are	defined.

This	is	just	sanity.	I've	spent	time	cleaning	up	other	peoples'	patches	because	they	insisted	on	putting	the	else	beside	the	if	instead	of

just	below	as	Nature	intended.	Consistent	code	is	healthier.

A	patch	MUST	adhere	to	the	"Evolution	of	Public	Contracts"	guidelines	defined	below.

Ah,	the	pain,	the	pain.	I'm	not	speaking	of	the	time	at	age	eight	when	I	stepped	on	a	plank	with	a	4-inch	nail	protruding	from	it.	That
was	relatively	OK.	I'm	speaking	of	2010-2011	when	we	had	multiple	parallel	releases	of	ZeroMQ,	each	with	different	incompatible
APIs	or	wire	protocols.	It	was	an	exercise	in	bad	rules,	pointlessly	enforced,	that	still	hurts	us	today.	The	rule	was,	"If	you	change	the
API	or	protocol,	you	SHALL	create	a	new	major	version".	Give	me	the	nail	through	the	foot;	that	hurt	less.

One	of	the	big	changes	we	made	with	C4	was	simply	to	ban,	outright,	this	kind	of	sanctioned	sabotage.	Amazingly,	it's	not	even	hard.
We	just	don't	allow	the	breaking	of	existing	public	contracts,	period,	unless	everyone	agrees,	in	which	case	no	period.	As	Linus
Torvalds	famously	put	it	on	23	December	2012,	"WE	DO	NOT	BREAK	USERSPACE!"

A	patch	SHALL	NOT	include	nontrivial	code	from	other	projects	unless	the	Contributor	is	the	original	author	of	that	code.

This	rule	has	two	effects.	The	first	is	that	it	forces	people	to	make	minimal	solutions	because	they	cannot	simply	import	swathes	of
existing	code.	In	the	cases	where	I've	seen	this	happen	to	projects,	it's	always	bad	unless	the	imported	code	is	very	cleanly	separated.
The	second	is	that	it	avoids	license	arguments.	You	write	the	patch,	you	are	allowed	to	publish	it	as	LGPL,	and	we	can	merge	it	back	in.
But	you	find	a	200-line	code	fragment	on	the	web,	and	try	to	paste	that,	we'll	refuse.

A	patch	MUST	compile	cleanly	and	pass	project	self-tests	on	at	least	the	principle	target	platform.

For	cross-platform	projects,	it	is	fair	to	ask	that	the	patch	works	on	the	development	box	used	by	the	contributor.

A	patch	commit	message	MUST	consist	of	a	single	short	(less	than	50	characters)	line	stating	the	problem	("Problem:	...")
being	solved,	followed	by	a	blank	line	and	then	the	proposed	solution	("Solution:	...").

This	is	a	good	format	for	commit	messages	that	fits	into	email	(the	first	line	becomes	the	subject,	and	the	rest	becomes	the	email	body).

A	"Correct	Patch"	is	one	that	satisfies	the	above	requirements.

Just	in	case	it	wasn't	clear,	we're	back	to	legalese	and	definitions.

Development	Process

In	this	section,	we	aim	to	describe	the	actual	development	process,	step-by-step.

Change	on	the	project	SHALL	be	governed	by	the	pattern	of	accurately	identifying	problems	and	applying	minimal,	accurate
solutions	to	these	problems.

This	is	a	unapologetic	ramming	through	of	thirty	years'	software	design	experience.	It's	a	profoundly	simple	approach	to	design:	make
minimal,	accurate	solutions	to	real	problems,	nothing	more	or	less.	In	ZeroMQ,	we	don't	have	feature	requests.	Treating	new	features
the	same	as	bugs	confuses	some	newcomers.	But	this	process	works,	and	not	just	in	open	source.	Enunciating	the	problem	we're	trying
to	solve,	with	every	single	change,	is	key	to	deciding	whether	the	change	is	worth	making	or	not.

Chapter	4	-	The	ZeroMQ	Process:	C4

35

To	request	changes,	a	user	SHOULD	log	an	issue	on	the	project	Platform	issue	tracker.

This	is	how	users	talk	to	contributors.	Track	your	problems,	so	others	can	(maybe)	try	to	solve	them	for	you.

The	user	or	Contributor	SHOULD	write	the	issue	by	describing	the	problem	they	face	or	observe.

"Problem:	we	need	feature	X.	Solution:	make	it"	is	not	a	good	issue.	"Problem:	user	cannot	do	common	tasks	A	or	B	except	by	using	a
complex	workaround.	Solution:	make	feature	X"	is	a	decent	explanation.	Because	everyone	I've	ever	worked	with	has	needed	to	learn
this,	it	seems	worth	restating:	document	the	real	problem	first,	solution	second.

The	user	or	Contributor	SHOULD	seek	consensus	on	the	accuracy	of	their	observation,	and	the	value	of	solving	the	problem.

And	because	many	apparent	problems	are	illusionary,	by	stating	the	problem	explicitly	we	give	others	a	chance	to	correct	our	logic.
"You're	only	using	A	and	B	a	lot	because	function	C	is	unreliable.	Solution:	make	function	C	work	properly."

Users	SHALL	NOT	log	feature	requests,	ideas,	suggestions,	or	any	solutions	to	problems	that	are	not	explicitly	documented	and
provable.

There	are	several	reasons	for	not	logging	ideas,	suggestions,	or	feature	requests.	In	our	experience,	these	just	accumulate	in	the	issue
tracker	until	someone	deletes	them.	But	more	profoundly,	when	we	treat	all	change	as	problem	solutions,	we	can	prioritize	trivially.
Either	the	problem	is	real	and	someone	wants	to	solve	it	now,	or	it's	not	on	the	table.	Thus,	wish	lists	are	off	the	table.

Thus,	the	release	history	of	the	project	SHALL	be	a	list	of	meaningful	issues	logged	and	solved.

I'd	love	the	GitHub	issue	tracker	to	simply	list	all	the	issues	we	solved	in	each	release.	Today	we	still	have	to	write	that	by	hand.	If	one
puts	the	issue	number	in	each	commit,	and	if	one	uses	the	GitHub	issue	tracker,	which	we	sadly	don't	yet	do	for	ZeroMQ,	this	release
history	is	easier	to	produce	mechanically.

To	work	on	an	issue,	a	Contributor	SHALL	fork	the	project	repository	and	then	work	on	their	forked	repository.

Here	we	explain	the	GitHub	fork	+	pull	request	model	so	that	newcomers	only	have	to	learn	one	process	(C4)	in	order	to	contribute.

To	submit	a	patch,	a	Contributor	SHALL	create	a	Platform	pull	request	back	to	the	project.

GitHub	has	made	this	so	simple	that	we	don't	need	to	learn	git	commands	to	do	it,	for	which	I'm	deeply	grateful.	Sometimes,	I'll	tell
people	who	I	don't	particularly	like	that	command-line	git	is	awesome	and	all	they	need	to	do	is	learn	git's	internal	model	in	detail
before	trying	to	use	it	on	real	work.	When	I	see	them	several	months	later	they	look...	changed.

A	Contributor	SHALL	NOT	commit	changes	directly	to	the	project.

Anyone	who	submits	a	patch	is	a	contributor,	and	all	contributors	follow	the	same	rules.	No	special	privileges	to	the	original	authors,
because	otherwise	we're	not	building	a	community,	only	boosting	our	egos.

To	discuss	a	patch,	people	MAY	comment	on	the	Platform	pull	request,	on	the	commit,	or	elsewhere.

Randomly	distributed	discussions	may	be	confusing	if	you're	walking	up	for	the	first	time,	but	GitHub	solves	this	for	all	current
participants	by	sending	emails	to	those	who	need	to	follow	what's	going	on.	We	had	the	same	experience	and	the	same	solution	in
Wikidot,	and	it	works.	There's	no	evidence	that	discussing	in	different	places	has	any	negative	effect.

To	accept	or	reject	a	patch,	a	Maintainer	SHALL	use	the	Platform	interface.

Working	via	the	GitHub	web	user	interface	means	pull	requests	are	logged	as	issues,	with	workflow	and	discussion.	I'm	sure	there	are
more	complex	ways	to	work.	Complexity	is	easy;	it's	simplicity	that's	incredibly	hard.

Maintainers	SHALL	NOT	accept	their	own	patches.

There	was	a	rule	we	defined	in	the	FFII	years	ago	to	stop	people	burning	out:	no	less	than	two	people	on	any	project.	One-person
projects	tend	to	end	in	tears,	or	at	least	bitter	silence.	We	have	quite	a	lot	of	data	on	burnout,	why	it	happens,	and	how	to	prevent	it	(even
cure	it).	I'll	explore	this	later	in	the	chapter,	because	if	you	work	with	or	on	open	source	you	need	to	be	aware	of	the	risks.	The	"no
merging	your	own	patch"	rule	has	two	goals.	First,	if	you	want	your	project	to	be	C4-certified,	you	have	to	get	at	least	one	other	person
to	help.	If	no	one	wants	to	help	you,	perhaps	you	need	to	rethink	your	project.	Second,	having	a	control	for	every	patch	makes	it	much
more	satisfying,	keeps	us	more	focused,	and	stops	us	breaking	the	rules	because	we're	in	a	hurry,	or	just	feeling	lazy.

Maintainers	SHALL	NOT	make	value	judgments	on	correct	patches.

Chapter	4	-	The	ZeroMQ	Process:	C4

36

We	already	said	this	but	it's	worth	repeating:	the	role	of	Maintainer	is	not	to	judge	a	patch's	substance,	only	its	technical	quality.	The
substantive	worth	of	a	patch	only	emerges	over	time:	people	use	it,	and	like	it,	or	they	do	not.	And	if	no	one	is	using	a	patch,	eventually
it'll	annoy	someone	else	who	will	remove	it,	and	no	one	will	complain.

Maintainers	SHALL	merge	correct	patches	rapidly.

There	is	a	criteria	I	call	change	latency,	which	is	the	round-trip	time	from	identifying	a	problem	to	testing	a	solution.	The	faster	the
better.	If	maintainers	cannot	respond	to	pull	requests	as	rapidly	as	people	expect,	they're	not	doing	their	job	(or	they	need	more	hands).

Maintainers	MAY	merge	incorrect	patches	from	other	Contributors	with	the	goals	of	(a)	ending	fruitless	discussions,	(b)
capturing	toxic	patches	in	the	historical	record,	(c)	engaging	with	the	Contributor	on	improving	their	patch	quality.

It	turns	out	that	accepting	imperfect	patches	rapidly,	which	I	call	"optimistic	merging",	works	better	all-round	than	insisting	that
contributors	deliver	perfect	work.

Standard	practice	(Pessimistic	Merging,	or	PM)	is	to	wait	until	continuous	integration	testing	(CI)	is	done,	then	do	a	code	review,	then
test	the	patch	on	a	branch,	and	then	provide	feedback	to	the	author.	The	author	can	then	fix	the	patch	and	the	test/review	cycle	starts
again.	At	this	stage	the	maintainer	can	(and	often	does)	make	value	judgments	such	as	"I	don't	like	how	you	do	this"	or	"this	doesn't	fit
with	our	project	vision."

In	the	worst	case,	patches	can	wait	for	weeks,	or	months,	to	be	accepted.	Or	they	are	never	accepted.	Or,	they	are	rejected	with	various
excuses	and	argumentation.

PM	is	how	most	projects	work,	and	I	believe	most	projects	get	it	wrong.	Let	me	start	by	listing	the	problems	PM	creates:

It	tells	new	contributors,	"guilty	until	proven	innocent,"	which	is	a	negative	message	that	creates	negative	emotions.	Contributors
who	feel	unwelcome	will	always	look	for	alternatives.	Driving	away	contributors	is	bad.	Making	slow,	quiet	enemies	is	worse.

It	gives	maintainers	power	over	new	contributors,	which	many	maintainers	abuse.	This	abuse	can	be	subconscious.	Yet	it	is
widespread.	Maintainers	inherently	strive	to	remain	important	in	their	project.	If	they	can	keep	out	potential	competitors	by
delaying	and	blocking	their	patches,	they	will.

It	opens	the	door	to	discrimination.	One	can	argue,	a	project	belongs	to	its	maintainers,	so	they	can	choose	who	they	want	to	work
with.	My	response	is:	projects	that	are	not	aggressively	inclusive	will	die,	and	deserve	to	die.

It	slows	down	the	learning	cycle.	Innovation	demands	rapid	experiment-failure-success	cycles.	Someone	identifies	a	problem	or
inefficiency	in	a	product.	Someone	proposes	a	fix.	The	fix	is	tested	and	works	or	fails.	We	have	learned	something	new.	The	faster
this	cycle	happens,	the	faster	and	more	accurately	the	project	can	move.

It	gives	outsiders	the	chance	to	troll	the	project.	It	is	a	simple	as	raising	an	objection	to	a	new	patch.	"I	don't	like	this	code."
Discussions	over	details	can	use	up	much	more	effort	than	writing	code.	It	is	far	cheaper	to	attack	a	patch	than	to	make	one.	These
economics	favor	the	trolls	and	punish	the	honest	contributors.

It	puts	the	burden	of	work	on	individual	contributors,	which	is	ironic	and	sad	for	open	source.	We	want	to	work	together	yet	we're
told	to	fix	our	work	alone.

Now	let's	see	how	this	works	when	we	use	Optimistic	Merging,	or	OM.	To	start	with,	understand	that	not	all	patches	nor	all	contributors
are	the	same.	We	see	at	least	four	main	cases	in	our	open	source	projects:

1.	 Good	contributors	who	know	the	rules	and	write	excellent,	perfect	patches.
2.	 Good	contributors	who	make	mistakes,	and	who	write	useful	yet	broken	patches.
3.	 Mediocre	contributors	who	make	patches	that	no-one	notices	or	cares	about.
4.	 Trollish	contributors	who	ignore	the	rules,	and	who	write	toxic	patches.

PM	assumes	all	patches	are	toxic	until	proven	good	(4).	Whereas	in	reality	most	patches	tend	to	be	useful,	and	worth	improving	(2).

Let's	see	how	each	scenario	works,	with	PM	and	OM:

1.	 PM:	depending	on	unspecified,	arbitrary	criteria,	patch	may	be	merged	rapidly	or	slowly.	At	least	sometimes,	a	good	contributor
will	be	left	with	bad	feelings.	OM:	good	contributors	feel	happy	and	appreciated,	and	continue	to	provide	excellent	patches	until
they	are	done	using	the	project.

2.	 PM:	contributor	retreats,	fixes	patch,	comes	back	somewhat	humiliated.	OM:	second	contributor	joins	in	to	help	first	fix	their

Chapter	4	-	The	ZeroMQ	Process:	C4

37

patch.	We	get	a	short,	happy	patch	party.	New	contributor	now	has	a	coach	and	friend	in	the	project.
3.	 PM:	we	get	a	flamewar	and	everyone	wonders	why	the	community	is	so	hostile.	OM:	the	mediocre	contributor	is	largely	ignored.

If	patch	needs	fixing,	it'll	happen	rapidly.	Contributor	loses	interest	and	eventually	the	patch	is	reverted.
4.	 PM:	we	get	a	flamewar	which	troll	wins	by	sheer	force	of	argument.	Community	explodes	in	fight-or-flee	emotions.	Bad	patches

get	pushed	through.	OM:	existing	contributor	immediately	reverts	the	patch.	There	is	no	discussion.	Troll	may	try	again,	and
eventually	may	be	banned.	Toxic	patches	remain	in	git	history	forever.

In	each	case,	OM	has	a	better	outcome	than	PM.

In	the	majority	case	(patches	that	need	further	work),	Optimistic	Merging	creates	the	conditions	for	mentoring	and	coaching.	And
indeed	this	is	what	we	see	in	ZeroMQ	projects,	and	is	one	of	the	reasons	they	are	such	fun	to	work	on.

The	user	who	created	an	issue	SHOULD	close	the	issue	after	checking	the	patch	is	successful.

When	one	person	opens	an	issue,	and	another	works	on	it,	it's	best	to	allow	the	original	person	to	close	the	issue.	That	acts	as	a	double-
check	that	the	issue	was	properly	resolved.

Any	Contributor	who	has	value	judgments	on	a	patch	SHOULD	express	these	via	their	own	patches.

In	essence,	the	goal	here	is	to	allow	users	to	try	patches	rather	than	to	spend	time	arguing	pros	and	cons.	As	easy	as	it	is	to	make	a	patch,
it's	as	easy	to	revert	it	with	another	patch.	You	might	think	this	would	lead	to	"patch	wars",	but	that	hasn't	happened.	We've	had	a
handful	of	cases	in	libzmq	where	patches	by	one	contributor	were	killed	by	another	person	who	felt	the	experimentation	wasn't	going

in	the	right	direction.	It	is	easier	than	seeking	up-front	consensus.

Maintainers	SHOULD	close	user	issues	that	are	left	open	without	action	for	an	uncomfortable	period	of	time.

Just	keep	the	issue	tracker	clean.

Branches	and	Releases

When	C4	is	working,	we	get	two	massive	simplifications	of	our	delivery	process.	One,	we	don't	need	or	use	branches.	Two,	we	deliver
from	master.

This	is	the	process	we	explain	in	this	section.

The	project	SHALL	have	one	branch	("master")	that	always	holds	the	latest	in-progress	version	and	SHOULD	always	build.

This	is	redundant	because	every	patch	always	builds	but	it's	worth	restating.	If	the	master	doesn't	build	(and	pass	its	tests),	someone
needs	waking	up.

The	project	SHALL	NOT	use	topic	branches	for	any	reason.	Personal	forks	MAY	use	topic	branches.

I'll	come	to	branches	soon.	In	short	(or	"tl;dr",	as	they	say	on	the	webs),	branches	make	the	repository	too	complex	and	fragile,	and
require	up-front	agreement,	all	of	which	are	expensive	and	avoidable.

To	make	a	stable	release	a	Maintainer	shall	tag	the	repository.	Stable	releases	SHALL	always	be	released	from	the	repository
master.

Evolution	of	Public	Contracts
By	"public	contracts",	I	mean	APIs	and	protocols.	Up	until	the	end	of	2011,	libzmq's	naturally	happy	state	was	marred	by	broken

promises	and	broken	contracts.	We	stopped	making	promises	(aka	"road	maps")	for	libzmq	completely,	and	our	dominant	theory	of

change	is	now	that	it	emerges	carefully	and	accurately	over	time.	At	a	2012	Chicago	meetup,	Garrett	Smith	and	Chuck	Remes	called
this	the	"drunken	stumble	to	greatness",	which	is	how	I	think	of	it	now.

We	stopped	breaking	public	contracts	simply	by	banning	the	practice.	Before	then	it	had	been	"OK"	(as	in	we	did	it	and	everyone
complained	bitterly,	and	we	ignored	them)	to	break	the	API	or	protocol	so	long	as	we	changed	the	major	version	number.	Sounds	fine,
until	you	get	ZeroMQ	v2.0,	v3.0,	and	v4.0	all	in	development	at	the	same	time,	and	not	speaking	to	each	other.

Chapter	4	-	The	ZeroMQ	Process:	C4

38

All	Public	Contracts	(APIs	or	protocols)	SHALL	be	documented.

You'd	think	this	was	a	given	for	professional	software	engineers	but	no,	it's	not.	So,	it's	a	rule.	You	want	C4	certification	for	your
project,	you	make	sure	your	public	contracts	are	documented.	No	"It's	specified	in	the	code"	excuses.	Code	is	not	a	contract.	(Yes,	I
intend	at	some	point	to	create	a	C4	certification	process	to	act	as	a	quality	indicator	for	open	source	projects.)

All	Public	Contracts	SHOULD	have	space	for	extensibility	and	experimentation.

Now,	the	real	thing	is	that	public	contracts	do	change.	It's	not	about	not	changing	them.	It's	about	changing	them	safely.	This	means
educating	(especially	protocol)	designers	to	create	that	space	up-front.

A	patch	that	modifies	a	stable	Public	Contract	SHOULD	not	break	existing	applications	unless	there	is	overriding	consensus	on
the	value	of	doing	this.

Sometimes	the	patch	is	fixing	a	bad	API	that	no	one	is	using.	It's	a	freedom	we	need,	but	it	should	be	based	on	consensus,	not	one
person's	dogma.	However,	making	random	changes	"just	because"	is	not	good.	In	ZeroMQ	v3.x,	did	we	benefit	from	renaming
ZMQ_NOBLOCK	to	ZMQ_DONTWAIT?	Sure,	it's	closer	to	the	POSIX	socket	recv()	call,	but	is	that	worth	breaking	thousands	of

applications?	No	one	ever	reported	it	as	an	issue.	To	misquote	Stallman:	"your	freedom	to	create	an	ideal	world	stops	one	inch	from	my
application."

A	patch	that	introduces	new	features	SHOULD	do	so	using	new	names	(a	new	contract).

We	had	the	experience	in	ZeroMQ	once	or	twice	of	new	features	using	old	names	(or	worse,	using	names	that	were	still	in	use
elsewhere).	ZeroMQ	v3.0	had	a	newly	introduced	"ROUTER"	socket	that	was	totally	different	from	the	existing	ROUTER	socket	in
2.x.	Dear	lord,	you	should	be	face-palming,	why?	The	reason:	apparently,	even	smart	people	sometimes	need	regulation	to	stop	them
doing	silly	things.

New	contracts	SHOULD	be	marked	as	"draft"	until	they	are	stable	and	used	by	real	users.

Old	contracts	SHOULD	be	deprecated	in	a	systematic	fashion	by	marking	new	contracts	as	"draft"	until	they	are	stable,	then
marking	the	old	contracts	as	"deprecated".

This	life	cycle	notation	has	the	great	benefit	of	actually	telling	users	what	is	going	on	with	a	consistent	direction.	"Draft"	means	"we
have	introduced	this	and	intend	to	make	it	stable	if	it	works".	It	does	not	mean,	"we	have	introduced	this	and	will	remove	it	at	any	time
if	we	feel	like	it".	One	assumes	that	code	that	survives	more	than	one	patch	cycle	is	meant	to	be	there.	"Deprecated"	means	"we	have
replaced	this	and	intend	to	remove	it".

Old	contracts	SHOULD	be	deprecated	in	a	systematic	fashion	by	marking	them	as	"deprecated"	and	replacing	them	with	new
contracts	as	needed.

When	sufficient	time	has	passed,	old	deprecated	contracts	SHOULD	be	removed.

In	theory	this	gives	applications	time	to	move	onto	stable	new	contracts	without	risk.	You	can	upgrade	first,	make	sure	things	work,	and
then,	over	time,	fix	things	up	to	remove	dependencies	on	deprecated	and	legacy	APIs	and	protocols.

Old	names	SHALL	NOT	be	reused	by	new	features.

Ah,	yes,	the	joy	when	ZeroMQ	v3.x	renamed	the	top-used	API	functions	(zmq_send[3]	and	zmq_recv[3])	and	then	recycled	the

old	names	for	new	methods	that	were	utterly	incompatible	(and	which	I	suspect	few	people	actually	use).	You	should	be	slapping
yourself	in	confusion	again,	but	really,	this	is	what	happened	and	I	was	as	guilty	as	anyone.	After	all,	we	did	change	the	version
number!	The	only	benefit	of	that	experience	was	to	get	this	rule.

Project	Administration

The	project	founders	SHALL	act	as	Administrators	to	manage	the	set	of	project	Maintainers.

Someone	needs	to	administer	the	project,	and	it	makes	sense	that	the	original	founders	start	this	ball	rolling.

The	Administrators	SHALL	ensure	their	own	succession	over	time	by	promoting	the	most	effective	Maintainers.

Chapter	4	-	The	ZeroMQ	Process:	C4

39

At	the	same	time,	as	founder	of	a	project	you	really	want	to	get	out	of	the	way	before	you	become	over-attached	to	it.	Promoting	the
most	active	and	consistent	maintainers	is	good	for	everyone.

A	new	Contributor	who	makes	correct	patches,	who	clearly	understands	the	project	goals,	and	the	process	SHOULD	be	invited
to	become	a	Maintainer.

Promote	your	contributors	rapidly,	when	they	show	they	get	it.	Anything	else	is	counter-productive.

Administrators	SHOULD	remove	Maintainers	who	are	inactive	for	an	extended	period	of	time,	or	who	repeatedly	fail	to	apply
this	process	accurately.

This	was	Ian	Barber's	suggestion:	we	need	a	way	to	crop	inactive	maintainers.	Originally	maintainers	were	self-elected	but	that	makes	it
hard	to	drop	troublemakers	(who	are	rare,	but	not	unknown).

Administrators	SHOULD	block	or	ban	"bad	actors"	who	cause	stress	and	pain	to	others	in	the	project.	This	should	be	done	after
public	discussion,	with	a	chance	for	all	parties	to	speak.	A	bad	actor	is	someone	who	repeatedly	ignores	the	rules	and	culture	of
the	project,	who	is	needlessly	argumentative	or	hostile,	or	who	is	offensive,	and	who	is	unable	to	self-correct	their	behavior	when
asked	to	do	so	by	others.

Now	and	then,	your	projects	will	attract	people	of	the	wrong	character.	You	will	get	better	at	seeing	these	people,	over	time.	C4	helps	in
two	ways.	One,	by	setting	out	strong	rules,	it	discourages	the	chaos-seekers	and	bullies,	who	cannot	tolerate	others'	rules.	Two,	it	gives
you	the	Administrator	the	power	to	ban	them.	I	like	to	give	such	people	time,	to	show	themselves,	and	get	their	patches	on	the	public
record	(a	reason	to	merge	bad	patches,	which	of	course	you	can	remove	after	a	suitable	pause).

Chapter	4	-	The	ZeroMQ	Process:	C4

40

Chapter	5.	Designing	for	Innovation
Let's	look	at	innovation,	which	Wikipedia	defines	as,	"the	development	of	new	values	through	solutions	that	meet	new	requirements,
inarticulate	needs,	or	old	customer	and	market	needs	in	value	adding	new	ways."	This	really	just	means	solving	problems	more	cheaply.
It	sounds	straight-forward,	but	the	history	of	collapsed	tech	giants	proves	that	it's	not.	I'll	try	to	explain	how	teams	so	often	get	it	wrong,
and	suggest	a	way	for	doing	innovation	right.

The	Tale	of	Two	Bridges

Two	old	engineers	were	talking	of	their	lives	and	boasting	of	their	greatest	projects.	One	of	the	engineers	explained	how	he	had
designed	one	of	the	greatest	bridges	ever	made.

"We	built	it	across	a	river	gorge,"	he	told	his	friend.	"It	was	wide	and	deep.	We	spent	two	years	studying	the	land,	and	choosing	designs
and	materials.	We	hired	the	best	engineers	and	designed	the	bridge,	which	took	another	five	years.	We	contracted	the	largest	engineering
firms	to	build	the	structures,	the	towers,	the	tollbooths,	and	the	roads	that	would	connect	the	bridge	to	the	main	highways.	Dozens	died
during	the	construction.	Under	the	road	level	we	had	trains,	and	a	special	path	for	cyclists.	That	bridge	represented	years	of	my	life."

The	second	man	reflected	for	a	while,	then	spoke.	"One	evening	me	and	a	friend	got	drunk	on	vodka,	and	we	threw	a	rope	across	a
gorge,"	he	said.	"Just	a	rope,	tied	to	two	trees.	There	were	two	villages,	one	at	each	side.	At	first,	people	pulled	packages	across	that
rope	with	a	pulley	and	string.	Then	someone	threw	a	second	rope,	and	built	a	foot	walk.	It	was	dangerous,	but	the	kids	loved	it.	A	group
of	men	then	rebuilt	that,	made	it	solid,	and	women	started	to	cross,	everyday,	with	their	produce.	A	market	grew	up	on	one	side	of	the
bridge,	and	slowly	that	became	a	large	town,	because	there	was	a	lot	of	space	for	houses.	The	rope	bridge	got	replaced	with	a	wooden
bridge,	to	allow	horses	and	carts	to	cross.	Then	the	town	built	a	real	stone	bridge,	with	metal	beams.	Later,	they	replaced	the	stone	part
with	steel,	and	today	there's	a	suspension	bridge	standing	in	that	same	spot."

The	first	engineer	was	silent.	"Funny	thing,"	he	said,	"my	bridge	was	demolished	about	ten	years	after	we	built	it.	Turns	out	it	was	built
in	the	wrong	place	and	no	one	wanted	to	use	it.	Some	guys	had	thrown	a	rope	across	the	gorge,	a	few	miles	further	downstream,	and
that's	where	everyone	went."

How	ZeroMQ	Lost	Its	Road	Map

Presenting	ZeroMQ	at	the	Mix-IT	conference	in	Lyon	in	early	2012,	I	was	asked	several	times	for	the	"road	map".	My	answer	was:
there	is	no	road	map	any	longer.	We	had	road	maps,	and	we	deleted	them.	Instead	of	a	few	experts	trying	to	lay	out	the	next	steps,	we
were	allowing	this	to	happen	organically.	The	audience	didn't	really	like	my	answer.	So	un-French.

However,	the	history	of	ZeroMQ	makes	it	quite	clear	why	road	maps	were	problematic.	In	the	beginning,	we	had	a	small	team	making
the	library,	with	few	contributors,	and	no	documented	road	map.	As	ZeroMQ	grew	more	popular	and	we	switched	to	more	contributors,
users	asked	for	road	maps.	So	we	collected	our	plans	together	and	tried	to	organize	them	into	releases.	Here,	we	wrote,	is	what	will
come	in	the	next	release.

As	we	rolled	out	releases,	we	hit	the	problem	that	it's	very	easy	to	promise	stuff,	and	rather	harder	to	make	it	as	planned.	For	one	thing,
much	of	the	work	was	voluntary,	and	it's	not	clear	how	you	force	volunteers	to	commit	to	a	road	map.	But	also,	priorities	can	shift
dramatically	over	time.	So	we	were	making	promises	we	could	not	keep,	and	the	real	deliveries	didn't	match	the	road	maps.

The	second	problem	was	that	by	defining	the	road	map,	we	in	effect	claimed	territory,	making	it	harder	for	others	to	participate.	People
do	prefer	to	contribute	to	changes	they	believe	were	their	idea.	Writing	down	a	list	of	things	to	do	turns	contribution	into	a	chore	rather
than	an	opportunity.

Finally,	we	saw	changes	in	ZeroMQ	that	were	quite	traumatic,	and	the	road	maps	didn't	help	with	this,	despite	a	lot	of	discussion	and
effort	to	"do	it	right".	Examples	of	this	were	incompatible	changes	in	APIs	and	protocols.	It	was	quite	clear	that	we	needed	a	different
approach	for	defining	the	change	process.

Chapter	5	-	Designing	for	Innovation

41

Software	engineers	don't	like	the	notion	that	powerful,	effective	solutions	can	come	into	existence	without	an	intelligent	designer
actively	thinking	things	through.	And	yet	no	one	in	that	room	in	Lyon	would	have	questioned	evolution.	A	strange	irony,	and	one	I
wanted	to	explore	further	as	it	underpins	the	direction	the	ZeroMQ	community	has	taken	since	the	start	of	2012.

In	the	dominant	theory	of	innovation,	brilliant	individuals	reflect	on	large	problem	sets	and	then	carefully	and	precisely	create	a
solution.	Sometimes	they	will	have	"eureka"	moments	where	they	"get"	brilliantly	simple	answers	to	whole	large	problem	sets.	The
inventor,	and	the	process	of	invention	are	rare,	precious,	and	can	command	a	monopoly.	History	is	full	of	such	heroic	individuals.	We
owe	them	our	modern	world.

Look	more	closely,	however,	and	you	will	see	that	the	facts	don't	match.	History	doesn't	show	lone	inventors.	It	shows	lucky	people
who	steal	or	claim	ownership	of	ideas	that	are	being	worked	on	by	many.	It	shows	brilliant	people	striking	lucky	once,	and	then
spending	decades	on	fruitless	and	pointless	quests.	The	best	known	large-scale	inventors	like	Thomas	Edison	were	in	fact	just	very	good
at	systematic	broad	research	done	by	large	teams.	It's	like	claiming	that	Steve	Jobs	invented	every	device	made	by	Apple.	It	is	a	nice
myth,	good	for	marketing,	but	utterly	useless	as	practical	science.

Recent	history,	much	better	documented	and	less	easy	to	manipulate,	shows	this	well.	The	Internet	is	surely	one	of	the	most	innovative
and	fast-moving	areas	of	technology,	and	one	of	the	best	documented.	It	has	no	inventor.	Instead,	it	has	a	massive	economy	of	people
who	have	carefully	and	progressively	solved	a	long	series	of	immediate	problems,	documented	their	answers,	and	made	those	available
to	all.	The	innovative	nature	of	the	Internet	comes	not	from	a	small,	select	band	of	Einsteins.	It	comes	from	RFCs	anyone	can	use	and
improve,	made	by	hundreds	and	thousands	of	smart,	but	not	uniquely	smart,	individuals.	It	comes	from	open	source	software	anyone
can	use	and	improve.	It	comes	from	sharing,	scale	of	community,	and	the	continuous	accretion	of	good	solutions	and	disposal	of	bad
ones.

Here	thus	is	an	alternative	theory	of	innovation:

1.	 There	is	an	infinite	problem/solution	terrain.
2.	 This	terrain	changes	over	time	according	to	external	conditions.
3.	 We	can	only	accurately	perceive	problems	to	which	we	are	close.
4.	 We	can	rank	the	cost/benefit	economics	of	problems	using	a	market	for	solutions.
5.	 There	is	an	optimal	solution	to	any	solvable	problem.
6.	 We	can	approach	this	optimal	solution	heuristically,	and	mechanically.
7.	 Our	intelligence	can	make	this	process	faster,	but	does	not	replace	it.

There	are	a	few	corollaries	to	this:

Individual	creativity	matters	less	than	process.	Smarter	people	may	work	faster,	but	they	may	also	work	in	the	wrong	direction.	It's
the	collective	vision	of	reality	that	keeps	us	honest	and	relevant.

We	don't	need	road	maps	if	we	have	a	good	process.	Functionality	will	emerge	and	evolve	over	time	as	solutions	compete	for
market	share.

We	don't	invent	solutions	so	much	as	discover	them.	All	sympathies	to	the	creative	soul.	It's	just	an	information	processing	machine
that	likes	to	polish	its	own	ego	and	collect	karma.

Intelligence	is	a	social	effect,	though	it	feels	personal.	A	person	cut	off	from	others	eventually	stops	thinking.	We	can	neither
collect	problems	nor	measure	solutions	without	other	people.

The	size	and	diversity	of	the	community	is	a	key	factor.	Larger,	more	diverse	communities	collect	more	relevant	problems,	and
solve	them	more	accurately,	and	do	this	faster,	than	a	small	expert	group.

So,	when	we	trust	the	solitary	experts,	they	make	classic	mistakes.	They	focus	on	ideas,	not	problems.	They	focus	on	the	wrong
problems.	They	make	misjudgments	about	the	value	of	solving	problems.	They	don't	use	their	own	work.

Can	we	turn	the	above	theory	into	a	reusable	process?	In	late	2011,	I	started	documenting	C4	and	similar	contracts,	and	using	them	both
in	ZeroMQ	and	in	closed	source	projects.	The	underlying	process	is	something	I	call	"Simplicity	Oriented	Design",	or	SOD.	This	is	a
reproducible	way	of	developing	simple	and	elegant	products.	It	organizes	people	into	flexible	supply	chains	that	are	able	to	navigate	a
problem	landscape	rapidly	and	cheaply.	They	do	this	by	building,	testing,	and	keeping	or	discarding	minimal	plausible	solutions,	called
"patches".	Living	products	consist	of	long	series	of	patches,	applied	one	atop	the	other.

Chapter	5	-	Designing	for	Innovation

42

SOD	is	relevant	first	because	it's	how	we	evolve	ZeroMQ.	It's	also	the	basis	for	the	design	process	we	use	to	develop	larger-scale
ZeroMQ	applications.	Of	course,	you	can	use	any	software	architecture	methodology	with	ZeroMQ.

To	best	understand	how	we	ended	up	with	SOD,	let's	look	at	the	alternatives.

Trash-Oriented	Design

The	most	popular	design	process	in	large	businesses	seems	to	be	Trash-Oriented	Design,	or	TOD.	TOD	feeds	off	the	belief	that	all	we
need	to	make	money	are	great	ideas.	It's	tenacious	nonsense,	but	a	powerful	crutch	for	people	who	lack	imagination.	The	theory	goes
that	ideas	are	rare,	so	the	trick	is	to	capture	them.	It's	like	non-musicians	being	awed	by	a	guitar	player,	not	realizing	that	great	talent	is
so	cheap	it	literally	plays	on	the	streets	for	coins.

The	main	output	of	TODs	is	expensive	"ideation":	concepts,	design	documents,	and	products	that	go	straight	into	the	trash	can.	It	works
as	follows:

The	Creative	People	come	up	with	long	lists	of	"we	could	do	X	and	Y".	I've	seen	endlessly	detailed	lists	of	everything	amazing	a
product	could	do.	We've	all	been	guilty	of	this.	Once	the	creative	work	of	idea	generation	has	happened,	it's	just	a	matter	of
execution,	of	course.

So	the	managers	and	their	consultants	pass	their	brilliant	ideas	to	designers	who	create	acres	of	preciously	refined	design
documents.	The	designers	take	the	tens	of	ideas	the	managers	came	up	with,	and	turn	them	into	hundreds	of	world-changing
designs.

These	designs	get	given	to	engineers	who	scratch	their	heads	and	wonder	who	the	heck	came	up	with	such	nonsense.	They	start	to
argue	back,	but	the	designs	come	from	up	high,	and	really,	it's	not	up	to	engineers	to	argue	with	creative	people	and	expensive
consultants.

So	the	engineers	creep	back	to	their	cubicles,	humiliated	and	threatened	into	building	the	gigantic	but	oh-so-elegant	junk	heap.	It	is
bone-breaking	work	because	the	designs	take	no	account	of	practical	costs.	Minor	whims	might	take	weeks	of	work	to	build.	As
the	project	gets	delayed,	the	managers	bully	the	engineers	into	giving	up	their	evenings	and	weekends.

Eventually,	something	resembling	a	working	product	makes	it	out	of	the	door.	It's	creaky	and	fragile,	complex	and	ugly.	The
designers	curse	the	engineers	for	their	incompetence	and	pay	more	consultants	to	put	lipstick	onto	the	pig,	and	slowly	the	product
starts	to	look	a	little	nicer.

By	this	time,	the	managers	have	started	to	try	to	sell	the	product	and	they	find,	shockingly,	that	no	one	wants	it.	Undaunted,	they
courageously	build	million-dollar	web	sites	and	ad	campaigns	to	explain	to	the	public	why	they	absolutely	need	this	product.	They
do	deals	with	other	businesses	to	force	the	product	on	the	lazy,	stupid,	and	ungrateful	market.

After	twelve	months	of	intense	marketing,	the	product	still	isn't	making	profits.	Worse,	it	suffers	dramatic	failures	and	gets	branded
in	the	press	as	a	disaster.	The	company	quietly	shelves	it,	fires	the	consultants,	buys	a	competing	product	from	a	small	startup	and
rebrands	that	as	its	own	Version	2.	Hundreds	of	millions	of	dollars	end	up	in	the	trash.

Meanwhile,	another	visionary	manager	somewhere	in	the	organization	drinks	a	little	too	much	tequila	with	some	marketing	people
and	has	a	Brilliant	Idea.

Trash-Oriented	Design	would	be	a	caricature	if	it	wasn't	so	common.	Something	like	19	out	of	20	market-ready	products	built	by	large
firms	are	failures	(yes,	87%	of	statistics	are	made	up	on	the	spot).	The	remaining	1	in	20	probably	only	succeeds	because	the
competitors	are	so	bad	and	the	marketing	is	so	aggressive.

The	main	lessons	of	TOD	are	quite	straightforward	but	hard	to	swallow.	They	are:

Ideas	are	cheap.	No	exceptions.	There	are	no	brilliant	ideas.	Anyone	who	tries	to	start	a	discussion	with	"oooh,	we	can	do	this	too!"
should	be	beaten	down	with	all	the	passion	one	reserves	for	traveling	evangelists.	It	is	like	sitting	in	a	cafe	at	the	foot	of	a
mountain,	drinking	a	hot	chocolate	and	telling	others,	"Hey,	I	have	a	great	idea,	we	can	climb	that	mountain!	And	build	a	chalet	on
top!	With	two	saunas!	And	a	garden!	Hey,	and	we	can	make	it	solar	powered!	Dude,	that's	awesome!	What	color	should	we	paint
it?	Green!	No,	blue!	OK,	go	and	make	it,	I'll	stay	here	and	make	spreadsheets	and	graphics!"

Chapter	5	-	Designing	for	Innovation

43

The	starting	point	for	a	good	design	process	is	to	collect	real	problems	that	confront	real	people.	The	second	step	is	to	evaluate
these	problems	with	the	basic	question,	"How	much	is	it	worth	to	solve	this	problem?"	Having	done	that,	we	can	collect	that	set	of
problems	that	are	worth	solving.

Good	solutions	to	real	problems	will	succeed	as	products.	Their	success	will	depend	on	how	good	and	cheap	the	solution	is,	and
how	important	the	problem	is	(and	sadly,	how	big	the	marketing	budgets	are).	But	their	success	will	also	depend	on	how	much	they
demand	in	effort	to	use--in	other	words,	how	simple	they	are.

Now,	after	slaying	the	dragon	of	utter	irrelevance,	we	attack	the	demon	of	complexity.

Complexity-Oriented	Design
Really	good	engineering	teams	and	small	firms	can	usually	build	decent	products.	But	the	vast	majority	of	products	still	end	up	being
too	complex	and	less	successful	than	they	might	be.	This	is	because	specialist	teams,	even	the	best,	often	stubbornly	apply	a	process	I
call	Complexity-Oriented	Design,	or	COD,	which	works	as	follows:

Management	correctly	identifies	some	interesting	and	difficult	problem	with	economic	value.	In	doing	so,	they	already	leapfrog
over	any	TOD	team.

The	team	with	enthusiasm	starts	to	build	prototypes	and	core	layers.	These	work	as	designed	and	thus	encouraged,	the	team	go	off
into	intense	design	and	architecture	discussions,	coming	up	with	elegant	schemas	that	look	beautiful	and	solid.

Management	comes	back	and	challenges	the	team	with	yet	more	difficult	problems.	We	tend	to	equate	cost	with	value,	so	the
harder	and	more	expensive	to	solve,	the	more	the	solution	should	be	worth,	in	their	minds.

The	team,	being	engineers	and	thus	loving	to	build	stuff,	build	stuff.	They	build	and	build	and	build	and	end	up	with	massive,
perfectly-designed	complexity.

The	products	go	to	market,	and	the	market	scratches	its	head	and	asks,	"Seriously,	is	this	the	best	you	can	do?"	People	do	use	the
products,	especially	if	they	aren't	spending	their	own	money	in	climbing	the	learning	curve.

Management	gets	positive	feedback	from	its	larger	customers,	who	share	the	same	idea	that	high	cost	(in	training	and	use)	means
high	value,	and	so	continues	to	push	the	process.

Meanwhile	somewhere	across	the	world,	a	small	team	is	solving	the	same	problem	using	a	better	process,	and	a	year	later	smashes
the	market	to	little	pieces.

COD	is	characterized	by	a	team	obsessively	solving	the	wrong	problems	in	a	form	of	collective	delusion.	COD	products	tend	to	be
large,	ambitious,	complex,	and	unpopular.	Much	open	source	software	is	the	output	of	COD	processes.	It	is	insanely	hard	for	engineers
to	stop	extending	a	design	to	cover	more	potential	problems.	They	argue,	"What	if	someone	wants	to	do	X?"	but	never	ask	themselves,
"What	is	the	real	value	of	solving	X?"

A	good	example	of	COD	in	practice	is	Bluetooth,	a	complex,	over-designed	set	of	protocols	that	users	hate.	It	continues	to	exist	only
because	in	a	massively-patented	industry	there	are	no	real	alternatives.	Bluetooth	is	perfectly	secure,	which	is	close	to	pointless	for	a
proximity	protocol.	At	the	same	time,	it	lacks	a	standard	API	for	developers,	meaning	it's	really	costly	to	use	Bluetooth	in	applications.

On	the	#zeromq	IRC	channel,	Wintre	once	wrote	of	how	enraged	he	was	many	years	ago	when	he	"found	that	XMMS	2	had	a	working
plugin	system,	but	could	not	actually	play	music."

COD	is	a	form	of	large-scale	"rabbit-holing",	in	which	designers	and	engineers	cannot	distance	themselves	from	the	technical	details	of
their	work.	They	add	more	and	more	features,	utterly	misreading	the	economics	of	their	work.

The	main	lessons	of	COD	are	also	simple,	but	hard	for	experts	to	swallow.	They	are:

Making	stuff	that	you	don't	immediately	have	a	need	for	is	pointless.	Doesn't	matter	how	talented	or	brilliant	you	are,	if	you	just	sit
down	and	make	stuff	people	are	not	actually	asking	for,	you	are	most	likely	wasting	your	time.

Problems	are	not	equal.	Some	are	simple,	and	some	are	complex.	Ironically,	solving	the	simpler	problems	often	has	more	value	to
more	people	than	solving	the	really	hard	ones.	So	if	you	allow	engineers	to	just	work	on	random	things,	they'll	mostly	focus	on	the
most	interesting	but	least	worthwhile	things.

Chapter	5	-	Designing	for	Innovation

44

Engineers	and	designers	love	to	make	stuff	and	decoration,	and	this	inevitably	leads	to	complexity.	It	is	crucial	to	have	a	"stop
mechanism",	a	way	to	set	short,	hard	deadlines	that	force	people	to	make	smaller,	simpler	answers	to	just	the	most	crucial
problems.

Simplicity	Oriented	Design

Finally,	we	come	to	the	rare	but	precious	Simplicity	Oriented	Design,	or	SOD.	This	process	starts	with	a	realization:	we	do	not	know
what	we	have	to	make	until	after	we	start	making	it.	Coming	up	with	ideas	or	large-scale	designs	isn't	just	wasteful,	it's	a	direct
hindrance	to	designing	the	truly	accurate	solutions.	The	really	juicy	problems	are	hidden	like	far	valleys,	and	any	activity	except	active
scouting	creates	a	fog	that	hides	those	distant	valleys.	You	need	to	keep	mobile,	pack	light,	and	move	fast.

SOD	works	as	follows:

We	collect	a	set	of	interesting	problems	(by	looking	at	how	people	use	technology	or	other	products)	and	we	line	these	up	from
simple	to	complex,	looking	for	and	identifying	patterns	of	use.

We	take	the	simplest,	most	dramatic	problem	and	we	solve	this	with	a	minimal	plausible	solution,	or	"patch".	Each	patch	solves
exactly	a	genuine	and	agreed-upon	problem	in	a	brutally	minimal	fashion.

We	apply	one	measure	of	quality	to	patches,	namely	"Can	this	be	done	any	simpler	while	still	solving	the	stated	problem?"	We	can
measure	complexity	in	terms	of	concepts	and	models	that	the	user	has	to	learn	or	guess	in	order	to	use	the	patch.	The	fewer,	the
better.	A	perfect	patch	solves	a	problem	with	zero	learning	required	by	the	user.

Our	product	development	consists	of	a	patch	that	solves	the	problem	"we	need	a	proof	of	concept"	and	then	evolves	in	an	unbroken
line	to	a	mature	series	of	products,	through	hundreds	or	thousands	of	patches	piled	on	top	of	each	other.

We	do	not	do	anything	that	is	not	a	patch.	We	enforce	this	rule	with	formal	processes	that	demand	that	every	activity	or	task	is	tied
to	a	genuine	and	agreed-upon	problem,	explicitly	enunciated	and	documented.

We	build	our	projects	into	a	supply	chain	where	each	project	can	provide	problems	to	its	"suppliers"	and	receive	patches	in	return.
The	supply	chain	creates	the	"stop	mechanism"	because	when	people	are	impatiently	waiting	for	an	answer,	we	necessarily	cut	our
work	short.

Individuals	are	free	to	work	on	any	projects,	and	provide	patches	at	any	place	they	feel	it's	worthwhile.	No	individuals	"own"	any
project,	except	to	enforce	the	formal	processes.	A	single	project	can	have	many	variations,	each	a	collection	of	different,	competing
patches.

Projects	export	formal	and	documented	interfaces	so	that	upstream	(client)	projects	are	unaware	of	change	happening	in	supplier
projects.	Thus	multiple	supplier	projects	can	compete	for	client	projects,	in	effect	creating	a	free	and	competitive	market.

We	tie	our	supply	chain	to	real	users	and	external	clients	and	we	drive	the	whole	process	by	rapid	cycles	so	that	a	problem	received
from	outside	users	can	be	analyzed,	evaluated,	and	solved	with	a	patch	in	a	few	hours.

At	every	moment	from	the	very	first	patch,	our	product	is	shippable.	This	is	essential,	because	a	large	proportion	of	patches	will	be
wrong	(10-30%)	and	only	by	giving	the	product	to	users	can	we	know	which	patches	have	become	problems	that	need	solving.

SOD	is	a	hill-climbing	algorithm,	a	reliable	way	of	finding	optimal	solutions	to	the	most	significant	problems	in	an	unknown	landscape.
You	don't	need	to	be	a	genius	to	use	SOD	successfully,	you	just	need	to	be	able	to	see	the	difference	between	the	fog	of	activity	and	the
progress	towards	new	real	problems.

People	have	pointed	out	that	hill-climbing	algorithms	have	known	limitations.	One	gets	stuck	on	local	peaks,	mainly.	But	this	is
nonetheless	how	life	itself	works:	collecting	tiny	incremental	improvements	over	long	periods	of	time.	There	is	no	intelligent	designer.
We	reduce	the	risk	of	local	peaks	by	spreading	out	widely	across	the	landscape,	but	it	is	somewhat	moot.	The	limitations	aren't	optional,
they	are	physical	laws.	The	theory	says,	this	is	how	innovation	really	works,	so	better	embrace	it	and	work	with	it	than	try	to	work	on
the	basis	of	magical	thinking.

And	in	fact	once	you	see	all	innovation	as	more	or	less	successful	hill-climbing,	you	realize	why	some	teams	and	companies	and
products	get	stuck	in	a	never-never	land	of	diminishing	prospects.	They	simply	don't	have	the	diversity	and	collective	intelligence	to
find	better	hills	to	climb.	When	Nokia	killed	their	open	source	projects,	they	cut	their	own	throat.

Chapter	5	-	Designing	for	Innovation

45

A	really	good	designer	with	a	good	team	can	use	SOD	to	build	world-class	products,	rapidly	and	accurately.	To	get	the	most	out	of	SOD
the	designer	has	to	use	the	product	continuously,	from	day	one,	and	develop	his	or	her	ability	to	smell	out	problems	such	as
inconsistency,	surprising	behavior,	and	other	forms	of	friction.	We	naturally	overlook	many	annoyances,	but	a	good	designer	picks	these
up	and	thinks	about	how	to	patch	them.	Design	is	about	removing	friction	in	the	use	of	a	product.

In	an	open	source	setting,	we	do	this	work	in	public.	There's	no	"let's	open	the	code"	moment.	Projects	that	do	this	are	in	my	view
missing	the	point	of	open	source,	which	is	to	engage	your	users	in	your	exploration,	and	to	build	community	around	the	seed	of	the
architecture.

Burnout

The	ZeroMQ	community	has	been	and	still	is	heavily	dependent	on	pro	bono	individual	efforts.	I'd	like	to	think	that	everyone	was
compensated	in	some	way	for	their	contributions,	and	I	believe	that	with	ZeroMQ,	contributing	means	gaining	expertise	in	an
extraordinarily	valuable	technology,	which	leads	to	improved	professional	options.

However,	not	all	projects	will	be	so	lucky	and	if	you	work	with	or	in	open	source,	you	should	understand	the	risk	of	burnout	that
volunteers	face.	This	applies	to	all	pro	bono	communities.	In	this	section,	I'll	explain	what	causes	burnout,	how	to	recognize	it,	how	to
prevent	it,	and	(if	it	happens)	how	to	try	to	treat	it.	Disclaimer:	I'm	not	a	psychiatrist	and	this	article	is	based	on	my	own	experiences	of
working	in	pro	bono	contexts	for	the	last	20	years,	including	free	software	projects,	and	NGOs	such	as	the	FFII.

In	a	pro	bono	context,	we're	expected	to	work	without	direct	or	obvious	economic	incentive.	That	is,	we	sacrifice	family	life,
professional	advancement,	free	time,	and	health	in	order	to	accomplish	some	goal	we	have	decided	to	accomplish.	In	any	project,	we
need	some	kind	of	reward	to	make	it	worth	continuing	each	day.	In	most	pro	bono	projects	the	rewards	are	very	indirect,	superficially
not	economical	at	all.	Mostly,	we	do	things	because	people	say,	"Hey,	great!"	Karma	is	a	powerful	motivator.

However,	we	are	economic	beings,	and	sooner	or	later,	if	a	project	costs	us	a	great	deal	and	does	not	bring	economic	rewards	of	some
kind	(money,	fame,	a	new	job),	we	start	to	suffer.	At	a	certain	stage,	it	seems	our	subconscious	simply	gets	disgusted	and	says,	"Enough
is	enough!"	and	refuses	to	go	any	further.	If	we	try	to	force	ourselves,	we	can	literally	get	sick.

This	is	what	I	call	"burnout",	though	the	term	is	also	used	for	other	kinds	of	exhaustion.	Too	much	investment	on	a	project	with	too	little
economic	reward,	for	too	long.	We	are	great	at	manipulating	ourselves	and	others,	and	this	is	often	part	of	the	process	that	leads	to
burnout.	We	tell	ourselves	that	it's	for	a	good	cause	and	that	the	other	guy	is	doing	OK,	so	we	should	be	able	to	as	well.

When	I	got	burned	out	on	open	source	projects	like	Xitami,	I	remember	clearly	how	I	felt.	I	simply	stopped	working	on	it,	refused	to
answer	any	more	emails,	and	told	people	to	forget	about	it.	You	can	tell	when	someone's	burned	out.	They	go	offline,	and	everyone
starts	saying,	"He's	acting	strange...	depressed,	or	tired..."

Diagnosis	is	simple.	Has	someone	worked	a	lot	on	a	project	that	was	not	paying	back	in	any	way?	Did	she	make	exceptional	sacrifices?
Did	he	lose	or	abandon	his	job	or	studies	to	do	the	project?	If	you're	answering	"yes",	it's	burnout.

There	are	three	simple	techniques	I've	developed	over	the	years	to	reduce	the	risk	of	burnout	in	the	teams	I	work	with:

No	one	is	irreplaceable.	Working	solo	on	a	critical	or	popular	project--the	concentration	of	responsibility	on	one	person	who
cannot	set	their	own	limits--is	probably	the	main	factor.	It's	a	management	truism:	if	someone	in	your	organization	is	irreplaceable,
get	rid	of	him	or	her.

We	need	day	jobs	to	pay	the	bills.	This	can	be	hard,	but	seems	necessary.	Getting	money	from	somewhere	else	makes	it	much
easier	to	sustain	a	sacrificial	project.

Teach	people	about	burnout.	This	should	be	a	basic	course	in	colleges	and	universities,	as	pro	bono	work	becomes	a	more	common
way	for	young	people	to	experiment	professionally.

When	someone	is	working	alone	on	a	critical	project,	you	know	they	are	going	blow	their	fuses	sooner	or	later.	It's	actually	fairly
predictable:	something	like	18-36	months	depending	on	the	individual	and	how	much	economic	stress	they	face	in	their	private	lives.
I've	not	seen	anyone	burn-out	after	half	a	year,	nor	last	five	years	in	a	unrewarding	project.

There	is	a	simple	cure	for	burnout	that	works	in	at	least	some	cases:	get	paid	decently	for	your	work.	However,	this	pretty	much
destroys	the	freedom	of	movement	(across	that	infinite	problem	landscape)	that	the	volunteer	enjoys.

Chapter	5	-	Designing	for	Innovation

46

http://www.ffii.org

Patterns	for	Success

I'll	end	this	code-free	chapter	with	a	series	of	patterns	for	success	in	software	engineering.	They	aim	to	capture	the	essence	of	what
divides	glorious	success	from	tragic	failure.	They	were	described	as	"religious	maniacal	dogma"	by	a	manager,	and	"anything	else
would	be	effing	insane"	by	a	colleague,	in	a	single	day.	For	me,	they	are	science.	But	treat	the	Lazy	Perfectionist	and	others	as	tools	to
use,	sharpen,	and	throw	away	if	something	better	comes	along.

The	Lazy	Perfectionist

Never	design	anything	that's	not	a	precise	minimal	answer	to	a	problem	we	can	identify	and	have	to	solve.

The	Lazy	Perfectionist	spends	his	idle	time	observing	others	and	identifying	problems	that	are	worth	solving.	He	looks	for	agreement	on
those	problems,	always	asking,	"What	is	the	real	problem".	Then	he	moves,	precisely	and	minimally,	to	build,	or	get	others	to	build,	a
usable	answer	to	one	problem.	He	uses,	or	gets	others	to	use	those	solutions.	And	he	repeats	this	until	there	are	no	problems	left	to
solve,	or	time	or	money	runs	out.

The	Benevolent	Tyrant
The	control	of	a	large	force	is	the	same	principle	as	the	control	of	a	few	men:	it	is	merely	a	question	of	dividing	up	their	numbers.	--	Sun
Tzu

The	Benevolent	Tyrant	divides	large	problems	into	smaller	ones	and	throws	them	at	groups	to	focus	on.	She	brokers	contracts	between
these	groups,	in	the	form	of	APIs	and	the	"unprotocols"	we'll	read	about	in	the	next	chapter.	The	Benevolent	Tyrant	constructs	a	supply
chain	that	starts	with	problems,	and	results	in	usable	solutions.	She	is	ruthless	about	how	the	supply	chain	works,	but	does	not	tell
people	what	to	work	on,	nor	how	to	do	their	work.

The	Earth	and	Sky

The	ideal	team	consists	of	two	sides:	one	writing	code,	and	one	providing	feedback.

The	Earth	and	Sky	work	together	as	a	whole,	in	close	proximity,	but	they	communicate	formally	through	issue	tracking.	Sky	seeks	out
problems	from	others	and	from	their	own	use	of	the	product	and	feeds	these	to	Earth.	Earth	rapidly	answers	with	testable	solutions.
Earth	and	Sky	can	work	through	dozens	of	issues	in	a	day.	Sky	talks	to	other	users,	and	Earth	talks	to	other	developers.	Earth	and	Sky
may	be	two	people,	or	two	small	groups.

The	Open	Door
The	accuracy	of	knowledge	comes	from	diversity.

The	Open	Door	accepts	contributions	from	almost	anyone.	She	does	not	argue	quality	or	direction,	instead	allowing	others	to	argue	that
and	get	more	engaged.	She	calculates	that	even	a	troll	will	bring	more	diverse	opinion	to	the	group.	She	lets	the	group	form	its	opinion
about	what	goes	into	stable	code,	and	she	enforces	this	opinion	with	help	of	a	Benevolent	Tyrant.

The	Laughing	Clown

Perfection	precludes	participation.

The	Laughing	Clown,	often	acting	as	the	Happy	Failure,	makes	no	claim	to	high	competence.	Instead	his	antics	and	bumbling	attempts
provoke	others	into	rescuing	him	from	his	own	tragedy.	Somehow	however,	he	always	identifies	the	right	problems	to	solve.	People	are
so	busy	proving	him	wrong	they	don't	realize	they're	doing	valuable	work.

Chapter	5	-	Designing	for	Innovation

47

The	Mindful	General

Make	no	plans.	Set	goals,	develop	strategies	and	tactics.

The	Mindful	General	operates	in	unknown	territory,	solving	problems	that	are	hidden	until	they	are	nearby.	Thus	she	makes	no	plans,
but	seeks	opportunities,	then	exploits	them	rapidly	and	accurately.	She	develops	tactics	and	strategies	in	the	field,	and	teaches	these	to
her	soldiers	so	they	can	move	independently,	and	together.

The	Social	Engineer
If	you	know	the	enemy	and	know	yourself,	you	need	not	fear	the	result	of	a	hundred	battles.	--	Sun	Tzu

The	Social	Engineer	reads	the	hearts	and	minds	of	those	he	works	with	and	for.	He	asks,	of	everyone,	"What	makes	this	person	angry,
insecure,	argumentative,	calm,	happy?"	He	studies	their	moods	and	dispositions.	With	this	knowledge	he	can	encourage	those	who	are
useful,	and	discourage	those	who	are	not.	The	Social	Engineer	never	acts	on	his	own	emotions.

The	Constant	Gardener

He	will	win	whose	army	is	animated	by	the	same	spirit	throughout	all	its	ranks.	--	Sun	Tzu

The	Constant	Gardener	grows	a	process	from	a	small	seed,	step-by-step	as	more	people	come	into	the	project.	She	makes	every	change
for	a	precise	reason,	with	agreement	from	everyone.	She	never	imposes	a	process	from	above	but	lets	others	come	to	consensus,	and
then	he	enforces	that	consensus.	In	this	way,	everyone	owns	the	process	together	and	by	owning	it,	they	are	attached	to	it.

The	Rolling	Stone
After	crossing	a	river,	you	should	get	far	away	from	it.	--	Sun	Tzu

The	Rolling	Stone	accepts	his	own	mortality	and	transience.	He	has	no	attachment	to	his	past	work.	He	accepts	that	all	that	we	make	is
destined	for	the	trash	can,	it	is	just	a	matter	of	time.	With	precise,	minimal	investments,	he	can	move	rapidly	away	from	the	past	and
stay	focused	on	the	present	and	near	future.	Above	all,	he	has	no	ego	and	no	pride	to	be	hurt	by	the	actions	of	others.

The	Pirate	Gang

Code,	like	all	knowledge,	works	best	as	collective--not	private--property.

The	Pirate	Gang	organizes	freely	around	problems.	It	accepts	authority	insofar	as	authority	provides	goals	and	resources.	The	Pirate
Gang	owns	and	shares	all	it	makes:	every	work	is	fully	remixable	by	others	in	the	Pirate	Gang.	The	gang	moves	rapidly	as	new
problems	emerge,	and	is	quick	to	abandon	old	solutions	if	those	stop	being	relevant.	No	persons	or	groups	can	monopolize	any	part	of
the	supply	chain.

The	Flash	Mob
Water	shapes	its	course	according	to	the	nature	of	the	ground	over	which	it	flows.	--	Sun	Tzu

The	Flash	Mob	comes	together	in	space	and	time	as	needed,	then	disperses	as	soon	as	they	can.	Physical	closeness	is	essential	for	high-
bandwidth	communications.	But	over	time	it	creates	technical	ghettos,	where	Earth	gets	separated	from	Sky.	The	Flash	Mob	tends	to
collect	a	lot	of	frequent	flier	miles.

The	Canary	Watcher

Chapter	5	-	Designing	for	Innovation

48

Pain	is	not,	generally,	a	Good	Sign.

The	Canary	Watcher	measures	the	quality	of	an	organization	by	their	own	pain	level,	and	the	observed	pain	levels	of	those	with	whom
he	works.	He	brings	new	participants	into	existing	organizations	so	they	can	express	the	raw	pain	of	the	innocent.	He	may	use	alcohol	to
get	others	to	verbalize	their	pain	points.	He	asks	others,	and	himself,	"Are	you	happy	in	this	process,	and	if	not,	why	not?"	When	an
organization	causes	pain	in	himself	or	others,	he	treats	that	as	a	problem	to	be	fixed.	People	should	feel	joy	in	their	work.

The	Hangman

Never	interrupt	others	when	they	are	making	mistakes.

The	Hangman	knows	that	we	learn	only	by	making	mistakes,	and	she	gives	others	copious	rope	with	which	to	learn.	She	only	pulls	the
rope	gently,	when	it's	time.	A	little	tug	to	remind	the	other	of	their	precarious	position.	Allowing	others	to	learn	by	failure	gives	the
good	reason	to	stay,	and	the	bad	excuse	to	leave.	The	Hangman	is	endlessly	patient,	because	there	is	no	shortcut	to	the	learning	process.

The	Historian
Keeping	the	public	record	may	be	tedious,	but	it's	the	only	way	to	prevent	collusion.

The	Historian	forces	discussion	into	the	public	view,	to	prevent	collusion	to	own	areas	of	work.	The	Pirate	Gang	depends	on	full	and
equal	communications	that	do	not	depend	on	momentary	presence.	No	one	really	reads	the	archives,	but	the	simply	possibility	stops
most	abuses.	The	Historian	encourages	the	right	tool	for	the	job:	email	for	transient	discussions,	IRC	for	chatter,	wikis	for	knowledge,
issue	tracking	for	recording	opportunities.

The	Provocateur

When	a	man	knows	he	is	to	be	hanged	in	a	fortnight,	it	concentrates	his	mind	wonderfully.	--	Samuel	Johnson

The	Provocateur	creates	deadlines,	enemies,	and	the	occasional	impossibility.	Teams	work	best	when	they	don't	have	time	for	the	crap.
Deadlines	bring	people	together	and	focus	the	collective	mind.	An	external	enemy	can	move	a	passive	team	into	action.	The
Provocateur	never	takes	the	deadline	too	seriously.	The	product	is	always	ready	to	ship.	But	she	gently	reminds	the	team	of	the	stakes:
fail,	and	we	all	look	for	other	jobs.

The	Mystic
When	people	argue	or	complain,	just	write	them	a	Sun	Tzu	quotation	--	Mikko	Koppanen

The	Mystic	never	argues	directly.	He	knows	that	to	argue	with	an	emotional	person	only	creates	more	emotion.	Instead	he	side-steps	the
discussion.	It's	hard	to	be	angry	at	a	Chinese	general,	especially	when	he	has	been	dead	for	2,400	years.	The	Mystic	plays	Hangman
when	people	insist	on	the	right	to	get	it	wrong.

Chapter	5	-	Designing	for	Innovation

49

Chapter	6.	Living	Systems
A	"Living	System"	is	one	that	grows	into	its	environment,	by	self-organizing	around	opportunities.	Living	systems	can	last	for	a	long
time,	adapt	well	to	change,	and	thus	be	highly	successful.	By	contrast,	"Planned	Systems"	tend	to	be	fragile,	poor	at	coping	with	change,
and	thus	short-lived.	In	this	article	I'll	explain	Living	Systems,	of	software	and	people,	and	how	to	grow	them.

Why	"Living	Systems"?

Since	the	beginning,	life	has	relied	upon	the	transmission	of	messages.	--	RFC	3164	(syslog)

Wikipedia	writes,	"Living	systems	are	open	self-organizing	living	things	that	interact	with	their	environment.	These	systems	are
maintained	by	flows	of	information,	energy	and	matter."	The	term	was	originated	by	psychologist	James	Grier	Miller	to	formalize	the
concept	of	life.

I	want	to	use	the	term	to	define	a	new	metaphor	for	software	systems	and	organizations,	the	two	types	of	system	I'm	most	interested	in.
The	two	are	more	than	just	similar.	Software	is	the	product	of	an	group	of	people,	and	as	Conway	observed,	the	structure	of	a	software
system	mimics	the	structure	of	the	organization	that	produces	it.	I've	written	that	"the	physics	of	software	is	the	physics	of	people,"	and
by	that	I	meant	psychology.

Most	software	products	today	are	highly	planned,	and	they	fail	as	living	systems.	They	are	essentially	dead	on	delivery,	sold	by	force
and	bluff.	For	a	software	to	be	a	"living	system",	it	must	be	used	by	the	organization	that	builds	it,	and	it	then	lives	or	dies	along	with
that	organization.	An	"organization"	can	be	much	larger	than	one	company	or	one	team.	It	can	consist	of	thousands	of	teams,
businesses,	customers	and	suppliers,	connected	in	ineffable	yet	vitally	real	networks.

Nowhere	is	this	more	clear	than	the	Internet,	a	Living	System	of	software,	of	people,	of	businesses	and	other	organizations.	The
organization	that	built	the	Internet	is	nothing	less	than	human	society	itself.	There	are	many	Living	Systems,	all	around	us.	It	is	a
strangely	simple	truth:	that	the	better	we	get	at	writing	large-scale	software	systems,	they	more	they	resemble	the	real	world	around	us.

In	contrast	to	Living	Systems,	we	have	Planned	Systems.	It	is	far	easier	to	plan	a	system	than	to	grow	it.	However,	plans	are	inevitably
built	on	wrong	assumptions	and	poor	judgments.	Planned	Systems	look	attractive	and	efficient	from	some	perspectives,	yet	they
inevitably	fail	catastrophically.	Real	life	provides	many	examples,	such	as	collective	farming,	planned	cities,	Microsoft	Windows	8,	and
so	on.

In	the	software	business,	this	Living	vs.	Planned	dichotomy	is	best	expressed	by	free	software	vs.	closed	source.	Free	software	(and	its
corporate	cousin	open	source)	usually	grows	out	of	real	use,	where	as	closed	source	is	usually	planned.	This	is	mainly	why	I	don't	work
on	closed	source:	it	dies	rapidly	and	predictably.	I	prefer	my	work	to	survive	as	long	as	possible.

I'll	make	a	few	broad	claims,	starting	with:	the	most	successful	large-scale	software	systems	are	Living	Systems.	That	is,	in	a
competitive	market,	a	Living	System	will	wipe	out	any	competing	Planned	Systems.	It	will	recognize	and	solve	real	problems	faster,
cheaper,	and	more	accurately.	If	your	business	depends	on	a	Planned	System,	you	are	vulnerable	to	attack	by	a	Living	System.

The	second	claim	I'll	make	is	that	this	also	applies	to	organizations.	If	your	company	is	a	Planned	System,	it	is	already	dead.	Whereas	if
your	company	operates	as	a	Living	System,	it	can	dominate	its	market.	Interestingly,	when	two	Living	Systems	meet,	they	don't	usually
fight.	Rather,	they	specialize	into	different	areas,	and	they	then	merge	to	form	a	single	Living	System.	Competition	and	conflict	usually
work	for	the	benefit	of	the	Living	System,	even	if	individual	components	fail.

Let	me	take	this	question	of	conflict	and	competition	further.	Of	course	individuals	do	compete,	and	quite	harshly	sometimes.	This	is
our	biological	imperative.	However	we	also	have	a	biological	imperative	to	collaborate,	a	far	more	profitable	strategy,	most	of	the	time.
A	Living	System	embraces	competition	between	individuals,	and	survives	the	failure	of	individual	components.	It	actually	depends	on
that	process	of	competition	and	failure.	A	Planned	System	is	essentially	trying	to	act	as	a	single	individual,	and	cannot	tolerate	internal
competition,	nor	failure	of	individual	components.

What	do	Living	Systems	Look	Like?

Chapter	6	-	Living	Systems

50

http://www.ietf.org/rfc/rfc3164.txt
http://en.wikipedia.org/wiki/Living_systems

A	Living	System	consists	of	a	large	number	of	loosely-coupled	components.	It	is	essentially	spread	out	in	space	(thus,	"distributed"),
and	in	time	(thus,	"asynchronous").	That	means	things	happen	in	unpredictable	places,	and	at	unexpected	times.	To	a	central	planner,
this	looks	like	dangerous	chaos.

In	a	Planned	System,	by	contrast,	the	times	and	places	of	events	are	meticulously	scripted.	The	focus	is	on	"command	and	control,"
where	decisions	are	made	centrally	and	communicated	to	the	structure.	Planned	Systems	are	essentially	hierarchical,	for	this	is	the
optimum	way	to	communicate	decisions	rapidly	down	from	the	top.

We	build	a	Planned	System,	whereas	a	Living	System	grows	itself.	My	goal	is	to	learn,	and	to	teach,	how	to	grow	Living	Systems
artificially.	I'm	studying	the	genes	and	patterns	of	care	and	nurture	for	a	self-growing	system.	In	fact	I'm	talking	about	creating	artificial
life,	and	artificial	intelligence,	though	in	a	shape	that	traditional	AI	researchers	might	not	recognize.	I	don't	believe	individuals
components	--	including	you	and	me	--	can	be	"intelligent"	at	all,	except	in	a	narrow	and	superficial	sense:	intelligence	is	a	property	of
systems.

Living	Systems	are	typified	by	their	lack	of	central	planning	or	decision	making.	Look	at	a	software	project	and	ask,	"who	is	the
designer?"	If	there	is	a	clear	designer,	individual	or	organization	(and	there	almost	always	is),	that	is	a	Planned	System.	A	Living
System	has	no	designer,	no	road-maps,	no	clear	future	plans	except	"survive	and	grow."

A	Living	System	looks	more	like	Adam	Smith's	free	market	than	Stalin's	Five	Year	Plan.	Economics,	politics,	and	psychology	are	as
important	--	perhaps	more	important	--	in	growing	successful	Living	Systems	as	technology.	A	free	market	depends	on	several	key
things:	clear	laws,	standards,	contracts,	and	fair	regulation.	A	Living	System	likewise	depends	on	these.

So	whereas	a	Living	System	has	no	central	planner,	it	may	have	central	regulators.	Let	me	explain	the	difference.	In	a	planned	city,	a
committee	decides	where	to	build	schools,	homes,	factories,	offices,	railway	stations,	shops,	sports	facilities,	and	so	on.	In	a	Living	City,
all	these	are	decided	by	independent	agents	(school	boards,	businesses,	home	owners,	etc.)	and	the	city	regulates	the	provision	of
electricity	and	clean	water,	the	disposal	of	garbage,	and	so	on.	Further,	the	city	runs	police	and	courts,	as	regulators,	to	dissuade
criminals	and	cheats.

A	regulator	makes	laws	that	define	a	fair	market,	and	then	enforces	those	laws.	Units	of	measurement,	currencies,	contracts,	and	such.
In	software	systems,	these	laws	are,	for	instance,	the	source	code	license,	and	contribution	policy.	A	fair	market	lets	anyone	create	a	new
venture,	and	compete	with	other	ventures.	To	allow	true	competition	(meaning,	free	choice	by	customers),	clients	can	demand	clear
contracts,	which	in	software	terms	are	documented	APIs	and	protocols.

The	DNA	of	a	Living	Systems	is	essentially	a	set	of	regulated	contracts.	Thus	the	Internet	is	grown	out	of	a	set	of	RFCs	(protocols
called	Requests	for	Comments),	regulated	by	the	Internet	Engineering	Task	Force	(IETF).	Living	cities	are	grown	out	of	criminal	and
civil	laws,	standards	for	water	and	power	and	waste,	transport,	and	so	on.

If	all	strategies	were	honest,	there	would	be	no	need	for	regulators.	However	any	Living	System	will	be	vulnerable	to	cheating
strategies.	A	certain	segment	of	people,	for	instance,	are	systematic	or	opportunistic	cheats.	Given	a	market,	they	will	always	seek	a	way
to	convert	value	to	their	own	benefit,	even	at	a	higher	cost	to	others.	They	will	lie,	steal,	deceive,	coerce,	and	so	on.

Without	resistance	against	such	cheats,	the	market	will	suffer,	and	the	system	will	eventually	die.	Top-down	authority	is	one	defense
against	cheats.	However	it	has	a	significant	vulnerability:	cheats	can,	and	often	do,	capture	the	authority	itself.	In	Living	Systems,
cheats	can	try	to	capture	the	regulators,	and	this	happens	in	real	life	all	the	time.

When	cheats	capture	the	regulators	of	real-life	Living	Systems,	the	usual	response	is	to	move	away,	if	we	can.	In	open	source	software
systems,	we	can	fork	and	continue	under	a	better	regulator.	This	is	why	forking	is	an	essential	freedom,	rather	than	a	failure.	Since
forking	can	also	be	a	strategy	for	capture,	a	fork-safe	license	(GPL	or	similar)	is	best	for	Living	Systems	in	software.

Living	Systems	grow,	constantly	and	organically.	This	is	their	most	visible	trait:	the	lack	of	the	usual	massive	construction	efforts.
Rather,	you	will	see	a	smooth	flow	of	small	changes.	It	may	seem	boring	or	unambitious.	However,	it	is	a	better	algorithm	for	survival.
A	Living	System	must	do	two	things.	First,	it	must	solve	some	profitable	set	of	problems.	Second,	it	must	adapt	and	change	over	time,
as	its	environment	changes.

Shifting	a	Planned	System	to	cope	with	a	changing	environment	is	very	hard,	often	impossible.	Resources	define	power.	Thus,	Planned
Systems	actively	and	aggressively	resist	change,	deny	it,	and	when	it	becomes	inevitable,	they	die	catastrophically.	However,	a	Living
System	feeds	off	change.	It	makes	no	distinction	between	exploring	the	landscape	of	problems	of	"now"	and	of	"tomorrow."	It	grows
through	continuous	learning.	To	actually	destroy	a	Living	System	you	have	to	do	widespread	damage	to	it,	which	is	hard	when	a
successful	Living	System	has	spread	wide.

Chapter	6	-	Living	Systems

51

To	a	Living	System,	small	amounts	of	damage	are	indistinguishable	from	normal	activity.	In	fact	Living	Systems	thrive	on	challenge,	so
long	as	it	is	not	overwhelming.	Challenge	is	what	allows	components	to	compete,	and	develop	better	answers.	What	does	not	kill	a
Living	System	makes	it	stronger.

So,	as	Living	Systems	learn	and	move	quickly	and	opportunistically	into	new	areas,	they	will	tend	to	thrive	and	grow	dominant,	wiping
out	any	competing	Planned	Systems.	They	can	react	rapidly,	shifting	resources	around	to	areas	where	they	are	more	valuable.	And	since
they	do	not	need	any	upfront	coordination	to	act,	they	can	scale	to	any	size.	Zero	upfront	coordination	means	infinite	scale.

Components	of	a	Living	System

Let's	now	look	at	the	individual	components	of	a	Living	System.	Remember	that	a	Living	System	resembles	a	free	market,	where
components	compete	to	provide	some	identifiable	and	measurable	service.	The	components	of	a	Living	System	have	some	traits	that	set
them	apart	from	the	components	of	a	planned	system.

Every	component	of	a	Living	System	has	a	clear	set	of	owners	and	investors,	and	ownership	is	usually	highly	localized	(in	contrast	to	a
Planned	System,	where	all	components	have	the	same	owners).	Components	organize	into	chains	of	suppliers	and	clients,	and	they	have
identities,	names,	and	addresses,	so	that	clients	can	find	them.	One	classic	way	to	cheat	is	for	one	group	to	provide	a	poor	quality
component	that	claims	to	be	a	high-quality	one.	Thus	the	regulator	may	have	to	enforce	identity,	and	protect	investment	in	an	identity.

Components	are,	as	far	as	possible,	location	independent.	That	creates	a	larger,	and	more	efficient	free	market.	It	means	that	we	strive
for	location	independence	as	a	feature	of	our	Living	System.	This	is	contrary	to	a	Planned	System,	where	location	is	highly	significant,
and	where	there	is	little	or	no	competition	between	components.

Similarly,	components	may	come	and	go	in	time,	quite	arbitrarily.	There	are	no	guarantees	that	a	component	we	depend	on	today	will
still	exist,	or	be	available	tomorrow.	This	may	sound	fragile,	yet	it	is	highly	robust.	Rather	than	depending	on	specific	components,	we
depend	on	contracts.	If	our	need	is	real,	there	will	be	many	alternatives.	If	one	disappears,	another	will	take	its	place.	If	you	miss	one
taxi,	you	will	catch	another.

Components	are	highly	independent,	decoupled	from	one	another.	That	is,	they	exist	and	change	at	their	own	rate,	in	their	own
direction.	A	change	in	one	component	is	essentially	invisible	to	another	component	except	through	its	public	interfaces.	This	freedom	is
essential	to	a	free	market,	driven	by	specialization	and	trade.	Thus	one	component	may	focus	on	speed,	while	another	on	security.

Since	there	is	no	centralized	decision	about	what	components	exist,	nor	who	makes	them,	they	will	be	highly	heterogeneous,	and	this
diversity	is	essential	to	the	intelligence	of	the	overall	system.	A	set	of	diverse	components	in	a	Living	System,	connected	in	a	free
market,	will	solve	large	problems	faster,	and	more	accurately,	than	a	monolithic	Planned	System.

Components	are	abstracted,	meaning	they	may	represent	entire	systems	in	themselves.	For	instance	a	web	address	can	represent	a
single,	small	piece	of	software	(one	web	server),	or	it	may	represent	a	massive	infrastructure	(an	Internet	business).	It	is	up	to	each
group	of	owners	to	decide	whether	they	build	Living	Systems	or	Planned	Systems,	in	turn.	A	Living	System	will	happily	embrace
Planned	Systems	as	components.	The	opposite	isn't	true.

Components	avoid	upfront	consensus,	also	known	as	"shared	mutable	state".	Every	component	has	knowledge,	and	they	may	share
knowledge,	yet	they	do	so	asynchronously.	So	while	the	Living	System	represents	a	large,	coherent	pool	of	knowledge,	there	is	no
guaranteed	consistency	between	components.	This	may	seem	paradoxical.	Surely	every	person	in	a	meeting,	for	instance,	agrees	on	the
agenda	for	the	meeting?

In	fact	meetings,	with	their	agendas	and	minutes,	are	the	epitome	of	the	shared	mutable	state	that	a	Planned	System	depends	on.	Planned
Systems	cannot	function	without	systematic	upfront	agreement.	In	concurrent	software	design,	we	use	"locks"	to	achieve	the	same
result.	It	is	provably	true	that	a	software	system	that	uses	locks	to	share	state	between	components	will	not	scale.	You	can	try	to	make
distributed	software	as	a	Planned	System:	it	starts	easily	yet	scales	poorly,	if	at	all.	Whereas	a	Living	System	takes	a	little	more	thought
at	the	start,	and	then	scales	without	limit.

Finally,	components	are	lazy	and	opportunistic.	They	only	work	when	there	are	tasks	waiting,	and	they	only	change	and	grow	when
there	are	new,	profitable	opportunities.	This	means	components	can	remain	lightweight	and	minimalistic.	Further,	they	can	solve	the
"problem	landscape"	much	more	accurately,	without	excess	baggage.	In	a	Planned	System	by	contrast,	components	are	built	upfront,	on
the	assumption	of	future	problems,	or	at	best,	knowledge	of	past	problems.

Chapter	6	-	Living	Systems

52

An	example:	in	a	planned	conference,	the	organizers	choose	speakers	on	certain	topics,	based	on	their	experience	of	the	previous	year.
Now,	one	month	before	the	conference,	a	significant	event	drives	public	demand	for	speakers	on	a	totally	different	topic.	How	long	will
it	take	the	conference	to	react?	A	participant-driven	conference	can	react	in	real-time,	whereas	a	planned	conference	will	take	a	full	year
to	respond.

Protocols	of	a	Living	System

The	components	of	a	Living	System	are	connected	in	relationships.	Each	relationship	consists	of	a	flow	of	information,	knowledge,	or
requests,	in	both	directions.	The	best	way	to	model	such	relationship	seems	to	be	as	discrete	events,	or	"messages,"	that	carry	a
formalized	set	of	interactions	we	call	"protocols."

In	natural	Living	Systems,	we	also	see	messages	and	protocols.	Cells,	for	instance,	communicate	with	chemical	messages.	We	humans
appear	to	communicate	with	a	set	of	protocols	that	underly	our	human	languages.	For	instance,	male-dominated	hierarchies	are	a
consistent	feature	of	human	society,	suggesting	that	the	command-and-control	protocols	they	depend	on	are	built-in	to	our	minds,	not
learned.	I'd	hypothesize	that	the	male	mind,	driven	by	the	ancestral	need	to	plan	hunting	parties,	is	responsible	for	Planned	Systems.

Protocols	have	a	number	of	common	patterns.	We	see	broadcast	protocols	where	one	component	signals	to	many	listeners.	A	broadcast
protocol	is	typically	one-way.	The	signaler	may,	in	rare	occasions,	get	feedback	from	a	few	listeners.

We	see	one-to-one	protocols	where	two	components	exchange	knowledge,	tasks,	requests,	and	so	on.	One-to-one	protocols	can	be	more
or	less	chatty,	and	ideally	are	fully	asynchronous.	Chattier	protocols	take	longer	to	conclude,	thus	raising	overall	"latency."	For	example
if	I'm	cooking	a	pizza	and	I	have	to	confirm	every	ingredient,	it	will	take	longer.	"Do	you	like	mushrooms?"	"How	about	garlic?"	"Ok,
what	kind	of	cheese	do	you	prefer?"

The	ideal	relationships	aim	for	lowest	realistic	latency,	since	the	latency	of	the	overall	system	is	the	sum	of	the	latency	of	its	entire
supply	chain.	That	is,	if	I'm	making	a	meal,	and	I	have	to	spend	one	minute	solving	the	"pizza"	issue,	that	adds	one	minute	to	the	overall
preparation	time.	In	an	asynchronous	low-latency	dialog,	I'd	ask	all	the	questions	at	once,	and	deal	with	the	answers	as	I	got	them	back,
one	by	one.

To	make	effective	asynchronous	systems	we	need	queues,	and	smart	queuing	strategies.	Ideally,	we	have	queues	at	any	point	where
messages	may	arrive,	and	we	push	messages	as	close	to	their	consumers	as	possible,	to	reduce	latency.	We	need	strategies	to	deal	with
full	queues	(space	is	not	infinite):	it	might	be	to	throw	away	older	messages,	or	to	pause	the	sender	(this	works	for	one-to-one	dialogs,
not	for	one-to-many).	We	may	need	multiple	incoming	queues,	one	per	flow,	and	the	ability	to	wait	for	a	message	on	any	of	these
queues.

The	protocols	of	a	Living	System	are	highly	ritualized.	They	implement	formal	contracts.	If	I	ask,	"Do	you	like	garlic?"	then	I	expect	a
yes/no	answer.	A	discussion	about	the	weather	is	a	breach	of	contract.	When	we're	growing	our	own	Living	Systems,	we	have	to	write
the	protocols	down,	so	they	can	be	learned	and	verified.	The	simpler	and	clearer,	the	better.	Complex,	arcane	protocols	are	expensive	to
learn	and	implement,	which	distorts	the	free	market.

Some	Living	Systems	use	earned	trust,	together	with	identity,	in	place	of	verifiable	contracts.	This	can	be	a	valuable	short-hand,
especially	when	exchanging	knowledge,	though	it	is	also	vulnerable	to	cheats	(frauds).	An	alternative	is	to	ensure	that	every	contract	is
verifiable,	backed	by	meta-contracts	on	performance.	This	is	often	better	for	trading	work.	Any	taxi	driver	is	fine,	so	long	as	drive	to	the
right	address	and	don't	over-charge.	However	we	want	our	news	from	trusted	sources.

Once	we	have	testable	contracts	we	can	deal	with	violations.	One	strategy	is	to	fail,	and	let	someone	else	deal	with	it.	Another	is	to
discard	that	peer	and	try	another.	However,	after	a	contract	violation,	you	generally	don't	want	to	continue	blindly,	as	that	can	cause
wider	damage.

Case	Study:	the	ZeroMQ	Community

The	ZeroMQ	community	is	a	Living	System	of	people	that	builds	a	Living	System	of	software	(the	software	collection	under	the	same
name).	Though	I	originally	designed	the	ZeroMQ	community	with	most	of	the	properties	of	a	Living	System,	it	only	really	came	true	in
early	2012,	when	the	community	rejected	its	central	planners.

Chapter	6	-	Living	Systems

53

The	community	consists	of	a	large	number	of	loosely-coupled	projects	that	share	a	common	goal,	which	is	to	provide	the	queuing	and
messaging	needs	for	other	software	systems.	I've	argued,	and	believe,	that	only	a	Living	System	can	use	ZeroMQ	optimally.

The	ZeroMQ	projects	are	connected	into	a	supply	chain	by	formalized	relationships,	over	APIs	and	wire	protocols.	We	spend	a	large
amount	of	time	documenting	these	APIs	and	protocols,	and	ensuring	they	are	testable.	Indeed,	we	do	not	usually	document	the	internals
of	components,	just	their	external	APIs.

There	is	no	central	planning	nor	coordination.	Instead,	each	project	evolves	organically	as	its	users	invest	in	patches	and	improvements.
By	making	this	process	simple,	the	ZeroMQ	collaboration	contract	ensures	that	the	ZeroMQ	organization	expands	to	include	all	its
competent	users.

Anyone	can	start	a	new	ZeroMQ	project,	or	fork	an	existing	one,	for	competition	or	experimentation.	As	a	community	we	encourage
this,	and	so	we	have	multiple	competitors	at	most	levels.	This	works	well	in	practice.	The	basic	license	is	LGPL	v3	or	MPL	v2,	ensuring
that	forks	are	always	safe	(patches	can	flow	in	both	directions).

The	regulator	in	the	ZeroMQ	community	is	a	self-elected	group,	headed	by	iMatix,	the	firm	that	developed	the	original	software.	There
is	not	much	regulation	needed,	except	to	stop	abuse	of	the	name	"ZeroMQ".	Clear	documentation	of	protocols	is	sufficient	to	allow
clients	to	verify	their	suppliers.

ZeroMQ	is	highly	scalable.	The	cost	of	adding	a	new	project	is	close	to	zero,	apart	from	the	discovery	cost.	Projects	communicate
asynchronously,	using	GitHub	issues	and	pull	requests.	There	is	little	or	no	upfront	coordination.	We	review	code	after	the	fact,	and	fix
poor	code	through	further	patches	rather	than	discussion.

ZeroMQ's	full	transition	to	a	Living	System	was	hard	because	we	had	no	prior	successes	to	imitate.	The	bulk	of	free	software	projects
still	depend	on	significant	planning.	To	go	against	standard	practice	was	seen	as	highly	eccentric,	if	not	actually	insane.	The	loss	of	key
contributors	--	who	had	provided	the	authority	that	central	planning	depends	on	--	was	seen	as	potentially	catastrophic.

However	the	ZeroMQ	community	rapidly	expanded	into	the	space	left	by	the	central	planners,	and	flourished.	We	disproved	the	theory
that	central	planning	was	essential	to	quality.	In	fact	we	found	that	without	central	planning,	the	software	improved	significantly	in
quality	and	in	accuracy.	Whereas	the	ZeroMQ	development	branch	had	been	highly	unstable,	experimental,	and	discordant	with	users'
needs,	it	became	mostly	stable,	trusted,	and	a	close	fit	for	users'	needs.

Today	we	can	hold	the	ZeroMQ	community	as	a	worked	example	of	how	to	do	Living	Systems	"right."	It	is	all	the	more	valuable	as
data	since	there	have	been	numerous	attempts	to	replace	it,	both	by	the	fleeing	central	planners,	and	by	other	teams.	Noticeably,	every
Planned	System	that	claimed	to	be	"better	than	ZeroMQ"	has	failed,	whereas	every	Living	System	that	began	by	competing	with
ZeroMQ	ended	up	becoming	a	valuable	part	of	it.

Transforming	into	a	Living	System

Can	we	turn	a	Planned	System	into	a	Living	System?	If	we	assume	we	have	the	technical	right	(consensus	from	enough	participants,	or
legal	right	through	software	licensing),	what	are	the	practical	requirements?

The	most	difficult	part	will	be	to	get	the	size	of	components	right.	This	will	often	mean	breaking	up	existing	components,	and	creating
new	ones.	That	can	be	catastrophic	if	done	in	too	many	places	at	once.	Thus,	in	a	larger	migration,	you	would	start	in	one	area,	refactor
that,	and	then	grow	the	resulting	culture	out.

Components	are	usually	sized	around	the	people,	so	a	good	size	is	"the	work	that	a	few	people	can	do."	The	scale	of	a	Living	System
comes	from	adding	more	components,	and	allowing	them	to	use	and	replace	each	other	in	whatever	fashion	makes	sense	locally,	not
increasing	individual	component	size.	A	component	is	too	small	when	it	cannot	provide	a	full	service	by	itself,	and	it	is	too	large	when	it
does	not	focus	on	one	thing.

Finally,	you	need	the	contracts.	For	a	software	system,	we	have	had	good	results	simply	by	taking	the	the	ZeroMQ	C4.1	process
contract,	and	using	that	together	with	a	code	style	guide	and	the	software	license.	For	several	reasons,	I	strongly	recommend	a	share-
alike	license,	such	as	LGPL	(my	thesis	is	that	if	you	use	a	leaky	license	like	Apache	or	BSD,	you	in	fact	won't	get	a	successful	Living
System	at	all).

Chapter	6	-	Living	Systems

54

http://rfc.zeromq.org/spec:22
http://rfc.zeromq.org/spec:22

Launching	such	a	Living	System	in	the	past	was	difficult,	as	self-organizing	software	ecologies	were	poorly	documented	and	little
understood.	We	lacked	empirical	evidence	that	processes	like	C4.1	could	work,	let	alone	work	so	well.	As	far	as	I	know,	this	was	the
first	documented	contract	for	a	Living	System	in	software.

Economics	of	Living	Systems

How	do	we	make	money	from	free	software?	It	is	a	question	I'm	often	asked.	The	answer	comes	in	various	forms	depending	on	whether
I'm	talking	to	individuals,	to	small	firms,	or	to	large	firms.

A	key	understanding	of	Living	Systems	is	that	they	are	essentially	about	economics.	No	component	exists	for	random	reasons.
However,	to	offer	a	choice	between	selfishness	and	altruism	is	a	false	dichotomy.	Living	Systems	are	driven	by	selfishness	and	altruism
at	the	same	time.	It	is	a	basic	theory	of	economics:	by	selfish	specialization	and	trade,	we	create	common	wealth.	It	is	the	human
species'	superpower:	specialization	and	trade	at	a	massive	scale,	between	individuals,	families,	generations,	villages,	cities,	and	entire
regions.

A	Living	System	is	owned	by	all	participants,	so	it	can	be	harder	to	measure	its	value,	whereas	a	Planned	System,	owned	by	a	few	at	the
top,	can	have	very	visible	value,	to	its	owners	and	outside	observers.	However	the	overall	value	and	economic	power	of	a	Living
System	will	always	overwhelm	any	competing	Planned	System.	A	Living	System	can	be	incredibly	profitable,	its	profits	are	just	widely
distributed	among	all	its	participants.

This	is	the	first	answer:	a	Living	System	can	kill	competing	Planned	Systems,	and	thus	liberate	large	amounts	of	captive	value,	which
can	be	absorbed	by	the	Living	System.	We	see	this	in	real	life,	where	free	market	economies	out-perform	planned	economies,	leading	to
movement	of	skilled	labor	(value)	from	the	latter	to	the	former.

The	second	answer	is	that	we	can	build	new	markets	on	top	of	successful	Living	Systems,	that	are	impossible	on	Planned	Systems.	The
Internet	is	a	clear	example	of	this:	it	has	enabled	a	massive	new	economy	that	was	impossible	on	older	networks.	Those	new	markets
can	be	very	profitable.

A	Planned	System	can	only	survive	by	taking	value	away	from	its	components.	In	many	ways,	it	resembles	a	cult,	and	depends	on	cult
techniques	like	brain	washing,	where	a	few	prosper	at	the	expense	of	many.	Planned	Systems	are	inherently	unethical,	as	well	as
unsustainable.	There	is	an	inherent	morality	in	a	fair	and	free	market,	despite	the	large	number	of	of	Planned	Systems	that	claim	to
represent	"the	market."

Conclusions

In	this	essay	I've	looked	at	artificial	Living	Systems,	which	imitate	and	can	be	modeled	on	real	living	systems.	Living	Systems	are
spread	out	in	space	and	time.	They	consist	of	large	numbers	of	independently	owned	components	that	work	together,	competing	and
collaborating,	in	a	free	market	for	services,	labor,	resources,	and	knowledge.	These	components	evolve	independently,	under	pressure
from	their	market.	They	live	and	die	according	to	their	success	in	finding	accurate	answers	to	real	problems	faced	by	their	clients.

The	components	in	a	Living	System	communicate	asynchronously	by	passing	messages	around,	in	various	patterns.	These	flows	are
highly	ritualized,	in	the	form	of	protocols.	The	more	accurate	the	protocol,	the	easier	it	is	for	clients	to	choose	suppliers	freely,	and	the
more	efficient	the	market.

A	Living	System	has	no	central	controlling	owner,	though	it	may	elect	authorities	to	regulate	(define,	and	enforce)	contracts.	It	has	no
single	points	of	failure.	Rather	than	treating	failure	as	exceptional	and	to	be	avoided,	it	uses	failure	as	a	basic	learning	technique.
Inaccurate	components	are	allowed	to	fail	and	are	discarded	rapidly,	and	replaced	by	more	accurate	components.

Living	Systems	grow	by	learning,	into	supply	chains	that	connect	components	to	the	external	environment.	We	can	measure	the
efficiency	of	a	Living	System	by	looking	at	overall	latency	as	a	problem	enters	the	system,	and	a	response	emerges.	Such	latencies	can
vary	from	years	in	Planned	Systems	to	hours	in	highly	adaptive	Living	Systems.

Living	Systems	thus	organize	opportunistically,	accurately	judging	the	relative	cost	of	a	given	problem,	and	the	value	of	solving	it.
Unlike	Planned	Systems,	they	are	driven	by	live	data	rather	than	assumptions,	beliefs,	or	old	data.	This	lets	them	operate	more
accurately,	faster,	and	cheaper	than	Planned	Systems.

Chapter	6	-	Living	Systems

55

To	build	a	large	scale	Living	System	in	software,	build	a	Living	System	of	people.	The	two	will	co-evolve	and	done	correctly,	will
dominate	any	given	market.	Whereas	competing	Planned	Systems	will	fail	as	whole	units,	competing	Living	Systems	will	tend	to
specialize	into	different	areas,	and	then	merge	into	a	single	unified	Living	System.

Chapter	6	-	Living	Systems

56

Postface
This	book	tells	a	long	story	that	started	when	I	read	Stallman's	accounts	of	writing	his	first	free	software.	In	2005	we	were	building	on-
line	communities	deliberately	and	aggressively,	for	political	purposes.	By	then	we'd	codified	the	theory	and	were	applying	it	over	and
over.	In	2007	I	used	this	to	build	a	large	community	for	the	Wikidot.com	platform,	which	I'd	invested	in	and	was	CEO	of.	In	2009	I
used	it	as	the	basis	for	the	ZeroMQ	community,	and	by	2011	had	turned	this	fire	on	full,	stripping	away	all	the	old	clumsy	patterns,	and
replacing	them	with	upgraded	state-of-the-art	techniques.

We	are	still	learning,	making	our	processes	simpler,	and	our	tools	sharper.	C4	is	not	for	everyone.	It	takes	courage	to	embrace	unknown
contributors	and	trust	them	by	default.	It	takes	experience	to	realize	that	for	every	twenty	smiles,	there	is	one	knife.	We	learn	these
lessons	slowly.	Even	with	a	full	handbook,	it	will	take	you	years	to	understand.	So	practice,	be	prepared	to	fail	often,	and	be	happy.	:)

Postface

57

	Introduction
	Preface
	Chapter 1 - The Toolbox
	Chapter 2 - Sidebars
	Chapter 3 - The ZeroMQ Community
	Chapter 4 - The ZeroMQ Process: C4
	Chapter 5 - Designing for Innovation
	Chapter 6 - Living Systems
	Postface

