Forensic Analysis
The Treachery of Images

Alexandre Dulaunoy
a@foo.be

February 10, 2017
Disclaimer

Rene Magritte "La Trahison des Images" ("The Treachery of Images") (1928)
Gangster Story

- The Italian gangster and forensic analysis...
Gangster Story

- Moral of the story: "Learning forensic analysis is useful even for gangster".
- Forensic Analysis can help to discover any media sanitization defect.
A story from the other side...

Nagra SNST Recorder (gathered by Matt Blaze)

- An audio recorder (including a tape) purchased via eBay.
- But the tape contains an evidence recording of a confidential informant.
- http://www.crypto.com/blog/watching_the_watchers_via_ebay/
Forensic Analysis - Theory

- Broad definition of (computer) forensic analysis: "Forensic analysis involves the preservation, identification, extraction, documentation and interpretation of computer data"

- To reach those goals, the forensic specialists follow clear and well-defined methodologies. Flexibility is highly required when encountering the unusual.
Forensic Analysis - Theory - Methodology

- Acquire the evidence without altering or modifying the original source.
- Authenticate that you gathered the evidence in a proper way.
- Analyze the non-original collected data without modifying it.
Forensic Analysis - Theory - Methodology

- Act always in ways that you can easily explain to a court.
- Think twice before doing any action on the collected data.
- Take notes of everything not only the action taken but also any discoveries.
Forensic Analysis - Theory - The Order of Volatility (OOV)

The expected life of data:

<table>
<thead>
<tr>
<th>Type of Data</th>
<th>Life Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers or cache</td>
<td>Nanoseconds</td>
</tr>
<tr>
<td>Main Memory</td>
<td>Ten Nanoseconds</td>
</tr>
<tr>
<td>Network State</td>
<td>Milliseconds</td>
</tr>
<tr>
<td>Running Processes</td>
<td>Seconds</td>
</tr>
<tr>
<td>Disk</td>
<td>Minutes</td>
</tr>
<tr>
<td>Backup Medias</td>
<td>Years</td>
</tr>
<tr>
<td>CD-ROMS or printouts</td>
<td>Tens of years</td>
</tr>
</tbody>
</table>

Sometimes a small process trace can explain more than 50 gigabytes of a single backup...
Forensic Analysis - Theory - Layer(s)

- A computer system is a machine playing with the "treachury of images".
- An operation is often using one or more abstraction to be completed.
- The top-down approach of information from high-meaning to low-meaning is critical for forensic analysis.
- Computers become more and more mature but become less predictable at the row level.
Forensic Analysis - Theory - Layer(s) - The File System case

The file system is a great source of forensic information but:

- Forensic data must be captured at the right layer. (e.g. using the tool of the file system is useful but not enough)
- Be prepared to collect partial information.
- File system analysis is often the next step after a detection (e.g. from the network)
- File system analysis can be time consuming.
Forensic Analysis - General Practice

▶ First rule: Stay calm.
▶ Second rule: Limit risk but keep OOV in mind.
▶ Third rule: Never work on real data.
Forensic Analysis and Incident Response

- Prevention
- Detection
- Analysis
- Containment
- Investigation
- Eradication
- Postmortem
Forensic Analysis and Training

- The best way to be prepared for doing forensic analysis. It’s to do it regularly.
- Participate to the reverse challenge of the honeynet project.
- Collect old filesystem and try to understand the last actions executed on the system.
- Prepare your legal staff to forensic analysis.
File System Analysis

File System Analysis can be used for

- Analysis the activities of an attacker on the honeypot file system.
- Analysis of a malware leaving traces on the file system.
- Analysis of a compromised system to recover legitimate and malicious activities.
- Recovering lost files or data on a file system.
- Correlating and validating memory or network analysis with the file system activities.
File System Analysis - Time is critical

Don’t forget the following points:

- Timestamps stored on a system are not always in the same format (e.g. some might be in UTC, GMT or in system-local time).
- Timestamps can be also in different format (e.g. Epoch timestamp in 32-bit or 64-bit, NTFS 64-bit timestamp).
- Timezone and time are also important on your analysis workstation (e.g. don’t mix up your timezone and the analysis timezone).
- Summer time and winter time are not the same in various timezones.
- GMT and UTC are not the same.
- Don’t forget to take note of all the time, time zone or time references given during an acquisition.
File System Analysis - Format?

- ntfs (NTFS)
- fat (FAT (Auto Detection))
- ext (ExtX (Auto Detection))
- iso9660 (ISO9660 CD)
- hfs (HFS+)
- ufs (UFS (Auto Detection))
- raw (Raw Data)
- swap (Swap Space)
- fat12 (FAT12)
- fat16 (FAT16)
- fat32 (FAT32)
- ext2 (Ext2)
- ext3 (Ext3)
- ufs1 (UFS1)
SATA, IDE, USB 3.0/2.0/1.1, SAS, and FireWire (1394A/B).

- Acquisition in software or hardware?
- Support of the acquisition to another equivalent disk?
- Can we trust the acquisition process\(^1\)?
- How long it will take?

\(^1\)http: //events.ccc.de/congress/2012/Fahrplan/events/5327.en.html

Prototyping Active Disk Antiforensics

Alexandre Dulaunoy
a@foo.be
Acquisition with a write-blocker

- hdparm -I /dev/raw_disk
- dd versus dcflldd versus dc3dd
- monitoring disk acquired, splitting evidences and hashing
- storing evidences using squashfs
Many proprietary and free software tools exist for file system analysis. In this lab, we will use sleuthkit\(^2\) as a basis.

- Sleuthkit is including TCT (the coroner toolkit) but evolved overtime to support more file system and new tools.
- Sleuthkit got a GUI companion called Autopsy.
- Sleuthkit is able to analyze a lot of file system format from raw acquisition.
- Sleuthkit supports the extraction of metadata and timeline from supported file system in a non intrusive way.

\(^2\)http://www.sleuthkit.org/
From raw to file systems

Extracting partition information:

```
mmls /home/adulau/dess/disk-image/raw.dd.raw
```

DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

<table>
<thead>
<tr>
<th>Slot</th>
<th>Start</th>
<th>End</th>
<th>Length</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:</td>
<td>Meta</td>
<td>0000000000</td>
<td>0000000000</td>
<td>0000000001</td>
</tr>
<tr>
<td>01:</td>
<td>-----</td>
<td>0000000000</td>
<td>0000000096</td>
<td>0000000097</td>
</tr>
<tr>
<td>02:</td>
<td>00:00</td>
<td>0000000097</td>
<td>0000250879</td>
<td>0000250783</td>
</tr>
</tbody>
</table>

Extracting the BOOT sector:

```
dd if=/home/adulau/dess/disk-image/raw.dd.raw seek=0 count=97 bs=512 of=/tmp/boot
```
File System Analyses - SleuthKit - fls

fls lists file and directory names in a disk image.

```
fls -lr -o 97 /home/adulau/dess/disk-image/raw.dd.raw
/usr/local/bin/fls -r -p fat-test.dd
```

As this is the representation of the file system, you can dump/recover files based on their inode reference

```
/usr/local/bin/icat fat-test.dd 965
```
fls -lr -m / -o 97 /home/adulau/dess/disk-image/raw.dd.raw | mactime -b -
Thu Jan 01 1970 01:00:00 3541836 ..c. r/rrwxrwxrwx 0 0 1029 /DCIM/111
2255115 ..c. r/rrwxrwxrwx 0 0 1030 /DCIM/111
884 ..c. r/rrwxrwxrwx 0 0 183301 /DCIM/CAN
0 ..cb r/rrwxrwxrwx 0 0 3 /CANON_DC
(Volume Label Entry)
16384 ..c. d/drwxrwxrwx 0 0 4 /DCIM
16384 ..c. d/drwxrwxrwx 0 0 517 /DCIM/111
16384 ..c. d/drwxrwxrwx 0 0 518 /DCIM/CAN
Sun Jun 02 2013 00:00:00 3541836 .a.. r/rrwxrwxrwx 0 0 1029 /DCIM/111
2255115 .a.. r/rrwxrwxrwx 0 0 1030 /DCIM/111
884 .a.. r/rrwxrwxrwx 0 0 183301 /DCIM/CAN
0 .a.. r/rrwxrwxrwx 0 0 3 /CANON_DC
(Volume Label Entry)
16384 .a.. d/drwxrwxrwx 0 0 4 /DCIM
16384 .a.. d/drwxrwxrwx 0 0 517 /DCIM/111
16384 .a.. d/drwxrwxrwx 0 0 518 /DCIM/CAN
Sun Jun 02 2013 15:42:32 3541836 m..b r/rrwxrwxrwx 0 0 1029 /DCIM/111
16384 m..b d/drwxrwxrwx 0 0 4 /DCIM
16384 m..b d/drwxrwxrwx 0 0 517 /DCIM/111
Sun Jun 02 2013 15:42:46 2255115 m..b r/rrwxrwxrwx 0 0 1030 /DCIM/111
Sun Jun 02 2013 15:44:08 884 m..b r/rrwxrwxrwx 0 0 183301 /DCIM/CAN
16384 m..b d/drwxrwxrwx 0 0 518 /DCIM/CAN
Sun Jun 02 2013 16:33:04 0 m... r/rrwxrwxrwx 0 0 3 /CANON_DC
(Volume Label Entry)
SleuthKit - fls - mactime

Usually in forensic analysis, you’ll need to have a time line sorted for all the events on a file system. SleuthKit provides a tool called mactime allowing to use fls output to generate a time line.

```
/usr/local/bin/fls -mr fat-test.dd
| /usr/local/bin/bin/mactime -b -
```
SleuthKit - fls - mactime output

Mactime output and file system interpretation:

<table>
<thead>
<tr>
<th>fs</th>
<th>m</th>
<th>a</th>
<th>c</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXT2/3</td>
<td>Modified</td>
<td>Accessed</td>
<td>Changed</td>
<td>N/A</td>
</tr>
<tr>
<td>FAT</td>
<td>Written</td>
<td>Accessed</td>
<td>N/A</td>
<td>Created</td>
</tr>
<tr>
<td>NTFS</td>
<td>File</td>
<td>Modified</td>
<td>MFT Modified</td>
<td>Created</td>
</tr>
<tr>
<td>UFS</td>
<td>Modified</td>
<td>Accessed</td>
<td>Changed</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Mactime is doing an interpretation of the fls output. It might be missing some additional timestamp from some file system format (e.g. the deleted timestamp in Ext2/3). Extended time or values can usually be check with "istat".
SleuthKit - Autopsy Forensic Browser

Autopsy Forensic Browser\(^3\) is a web interface to the SleuthKit toolsuite and provide an easy way to handle forensic analysis. Take the existing image and test it with Autopsy.

\(^3\)http://www.sleuthkit.org/autopsy/index.php
Forensic Analysis

Bibliography

- Forensic Discovery, Dan Farmer, Wietse Venema, Addison Wesley
- Incident Response, Kenneth R. Van Wyk, O’Reilly
- Computer Forensics, Incident Response Essentials, Warren G. Kruse, Addison Wesley
- File System Forensic Analysis, Brian Carrier, Addison Wesley
- Mechanisms, New Media and the Forensic Imagination, Matthew G. Kirschenbaum, The MIT press
Use case 1

- You have a public web server, hosted in a datacenter, that has been compromised (the main page has been defaced).
- The public web server also contains private information from the customer (mainly login and password).
- What should I do?
Use case 2

- A laptop from a potential hostile employee has been given to you for analysis.
- What should I do?
Use case 3

- You discovered a enterprise server with a proprietary software installed and doing unusual network connection to Internet.
- How forensic analysis could help me?
Use case 4

- An employee gave you a flashcard where he would like to recover documents deleted?
- How you would proceed?
Q and A

- Thanks for listening.
- a@foo.be