
Security in Software Engineering

Web Services
Part 11 : Good practices for Secure Software.

Alexandre Dulaunoy
adulau@foo.be

Security in Software Engineering – p.1/11



Agenda

� A little story,

� Buffer Overflows,

� Race Conditions,

� Security in Operations,

� Conclusion.

Security in Software Engineering – p.2/11



Buffer Overflows

� Process/Programs create sections in memory (heap,
stack),

� A buffer is various "continuous" chunks of memory,

� What happens if the continuous chunks is overwritten ?,

� Programs can act act in strange ways,

� Programs can fail completely,

� Programs can proceed without any noticeable
difference

� The little story of the 5th Dec (brk() syscall exploit in
Linux kernel).

Security in Software Engineering – p.3/11



brk() syscall exploit in Linux Kernel

� The kernel organizes a process’s memory in a specific
structure,

� The kernel is also a program that "controls" all the
programs on the system,

� brk() is used to extend heap memory when requested,

� Specific design on IA-32 systems (the kernel is mapped
after the 0xc0000000),

� This exploit is working locally (not remotely) but ...,

Security in Software Engineering – p.4/11



Buffer Overflows - how to avoid ?

� Make defensive programming,

� Avoid a lot of default call (like gets() for libc, system.* in
java...),

� Use source-code scanning tools whenever possible,

� Compile with stackguard-like system,

� Use on the running system a protection against buffer
overflow,

� Don’t rely on one system protection.

Security in Software Engineering – p.5/11



Race Conditions

� The example of the meeting,

� RC occurs when an assumption needs to hold true for
a period of time but actually may not,

� Race condition has a window of vulnerability,

� On computer systems, the window of vulnerability is
often quite small,

� File-based race conditions are the most important,

� More related to multi-users systems (like Unix),

Security in Software Engineering – p.6/11



Race Conditions : example

� class Counter example (via java.servlet) (the
"synchronized(obj)" solution),

� race condition in passwd (Solaris example),

� Payment system and race conditions (ATM system
example),

� Asynchronous message delivery and race conditions
(another payment system example),

� and the issue of the 5th Dec...

Security in Software Engineering – p.7/11



Race Conditions - how to avoid ?

� Difficult to find and debug,

� Apply rules of concurrency problem,

� Limit usage of multithreaded/multiprocess (only when
required),

� Think about each microseconds between each
operations,

� Be atomic...

Security in Software Engineering – p.8/11



Operations to maintain security

� Security is everybody’s problem but no one cares,

� Network environment

� Monitor,

� Only essential net services,

� Separate management network from production,

� Multiple layers of security,

� Log network events (and monitor...),

Security in Software Engineering – p.9/11



Deploy application with security in mind

� Secure the Operating System (don’t trust the
environment),

� Third-party code should be fully audited,

� Ensure daily operations practices,

� Be ready for worst case situation,

� and don’t forget the issue of the 5th Dec...

Security in Software Engineering – p.10/11



Q&R

� adulau@foo.be

� http://www.foo.be/cours/securite-webservices/

� 3B12 DCC2 82FA 2931 2F5B 709A 09E2 CD49 44E6
CBCD

Security in Software Engineering – p.11/11


	Agenda
	Buffer Overflows
	brk() syscall
exploit in Linux Kernel
	Buffer Overflows - how to avoid ?
	Race Conditions
	Race Conditions : example
	Race Conditions - how to avoid ?
	Operations to maintain security
	Deploy application with security in mind
	Q&R

