

CIRCL
Computer Incident
Response Center
Luxembourg

GCVE.eu

Beyond CVEs: Mastering the Landscape with Vulnerability-Lookup

from CVE to CVD

🏠 <https://www.vulnerability-lookup.org>

Alexandre Dulaunoy - Cedric Bonhomme - team@circl.lu

January 17, 2026

CIRCL <https://www.circl.lu>

Origin of the project

Who is behind Vulnerability-Lookup?

Vulnerability-Lookup¹ is an Open Source project led by **CIRCL**.

It is co-funded by **CIRCL** and the **European Union²**.

Used by many organisations including CSIRTs and ENISA (EUVD).

A reference implementation to **GCVE** standards.

¹<https://www.vulnerability-lookup.org>

²<https://github.com/ngsoti>

- cve-search³ is an open-source tool initially developed in late 2012, focusing on maintaining a **local** CVE database.
- cve-search is widely used as an **internal** tool.
- The design and scalability of cve-search are limited. Our operational public instance at <https://cve.circl.lu> has reached a hard limit of 20,000 queries per second.
- Vulnerability sources have **diversified**, and the **NVD CVE is no longer the sole source** of vulnerability information.

³<https://github.com/cve-search/cve-search>

Initial Challenges

- **Volume of data:** Handling a substantial dataset and heavy network traffic, currently over 1,360,500 security advisories and more than 90,000 sightings⁴.
- **Flexibility:** Balancing ongoing development with legacy issues while designing a future-proof architecture. It's complex and yes, sometimes chaotic⁵.
- **Robustness:** Validating data even when external entities don't comply with their own JSON schemas. It's not always pretty.
- **Fast lookup:** Rapidly correlating identifiers across **diverse sources**, including unpublished advisories.

⁴The first sighting on Exploit-DB dates back 26 years.

⁵We enjoy challenges, especially when they lead to practical solutions.

Ongoing Challenges and Development

- **CPE fragmentation:**⁶ Tackling the fragmentation of CPEs (e.g., cpe:/a:oracle:java vs. cpe:/a:sun:java) by introducing *Organizations* as unified containers.
- **CVD process:** Building an open-source tool that fully supports the Coordinated Vulnerability Disclosure (CVD) process.⁷
- **Vulnerability numbering:** Enabling a new distributed approach through the Global CVE Allocation System.⁸
- **Scoring vulnerabilities:** Aggregating a large volume of observations from diverse advisory types to improve vulnerability scoring.

⁶Well, another mess to clean up!

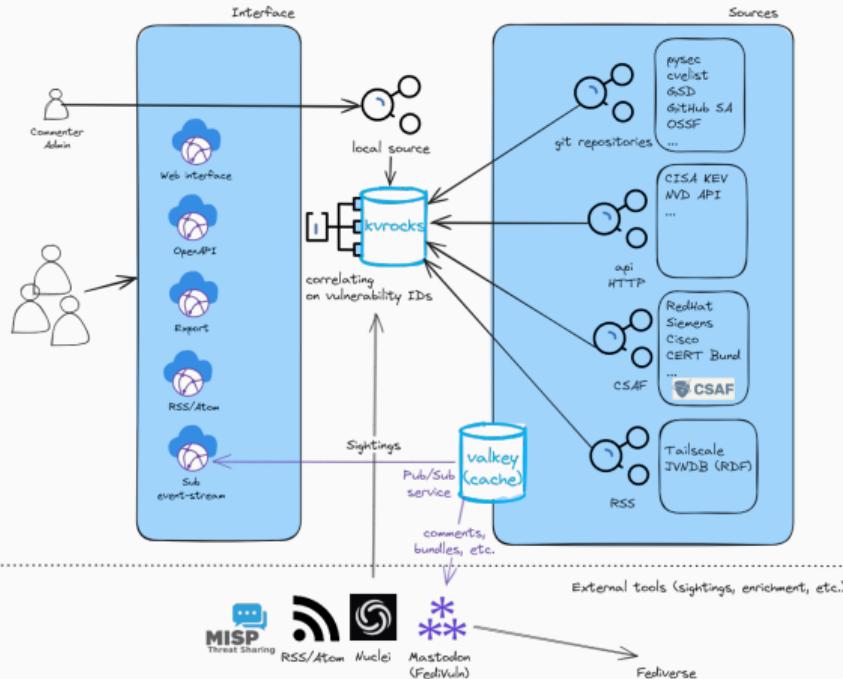
⁷Aligned with NIS 2 and the Cyber Resilience Act.

⁸<https://gcve.eu>

Current Sources in Vulnerability-Lookup

- **CISA Known Exploited Vulnerability (HTTP)**
- **NIST NVD CVE (API 2.0)**
- **CVEProject - cvelist (Git submodule)**
- **Fraunhofer FKIE (Git submodule)**
- **Cloud Security Alliance - GSD (Git submodule)**
- **GitHub Advisory DB (Git submodule)**
- **PySec Advisory DB (Git submodule)**
- **CSAF 2.0 (HTTP CSAF)**
CERT-Bund, Cisco, Siemens, Red Hat, Microsoft, NCSC-NL, CISA, etc.
- **VARIoT (API)**
- **Japan - JVN DB (HTTP)**
- **Tailscale (RSS)**
- **GCVE.eu all GNA sources**
- **CWE, CAPEC, MITRE EMB3D or KEV**
- **Growing...**

Open Data Initiative: Regular JSON dumps published⁹.


⁹<https://vulnerability.circl.lu/dumps/>

Design and Implementation

Vulnerability-Lookup High-Level Architecture

Overview of the Vulnerability-Lookup architecture - <https://www.vulnerability-lookup.org>


```
$ curl -s https://vulnerability.circl.lu/api/vulnerability/last/csaf_redhat/10 | jq .[2].document.title
"Red Hat Security Advisory: Red Hat Ceph Storage 6.1 security and bug fix update"

$ curl -s https://vulnerability.circl.lu/api/vulnerability/last/csaf_redhat/10 | jq .[2].vulnerabilities[0].cve
"CVE-2021-4231"
```

- **Documented API** (OpenAPI): <https://vulnerability.circl.lu/api>
- Pagination and filtering by source
- CPE search by vendor and product name
- **Many endpoints available via RSS and Atom¹⁰**

¹⁰<https://www.vulnerability-lookup.org/documentation/feeds.html>

Empowering the Community

Crowd-Sourced Threat Intelligence

- **Bundles:** Group similar vulnerabilities and aggregate sightings for easier tracking.
- **Comments:** Additional context such as PoCs, remediations, related insights.
- **Tags:** Use the MISP Vulnerability Taxonomy to annotate comments¹¹. Example:

```
vulnerability:information=remediation
```

- **Sightings:** Report real-world observations of vulnerabilities, including metadata like timestamps and sources.

```
{
  "uuid": "f9ec8b2c-2ceb-4c05-b052-264b51c6a3ee", "vulnerability_lookup_origin": "1a89b78e-f703-45f3-bb86-59eb712668bd",
  "author": "9f56dd64-161d-43a6-b9c3-555944290a09", "creation_timestamp": "2025-04-17T19:14:32.000000Z",
  "vulnerability": "CVE-2025-32433",
  "type": "exploited",
  "source": "https://gist.github.com/numanturle/b7333fb02a4ee3618995babc9b62c507"
}
```

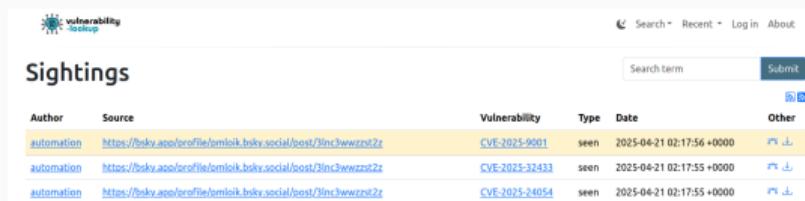
¹¹https://www.misp-project.org/taxonomies.html#_vulnerability_3

Types of Sightings

Type	Description	Negative/Opposite
seen	The vulnerability was mentioned, discussed, or observed by the user.	-
confirmed	The vulnerability has been verified by an analyst.	X
exploited	The vulnerability was actively exploited and observed by the user reporting the sighting.	X
patched	The vulnerability was successfully mitigated or patched by the user reporting the sighting.	X

Table 1: Types of vulnerability sightings

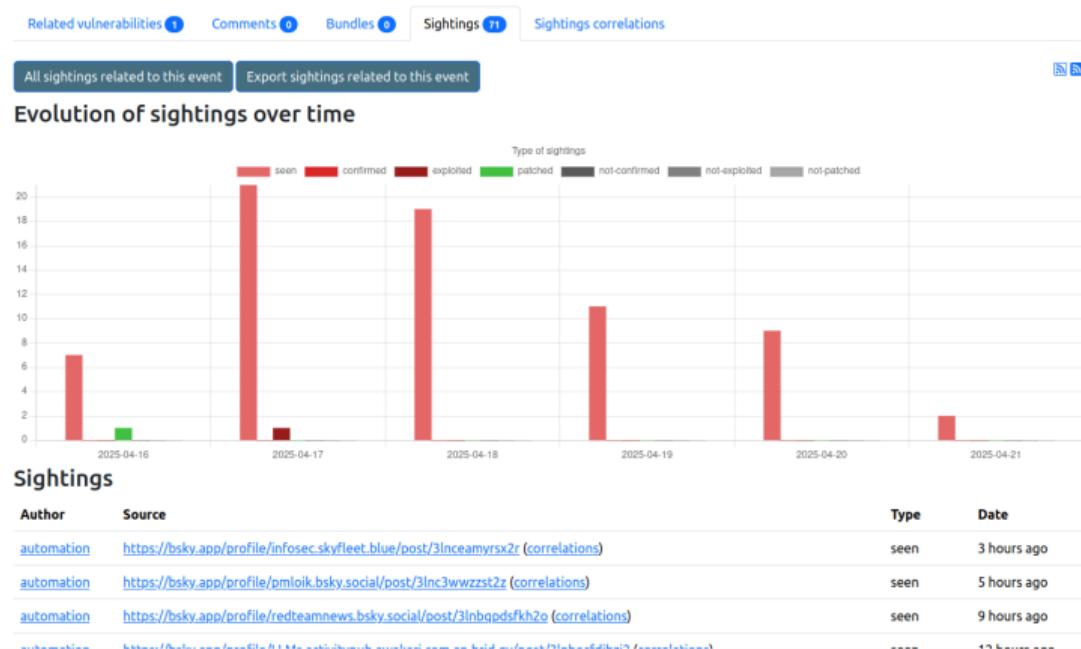
Automatically gathering crowd-sourced intelligence without requiring direct user contributions to our platform.


- **Social Platforms:** Fediverse, Bluesky
- **Threat Intelligence Tools:** MISP, Nuclei
- **Content Feeds:** RSS/Atom, curated web pages, GitHub Gist
- **Specialized Projects:** ShadowSight, ExploitDBSighting
- **Community Contributions:** Passive signals and indirect data enrichment

Scoring Vulnerabilities

Sightings Detection Rate and Types of Sightings

- A high rate of sightings (type *seen*) often correlates with high or critical severity vulnerabilities¹².
- Early sightings of type *exploited* (e.g., proof-of-concept code) or *confirmed* (e.g., detection templates for tools like Nuclei) can signal emerging threats.
- Sightings can sometimes be detected **before any official advisory is published**.

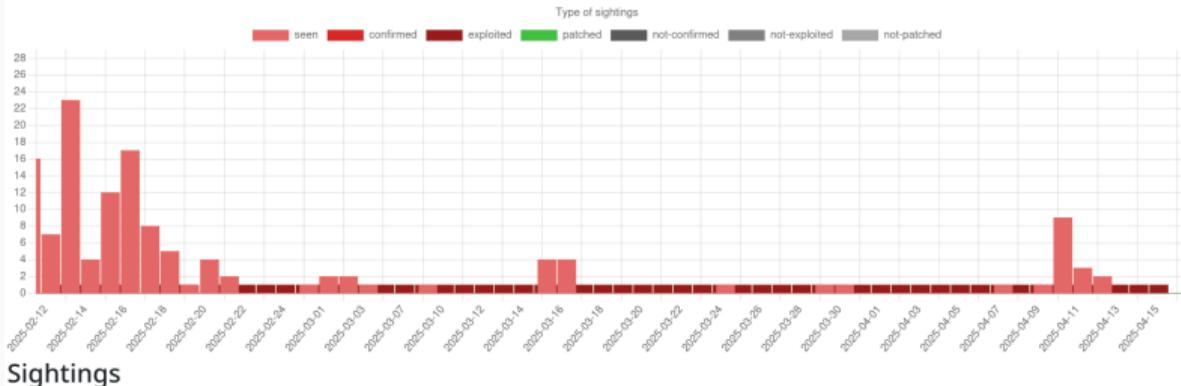


Sightings					
Author	Source	Vulnerability	Type	Date	Other
automation	https://bsky.app/profile/omloik.bsky.social/post/0inc3wwrzst2x	CVE-2025-9001	seen	2025-04-21 02:17:56 +0000	
automation	https://bsky.app/profile/omloik.bsky.social/post/0inc3wwrzst2x	CVE-2025-32433	seen	2025-04-21 02:17:55 +0000	
automation	https://bsky.app/profile/omloik.bsky.social/post/0inc3wwrzst2x	CVE-2025-24054	seen	2025-04-21 02:17:55 +0000	

- Continuous exploitation patterns are frequently observed through sources like The Shadowserver Foundation or MISP.

¹²Don't underestimate the hype surrounding some vulnerabilities.

Early PoC (erlang / otp)



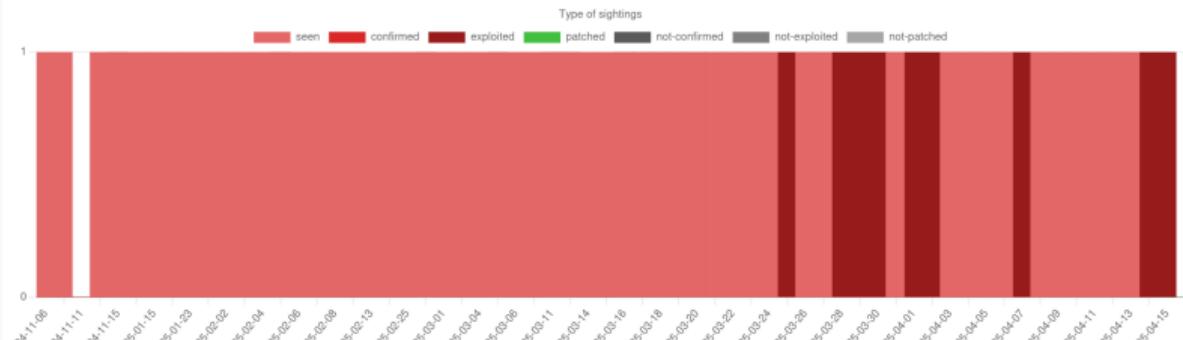
<https://vulnerability.circl.lu/vuln/CVE-2025-32433#sightings>

TLP:CLEAR

Continuous Exploitations (Palo Alto Networks / Cloud NGFW)

Evolution of sightings over time

Sightings


Author	Source	Type	Date
automation	The Shadowserver (honeypot/exploited-vulnerabilities) - (2025-04-16) (correlations)	exploited	1 day ago
automation	https://bsky.app/profile/christopherkunz.bsky.social/post/3lmu2zatyx22 (correlations)	seen	2 days ago
automation	https://chaos.social/users/christopherkunz/statuses/114340622271163262 (correlations)	seen	2 days ago
automation	The Shadowserver (honeypot/exploited-vulnerabilities) - (2025-04-15) (correlations)	exploited	2 days ago

<https://vulnerability.circl.lu/vuln/CVE-2025-0108#sightings>

TLP:CLEAR

Continuous Exploitations (D-Link / DNS-320)

Evolution of sightings over time

Sightings

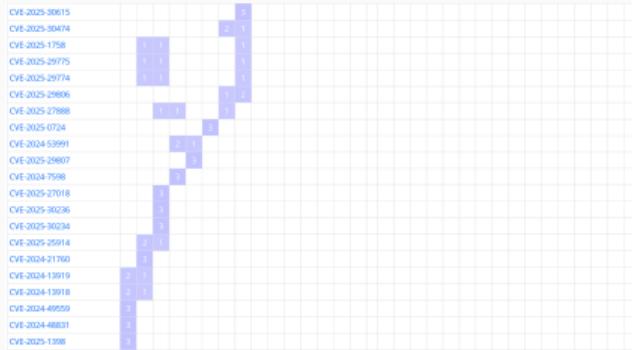
Author	Source	Type	Date
automation	The Shadowserver (honeypot/exploited-vulnerabilities) - (2025-04-16) (correlations)	exploited	1 day ago
automation	The Shadowserver (honeypot/common-vulnerabilities) - (2025-04-16) (correlations)	seen	1 day ago
automation	The Shadowserver (honeypot/common-vulnerabilities) - (2025-04-15) (correlations)	seen	2 days ago
automation	The Shadowserver (honeypot/exploited-vulnerabilities) - (2025-04-15) (correlations)	exploited	2 days ago

<https://vulnerability.circl.lu/vuln/CVE-2024-10914#sightings>

TLP:CLEAR

Last Month's Most Sighted Vulnerabilities

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
CVE-2025-29927					3	11	54	42	20	15	7	10	1	3	1	1	4	4	1	2	1		2	1			1	1				
CVE-2025-22457																	39	38	11	12	16	8	6	5	13	3	4	3	4		14	
CVE-2025-24813	13	15	12	13	8	3	2	11	2	1		1	1	3	5	7	7	4		2	1		1	2			1					
CVE-2025-1974								5	24	11	25	7	8	1	5	6	2	7									1					
CVE-2025-2825									2	10	7	2	2	11	9	12	7	2	2	2	3	6		5	3	1		1	3			
CVE-2025-29824																				12	29	11	4	2	1	4	2	3	14			
CVE-2025-2783								1	27	15	12	8	7	2		1	1	1														
CVE-2025-30066	12	15	14	3	4	2	1	6	2	1	1				2								1		1							
CVE-2025-24200														3	3	4	3	1	1		3	1		12	30							
CVE-2017-18368	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2			
CVE-2015-2051	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2			
CVE-2025-30406															1	2			2	3	6	2	2		8	14	3	14				
CVE-2025-0108	1	5	5	1	1	1	1	1	1	1	2	1	1	1	1	3	1	1	1	1	1	1	2	1	2	3	11	3				


- **CVE-2025-22457:** Ivanti / Connect Secure — Severity: 10.0 (Critical)
- **CVE-2025-29927:** Vercel / Next.js — Severity: 9.1 (Critical)

Other Examples

Vulnerability	Product	Sighting count	EPSS	Severity
CVE-2025-29927	next.js	167	89.24% (0.99521)	9.1
CVE-2025-24813	Apache Tomcat	128	93.55% (0.99827)	9.2
CVE-2024-4577	PHP	190	94.38% (0.99961)	9.8
CVE-2025-0282	Connect Secure	243	90.87% (0.99618)	9.0
CVE-2024-55591	FortiOS	126	92.79% (0.99756)	9.8
CVE-2024-10914	D-Link DNS-320	81	93.73% (0.9985)	9.2
CVE-2020-21650	Myucms	57	2.48% (0.83998)	9.1

Table 2: Top vulnerabilities from our April 2025 report, based on sightings and scoring data.

Least Sighted Vulnerabilities in the Last Month

- **Low-sighting outliers offer valuable intel**, even if absent from EPSS or predictive models.
- Particularly relevant in low-noise sources (e.g., MISP, private Telegram channels).
- Often rated low/medium by CVSS and have low EPSS scores.
- Trend highlights EPSS's dependence on public threat intel feeds.

Tracking the Exploitability of Vulnerabilities Prior to Public Disclosure

- **Google / Android:** <https://vulnerability.circl.lu/vuln/CVE-2024-43093#sightings>
- **Speedify VPN (macOS):** <https://vulnerability.circl.lu/vuln/CVE-2025-25364#sightings>
- **SourceCodester:** <https://vulnerability.circl.lu/vuln/CVE-2025-3821#sightings>
 - Low visibility, no EPSS score, few sightings

Notifications and Monitoring

- **Built-in notification system** to keep track of what matters to you.
- Easily add **vendor** and **product monitoring** (e.g., your stack, customers, or managed assets).
- Get notified when new items match your monitoring rules:
 - new vulnerabilities / advisories,
 - updates (CVSS, descriptions, references, affected products),
 - newly observed exploitation-related signals (via sighting API).
- Notifications can be delivered via:
 - **Email notifications** with a CSV attached (push),
 - **UI notifications** (in web).

1. **Create notification** select vendor/product.
2. **Choose frequency:** how fast (hourly, daily, weekly) to deliver via email or via the UI.
3. **Triage faster:** jump directly from the notification to the matching entries in Vulnerability-Lookup.
4. **Operationalize:** use notifications to feed your internal processes (ticketing, threat intel notes, asset impact review).

Goal: reduce “time-to-patch” and make continuous monitoring effortless for defenders and CSIRTs.

Toward Practical AI Applications

From Data to Datasets

1. Origin of the project
2. Design and Implementation
3. Empowering the Community
4. Scoring Vulnerabilities

Why We Share Datasets

- **Open Data Initiative:** CIRCL's commitment to making data openly available.
- Consistent open approach applied across all our projects.
- Regularly updated JSON dumps ¹³ and “AI” datasets ¹⁴.
- Public, unauthenticated API access for Vulnerability-Lookup.

¹³<https://vulnerability.circl.lu/dumps/>

¹⁴<https://huggingface.co/CIRCL/datasets>

The Messy Reality of Large Datasets

- Our experience with large datasets is not recent (Passive DNS¹⁵, BGP ranking¹⁶, MISP¹⁷, AIL¹⁸, Lookyloo¹⁹, etc.). And we learned from our past mistakes.
- Adapt to real-world conditions — avoid creating yet another format or standard.
- Deal with missing data, malformed JSON, and conflicting information.
- Tolerate unreliable or unstable remote servers (e.g., some CSAF providers).

¹⁵<https://www.circl.lu/services/passive-dns/>

¹⁶<https://github.com/D4-project/BGP-Ranking>

¹⁷<https://github.com/MISP>

¹⁸<https://github.com/ail-project>

¹⁹<https://github.com/Lookyloo>

- Turn messy data into structured, actionable insights.
- Link related vulnerabilities via enrichment, correlation, and crawling.
- Support the process with **VulnTrain**²⁰.

²⁰<https://github.com/vulnerability-lookup/VulnTrain>

Current datasets

Dataset	Size (rows)	Generation Time	Features
vulnerability-scores ²¹	641,547	10m45s	Descriptions (en), CVSS, CPE
vulnerability-CNVD ²²	122,546	1m31s	Descriptions (cn), CVSS
vulnerability-cwe-patch ²³	883	210m	Descriptions (en), CWE, patches (commit id + url + full diff)

²¹<https://huggingface.co/datasets/CIRCL/vulnerability-scores>

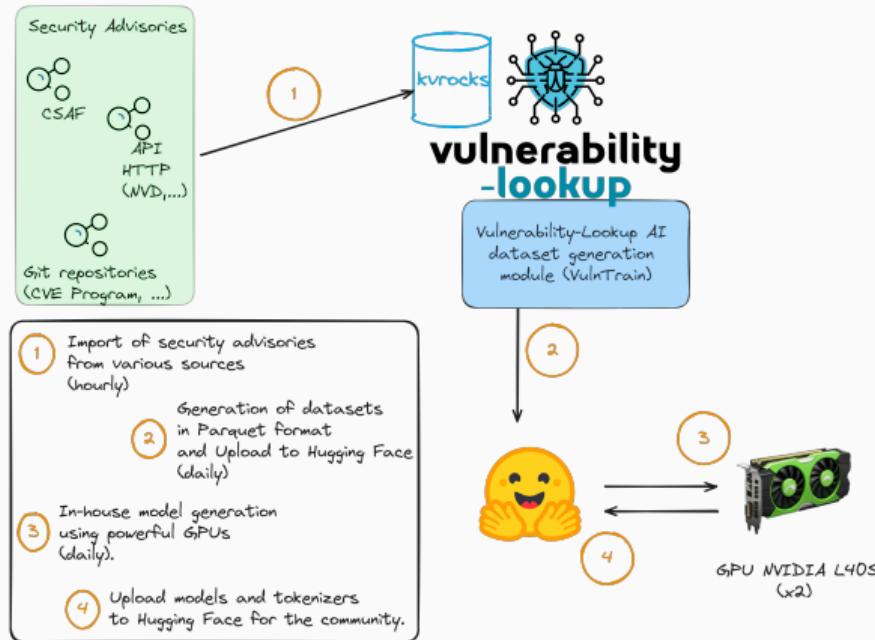
²²<https://huggingface.co/datasets/CIRCL/Vulnerability-CNVD>

²³<https://huggingface.co/datasets/CIRCL/vulnerability-cwe-patch>

From Datasets to Models

1. Origin of the project
2. Design and Implementation
3. Empowering the Community
4. Scoring Vulnerabilities

Why We Are Building AI Models


- CIRCL AI approach²⁴: we enhance existing solutions rather than replacing functional systems with NLP/ML/LLM solutions.
- AI-powered **enrichment** of vulnerability descriptions.
- Providing actionable insights to security experts when data is **missing or inaccurate** (e.g., severity, CWE, CPE information).
- We actively participate in collaborative research and development efforts, such as the EU-funded AIPITCH (AI-Powered Innovative Toolkit for Cybersecurity Hubs) project²⁵

²⁴<https://circl.lu/pub/ai-strategy/>

²⁵<https://www.science.nask.pl/en/research-areas/projects/12456>

Model generation workflow

- local training
- models are publicly shared
- regular update

Current Models

Model	Size	Epochs	Accuracy	Training Time
Severity classification ²⁶	125M params	5	0.8289	6.72h
Severity classification (CNVD) ²⁷	102M params	5	0.7817	65.989m
CWE guessing ²⁸	125M params	36-40	0.875	30m

²⁶<https://huggingface.co/CIRCL/vulnerability-severity-classification-roberta-base>

²⁷<https://huggingface.co/CIRCL/vulnerability-severity-classification-chinese-macbert-base>

²⁸<https://huggingface.co/CIRCL/cwe-parent-vulnerability-classification-roberta-base>

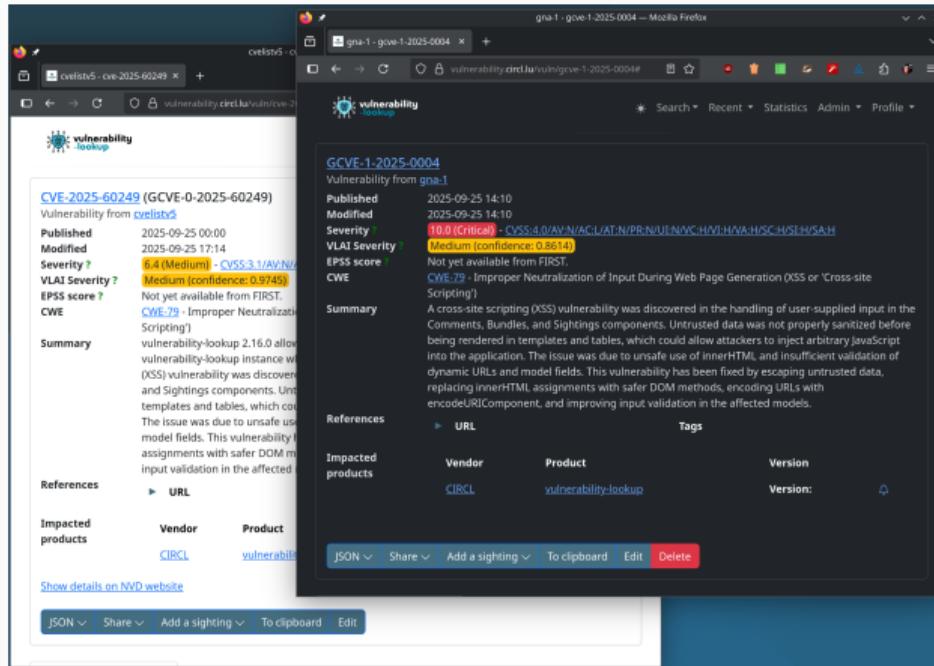
With different CVSS scores

The image shows a dual-tab browser interface. The left tab, titled 'cvelistv5 - CVE-2025-0108', displays detailed information for CVE-2025-0108, including its description, publication and modification dates, severity scores (CVSS 8.8 and 5.9), and a summary of the vulnerability. The right tab, titled 'Vulnerability Severity Classification RoBERTa... - a Hugging Face Space by CIRCL', is a machine learning model for classifying vulnerabilities. It features a text input field containing a detailed description of a PAN-OS authentication bypass vulnerability, a 'Submit' button, and a bar chart showing the distribution of CVSS scores: High (78%), Medium (28%), Low (1%), and Critical (1%).

Vulnerability Severity Classification

Enter a vulnerability description, and the model will classify its severity level.

text


An authentication bypass in the Palo Alto Networks PAN-OS software enables an unauthenticated attacker with network access to the management web interface to bypass the authentication otherwise required by the PAN-OS management web interface and invoke certain PHP scripts. While invoking these PHP scripts does not enable remote code execution, it can negatively impact integrity and confidentiality of PAN-OS. You can greatly reduce the risk of this issue by restricting access to the management web interface to only trusted internal IP addresses according to our recommended best practices deployment guidelines <https://www.paloaltonetworks.com/t5/community-blogs/tips-and-tricks-how-to-secure-the-management-access-to-palo-alto-networks-prisma-access-software>. This

Clear **Submit**

High

CVSS Score	Percentage
High	78%
Medium	28%
Low	1%
Critical	1%

Vulnerability in Vulnerability-Lookup — published 25 September 2025

The image shows two browser tabs side-by-side. The left tab is titled 'cvelists5 - cve-2025-60249' and displays the 'vulnerability-lookup' interface for a specific vulnerability. The right tab is titled 'gna-1 - gna-1-2025-0004 — Mozilla Firefox' and shows a detailed view of the vulnerability record.

Vulnerability from cvelists5

CVE-2025-60249 (GCVE-0-2025-60249)

Published 2025-09-25 00:00
Modified 2025-09-25 17:14
Severity ? 6.4 (Medium) - CVSS 3.1/AV:N/AC:L/PR:N/UI:N/C:H/I:H/A:H/SCH:SEH:SAH
VLA! Severity ? Medium (confidence: 0.9749)
EPSS score ? Not yet available from FIRST.
CWE CWE-79 - Improper Neutralization of Scripting Language Context (Cross-site Scripting)
Summary vulnerability-lookup 2.1.0 allows an attacker to inject arbitrary JavaScript into the application via the Comments, Bundles, and Sightings components. Untrusted data was not properly sanitized before being rendered in templates and tables, which could allow attackers to inject arbitrary JavaScript into the application. The issue was due to unsafe use of innerHTML and insufficient validation of dynamic URLs and model fields. This vulnerability has been fixed by escaping untrusted data, replacing innerHTML assignments with safer DOM methods, encoding URLs with encodeURIComponent, and improving input validation in the affected models.

References ► URL

Impacted products Vendor Product

CIRCL	vulnerability-lookup
-------	----------------------

[Show details on NVD website](#)

[JSON](#) [Share](#) [Add a sighting](#) [To clipboard](#) [Edit](#) [Delete](#)

GCVE-1-2025-0004

Vulnerability from gna-1

Published 2025-09-25 14:10
Modified 2025-09-25 14:10
Severity 10.0 (Critical) - CVSS 4.0/AV:N/AC:L/PR:N/UI:N/C:H/I:H/A:H/SCH:SEH:SAH
VLA! Severity Medium (confidence: 0.9614)
EPSS score Not yet available from FIRST.
CWE CWE-79 - Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting')
Summary A cross-site scripting (XSS) vulnerability was discovered in the handling of user-supplied input in the Comments, Bundles, and Sightings components. Untrusted data was not properly sanitized before being rendered in templates and tables, which could allow attackers to inject arbitrary JavaScript into the application. The issue was due to unsafe use of innerHTML and insufficient validation of dynamic URLs and model fields. This vulnerability has been fixed by escaping untrusted data, replacing innerHTML assignments with safer DOM methods, encoding URLs with encodeURIComponent, and improving input validation in the affected models.

References ► URL

Impacted products Vendor Product

CIRCL	vulnerability-lookup
-------	----------------------

[JSON](#) [Share](#) [Add a sighting](#) [To clipboard](#) [Edit](#) [Delete](#)

Patched in Cambridge at Vuln4Cast 2025 in the afternoon.

<https://github.com/vulnerability-lookup/vulnerability-lookup/commit/afa12347f1461d9481eba75ac19897e80a9c7434>

TLP:CLEAR

32/40

Few information (reserved 17 September 2025 - sightings since 9 September)

CVE-2025-57623 (GCVE-0-2025-57623)
Vulnerability from [cvelistv5](#)

Published 2025-09-25 00:00
Modified 2025-09-25 17:28
Severity ? High (confidence: 0.957)
VLA1 Severity ? High (confidence: 0.957)
EPSS score ? Not yet available from FIRST.
CWE n/a
Summary A NULL pointer dereference in TOTOLINK N600R firmware v4.3.0cu.7866_B2022506 allows attackers to cause a Denial of Service.
References ► [URL](#) Tags

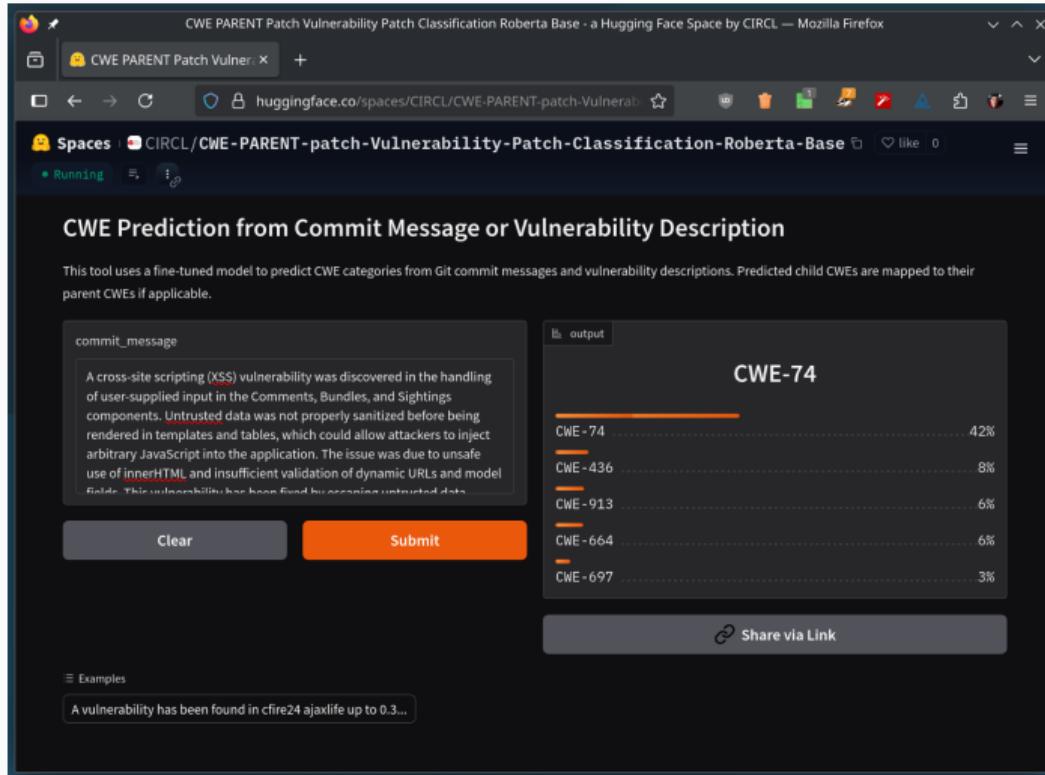
Impacted products	Vendor	Product	Version
n/a	n/a	n/a	Version: n/a

[Show details on NVD website](#)

JSON Share Add a sighting To clipboard Edit

Related vulnerabilities 0 Comments 0 Bundles 0 Sightings 2 Sightings correlations CWEs and mitigations

MITRE EMB3D


Sightings

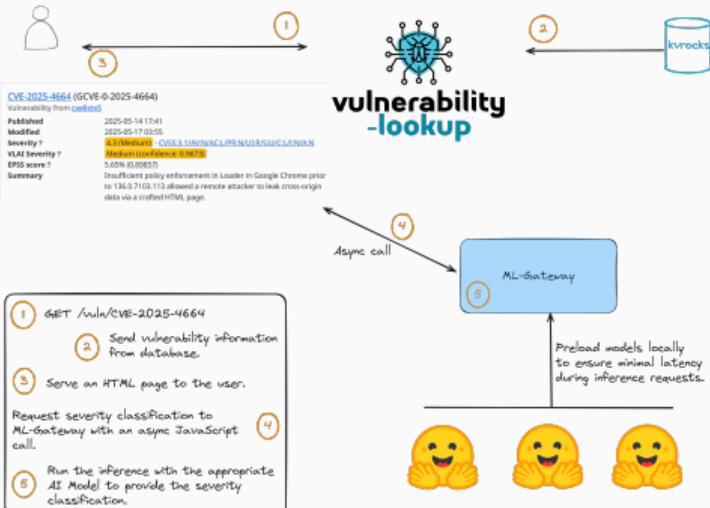
Author	Source	Type	Date
automation	https://infosec.exchange/users/cR0w/statuses/115266254335547502 (correlations)	seen	55 minutes ago
automation	https://gist.github.com/z472421519/d17061ea79a72d39fe69c000fa1a6280 (correlations)	seen	16 days ago

Nomenclature

TLP:CLEAR

CWE Guessing (GCVE-1-2025-0004 - CWE 79)

The screenshot shows a Mozilla Firefox browser window with the following details:


- Title Bar:** CWE PARENT Patch Vulnerability Patch Classification Roberta Base - a Hugging Face Space by CIRCL — Mozilla Firefox
- Address Bar:** huggingface.co/spaces/CIRCL/CWE-PARENT-patch-Vulnerability-Patch-Classification-Roberta-Base
- Header:** Spaces | CIRCL/CWE-PARENT-patch-Vulnerability-Patch-Classification-Roberta-Base | like 0
- Content Area:**
 - commit_message:** A text input box containing a commit message describing a cross-site scripting (XSS) vulnerability.
 - Buttons:** Clear (grey) and Submit (orange).
 - Output:** A chart titled "CWE-74" showing the distribution of CWE categories. The data is as follows:

CWE Category	Percentage
CWE-74	42%
CWE-436	8%
CWE-913	6%
CWE-664	6%
CWE-697	3%

 - Share:** A "Share via Link" button with a link icon.
 - Examples:** A section showing an example of a vulnerability found in a file.

TLP:CLEAR

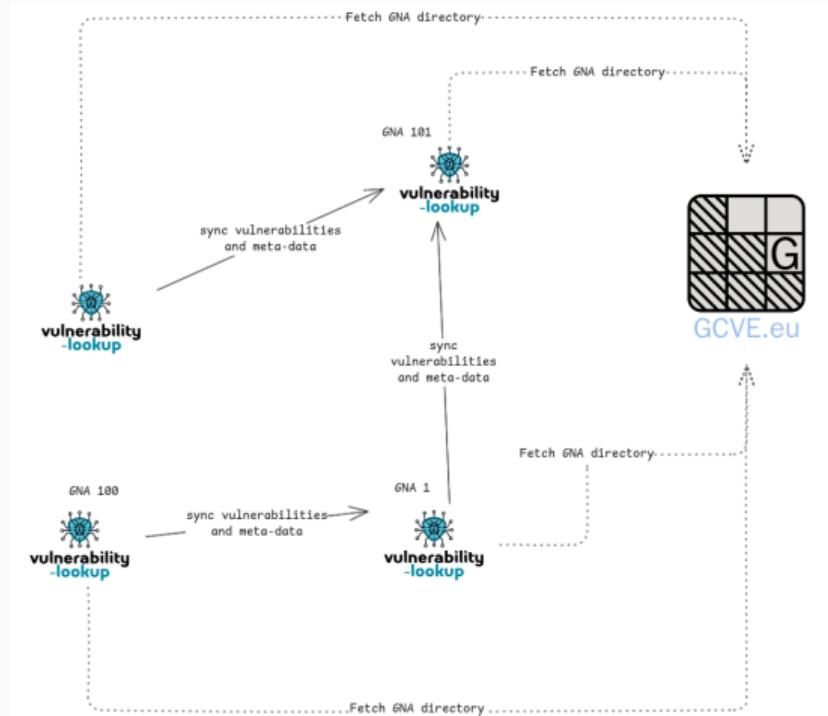
Integration

- Optional integration
- No dependencies with Vulnerability-Lookup
- Models are pulled from Hugging Face and preloaded locally
- Documented API (OpenAPI) to trigger the inferences
- <https://github.com/vulnerability-lookup/ML-Gateway>

Example

```
$ curl -X 'POST' \
  'https://vulnerability.circl.lu/api/vlai/severity-classification' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
    "description": "An authentication bypass in the API component of Ivanti Endpoint Manager Mobile 12.5.0.0 and prior allows attackers to access protected resources without proper credentials via the API."
  }'
  {"severity": "High", "confidence": 0.8225}
```

**Lookup and AI are Cool, but
Publishing is Even Cooler**



- The primary role of GCVE²⁹ is to provide **globally unique identifiers** to GCVE Numbering Authorities (GNAs).
- **GNAs operate autonomously**, with full control over how they assign and manage identifiers.
- **GCVE publishes Best Current Practices (BCPs)** on directory management, Coordinated Vulnerability Disclosure (CVD), and publication protocols.
- GCVE maintains and publishes the **official directory of all GNAs**, including their publication endpoints.

²⁹<https://gcve.eu/>

Decentralized Publication Standard

Closing

Future Development

- Deeper analysis of the content and context of sightings, including **source reliability assessment**.
- Full-text search capabilities across all integrated sources.
- Integration of scoring models such as Vuln4Cast³⁰, with testing planned on our dataset to enhance reproducibility.
- **Improved notification capabilities** for newly observed vulnerabilities via webhooks.

The project is evolving rapidly — feedback and feature suggestions are always welcome!

³⁰<https://github.com/FIRSTdotorg/Vuln4Cast>

References

- 🏠 <https://www.vulnerability-lookup.org>
- 🌐 CIRCL public instance <https://vulnerability.circl.lu>
- 💻 Source code <https://github.com/vulnerability-lookup/vulnerability-lookup>
- 💽 Dataset, AI Model Training, Models
<https://github.com/vulnerability-lookup/VulnTrain>