
Cleartext Passwords in Linux Memory

Sherri Davidoff

alien@mit.edu

July 26, 2008

Abstract

Upon examination, the memory of a popular Linux distribution contained many cleartext

passwords, including login, SSH, Truecrypt, email, IM and root passwords. These passwords

are retained by running applications and stored as plain text in memory for extended periods

of time. The author investigated the source of these passwords and presents a proof-of-concept

method for recovering passwords from memory. Recently, cold boot researchers demonstrated

that memory is not as volatile as commonly expected, and that data from memory can be

recovered with physical access to systems in a very short period of time. This has opened up

a new class of attacks in physical IT security, and significantly raised the risk associated with

cleartext passwords in memory.

1 Introduction

Memory contains a concentrated wealth of information, such as usernames, passwords, encryption
keys, and personal data. This information can be used by attackers to gain access to related
systems, or by forensic investigators to unlock encrypted files and partitions. The author of this
paper examined the contents of Linux memory, identified cleartext passwords, investigated their
source, and determined a proof-of-concept signature-based method for recovering them.

The Linux test system consistently left cleartext passwords in memory, including the login, SSH,
email, IM, Truecrypt and root passwords. While cleartext passwords in memory have been a
known, relatively low security risk for many years, the issue has taken on new importance in
light of the recent research on cold boot data remnance in memory. In February 2008, a team
led by Ed Felten of Princeton University discovered that DRAM is not as volatile as commonly
expected. Felten’s team studied the lifetime of data in DRAM, and demonstrated that, “[c]ontrary
to popular assumption, DRAMs used in most modern computers retain their contents for seconds
to minutes after power is lost, even at room temperature and even if removed from a motherboard.”
Felten’s team leveraged this discovery to retrive encryption keys from memory. In their paper, they
commented that “[r]esidual data can be recovered using simple, nondestructive techniques that
require only momentary physical access to the machine.”1

In other words, in little more than the time it takes to reboot a system, attackers can dump
a system’s memory. Memory can be dumped onto a USB key or other device, such as the iPod
dumper demonstrated by William Paul and Jacob Appelbaum at the 2008 Cansec West conference.
It can also be dumped over the network. When memory contains cleartext passwords, the attacker
can retrieve these and use them to gain access to encrypted data, email accounts, servers and other
networked systems. Cold boot attacks significantly increase the risk posed by cleartext passwords
and other sensitive data in memory.

To demonstrate that cleartext password recovery is achievable, the author of this paper identified
bytes which consistently surrounded the cleartext Truecrypt password in memory and used these as
a signature to retrieve unknown Truecrypt passwords from memory on another Linux system. This
was accomplished using the Memsniff memory searching tools, which were originally developed and
released by Sherri Davidoff and Tom Liston at the 2008 Cansec West conference.2

1Felten, Ed et al. “Lest We Remember: Cold Boot Attacks on Encryption Keys.” February, 2008
2Davidoff and Liston, “Cold Boot Forensics Workshop,” Cansec West 2008,

1

The author hopes that this paper will provide forensic investigators with a more specific under-
standing of what information is commonly available for recovery, and help the Linux development
community understand and appropriately reduce the presence of cleartext passwords in memory.
Future work will include extending this cleartext password analysis to Windows and Mac operat-
ing systems, and identifying other signatures and methods for automatically extracting cleartext
passwords from memory.

2 Methodology

Testing was conducted on a default installation of Ubuntu 7.10 (2.6.22) with no swap partition. The
Coroner’s Toolkit, memdump, emacs and build-essentials were also installed. The physical system
was a Thinkpad T43 with 2G of physical memory. Two tools were used to capture memory: pcat
(from The Coroner’s Toolkit), and dd. Pcat was used to copy the memory of a specific process,
whereas dd was used to create an image of memory, including areas not associated with a specific
process.

During each iteration of the test, the researcher logged into the system and manually launched the
following programs: Terminal, su, Thunderbird, Pidgin, GPG, Truecrypt, SSH (in that order). The
programs were deliberately not configured to store passwords. Each password was typed manually
every time.

After all programs had been launched, process memory was captured live using pcat, and redi-
rected to an external USB drive. The testing time was not held constant, and ranged from five to
forty-five minutes. The applications were active when the snapshots were taken. There were a total
of twenty-five tests. Please see Appendix A for the detailed testing procedure.

The author also conducted separate experiments in which dd was used to image physical memory,
instead of capturing process memory using pcat. However, on the Linux system examined, access
to ZONE HIGHMEM through /dev/mem is restricted, limiting the images to the lower 896M of
physical memory (approximately half of the physical memory in use on the test system). Nonethe-
less, the results of ZONE NORMAL memory analysis were instructive and have been included in
this report. After the data was collected, the author wrote scripts which searched the memory
snapshots for the known usernames and passwords. Based on these results, interesting sections of
memory were manually examined using a hex editor.

Data Number of occurrences Process name

Login password 1 /usr/sbin/gdm
Encrypted login password 3 /usr/sbin/gdm
Email password 1 /usr/lib/thunderbird/thunderbird-bin
IM password 2 pidgin
GPG password 0
GPG decrypted text 1 gnome-terminal
Truecrypt password 1 truecrypt
SSH password 1 Found in dd image; not specific process memory
Root password 2 Found in dd image; not specific process memory

Encrypted root password
3 su
3 su

Summary of results.

3 Findings

This section includes detailed information regarding each of the passwords which were tested.
When consistent location information or other patterns were observed, they have been reported.

http://sourceforge.net/projects/memsniff/

2

Testing was done in a specific, controlled environment, and therefore the location of passwords and
surrounding data may differ on other systems.

3.1 Login Password

The Linux login password was found as Ascii text in the Gnome Display Manager process. When the
login password was typed correctly on the first try, it appeared 558016 bytes into process memory.
Multiple login attempts caused the location of the correct password to shift by approximately 5-10K.

Information from /etc/shadow and /etc/passwd, including the login shadow password, username,
long name, UID, GID, home directory, and shell, was also found in the GDM process memory. The
shadow password consistently appeared three times within GDM process memory. When the login
password was typed correctly on the first try, the shadow password was consistently found at byte
offsets 558396, 560684, and 561492.

Figure 1: GDM Process Memory viewed in a hex editor. Note the login password (highlighted), as
well as the encrypted password and other data from /etc/passwd and /etc/shadow.

3.2 Email Password

The “thunderbird-bin” process memory contained the user’s plain text email password, name, email
address, mail server and related information in Ascii format.

The email password was stored at least once, and sometimes twice, in thunderbird-bin process
memory. It was not consistently found at a specific location, but was consistently found within
0.3M of the 12100000 byte offset (the total thunderbird-bin process memory was around 117M).

3

As expected, detailed information about the mail server connection, folders and current messages
was also contained within the thunderbird-bin process memory.

Figure 2: Thunderbird-bin Process Memory viewed in a hex editor. The user’s email password is
highlighted.

3.3 IM Password

The IM password was stored twice in the “pidgin” process memory, as Ascii text. It generally
appeared within the first 5M of process memory (total process memory was 62M). The IM username
appeared 34 times within the Pidgin process memory.

3.4 Truecrypt Password

Although the graphical checkbox for “Cache passwords and keyfiles in memory” was NOT checked,
the Truecrypt password consistently appeared as Ascii text within the Truecrypt process memory.
It always appeared at the 4120792 byte offset within process memory. When the password was
typed correctly on the first try, the preceding bytes were the same across all tests. (Incorrect
password attempts changed the preceding bytes, although not the password location.) Other re-
lated information, such as the path to the encrypted volume, was listed shortly after the cleartext
password in memory.

Figure 3: Screenshot of Truecrypt volume being mounted. Note that the “Cache passwords and
keyfiles in memory” box is NOT checked, yet the cleartext password was consistently found in
process memory.

4

Figure 4: Truecrypt process memory viewed in a hex editor, with the Truecrypt password high-
lighted. The relative location and preceding bytes were the same for all captures when the password
was typed correctly.

5

3.5 SSH Password

The cleartext SSH password was stored as Ascii text within a large block of nulls approximately
870M into the memory image. It was usually immediately followed by snippets of other commands
that had been typed into the same terminal. The SSH password was often trivial to recover using
strings because it usually appeared shortly after the SSH command, last login information and a
home directory listing.

Figure 5: Cleartext SSH password in memory.

a)

b)

c)

d)

e)

Figure 6: Screenshot of the Ascii strings which appeared before the SSH password in memory, from
five individual tests. The last login data often shortly preceded the cleartext SSH password in
memory.

6

3.6 GPG Data

The GPG passphrase was not found within memory. However, GPG was used within a terminal
to decrypt the contents of a file on the desktop, and the contents of the decrypted file were found
with other shell data in the gnome-terminal process memory. The GPG long name, email address
and comment were also included.

Figure 7: Ascii strings from GPG process memory. Note that the decrypted file contents
(“!memtest1textfile!” were cached and are displayed here.

3.7 Root Password

The cleartext root password was consistently recovered in Ascii format from a dd image of memory
(it was not found in the memory of any specific process gathered using pcat). During testing, the
root password was typed into two separate terminals using the “su root” command. It was found
one or two times in memory per test, approximately 870M into the memory image.

The root password was stored in a similar location and format to the SSH cleartext password.
Both passwords were normally found within a block of nulls, immediately followed by pieces of
other text that had been previously or subsequently typed on the keyboard. The cleartext root
password was often located shortly after the “su root” command, in an area which also contained
other commands and passwords.

Figure 8: Cleartext root password in memory.

Note: the encrypted root password is also stored in the process memory of the “su” program.

7

a)

b)

c)

Figure 9: Screenshot of the Ascii strings surrounding the root password in memory, from three
individual tests. The command, “su root,” often shortly preceded the root password in memory.

8

4 Constraints

The test system was deliberately configured without a swap partition to prevent pollution of memory
across multiple reboots. The author also removed the battery and power supply from the system
in between test runs to lower the risk of power being supplied to memory.

Due to the transient nature of memory, some data was certainly overwritten before and during
collection. The data was written to a file system on an external USB drive, and not over the
network, so data in the file system cache was modified during data collection. Each command
typed into the data collection terminal also modified the shell history stored in memory.

In general, the time that data remains in memory and swap space is highly dependant upon
system activity and configuration. Cleartext passwords may remain in systems with swap space
for long periods of time. In systems with swap space, the author has recovered passwords from
multiple prior reboots.

In the version of Linux tested, there was an 896M limit on /dev/mem access. As a result, approxi-
mately 1.1G of physical memory (ZONE HIGHMEM) was not imaged or examined. The author did
examine the ZONE NORMAL memory which was captured, in addition to process memory. The
SSH and root passwords were consistently retrieved from dd images of ZONE NORMAL memory,
although they were not found within a specific process accessible via pcat. The GPG password was
not found within process memory or ZONE NORMAL memory, but it it is possible that it was
stored in ZONE HIGHMEM and was simply not captured.

The author took careful precautions to avoid memory pollution and ensure that each iteration of
the test represented a clean slate. Some data in memory may have been overwritten during testing,
and some of it was not captured during the collection process. Therefore, it is possible to draw
conclusions based on what was found, but not based on what was missing.

5 Password Recovery

There are a number of strategies for recovering passwords from memory. For example:

•Byte Signature: Researchers can look for bytes that are consistently near known password in
memory, and use this as a signature to later extract unknown passwords.

•Strings: Researchers can search memory for strings which are often near the password in
memory.

•Location: Specific passwords may consistently be found near particular locations in memory
(especially relatively within process memory). These areas may be identified and extracted.

For development of a proof-of-concept example, the author focused primarily on the byte signature
method for password recovery. It is often possible to identify byte patterns which consistently
surround known passwords. The author was successfully able to find a signature for the Truecrypt
password, and then used it to recover unknown Truecrypt passwords on another system.

To accomplish this, the author used a hex editor and the Memsniff tools to examine the bytes
surrounding the known Truecrypt password in process memory. The author examined process
capture from both the test system and another system, with different volume passwords. These
immediately revealed striking similarities, as shown in Figure 10.

The bytes immediately preceding the Truecrypt password were:

0? 00 00 00 00 75 6c 6c 00 6c 00 00 49 00 00 00

The “?” represents a nibble that was not consistent. Further experiments revealed that the ?
nibble represented the length, in characters, of the Truecrypt password. There was no observed
consistency in the bytes immediately following the Truecrypt password.

The author was able to consistently extract the Truecrypt password from memory using the
following command:

9

a)

b)

Figure 10: Two examples of Truecrypt process memory viewed in a hex editor, with the signature
highlighted. The password immediately follows the signature, and begins and ends with an excla-
mation point. Note that the byte immediately before the signature appears to correspond with the
password length. Example a) was collected from the Ubuntu 7.10 test system, whereas example b)
was collected from an Ubuntu 8.04 distribution. Both systems were running Truecrypt 5.1a.

10

This command prints the characters immediately following the given signature in memory. The
author tested this out on a second Linux system, running a different version of Ubuntu, and was
able to automatically extract unknown Truecrypt passwords from memory.

6 Analysis

The presence of cleartext passwords in memory increases the risk that loss of a single laptop, or the
compromise of a single desktop, will lead to the compromise of other systems. This is especially
noteworthy due to the recent development of “cold boot” memory dumping attacks, which in certain
cases facilitate unprivileged access to system memory. This could allow insiders, such as low-level
employees, to steal administrative credentials, or help mobile device theives gain access to encrypted
files and related systems.

In this paper, common Linux programs were analyzed for cleartext password retention. In all but
one case, the cleartext password was present in memory and remained there consistently for the
duration of the test (up to forty-five minutes). Although for the purposes of testing the system
did not include swap space, most Linux systems do contain swap space, and this can dramatically
extend the lifetime of passwords. Data which is swapped out is written to disk, and may include
cleartext passwords. In casual testing, the author has recovered data from swap space which was
last used months previously.

It is difficult to ensure that passwords are not retained in system memory. A computer is a very
complex environment, and application developers have only limited control. Passwords may be
cached for many different reasons, not simply by the application itself. To address the issue of
cleartext passwords in memory, developers would need to examine application code, the effect of
compiler optimizations, shared libraries, and operating system code.

In some cases, retaining cleartext passwords may be a deliberate design choice. For example, it
is possible that the developers of Thunderbird chose to retain the cleartext password in memory to
facilitiate automated email retrieval. At a minimum, obfuscating the password rather than storing
it in plain text would prevent an attacker from using a listing of memory strings to conduct a
successful brute force attack.

In other cases, the applications tested were written by programmers who undoubtedly had security
considerations in mind and endeavored to avoid retaining passwords in memory. SSH is one such
example. The fact that the SSH password was never found in the SSH process memory itself
indicates that the application programmers were careful to ensure that it was not stored there.
Nevertheless, the SSH password still appeared as plain text outside of process memory. Similarly,
the authors of Truecrypt undoubtedly considered the question of whether to store passwords and
keyfiles in memory, because it is listed as an option for the user every time a volume is mounted.
However, regardless of whether the box was checked, the password did appear in process memory.

To prevent passwords from being retained in memory, software developers would need to overwrite
memory once the password is no longer needed. This would have to be enforced not just by the
application memory itself, but in all the libraries and operating system code which also handle the
password. Quickly overwriting passwords in memory would minimize the risk of capture via physical
access, cold boot techniques, swap space forensics or simple, live, privileged memory captures.

The author’s initial analysis of the location and data surrounding cleartext passwords in memory
indicates that it will be possible to develop effective retrieval tools. At a minimum, strings from
memory can be used to create a dictionary for cracking passwords, and it is likely that signatures
can be developed to quickly find and extract passwords from memory.

A proof-of-concept signature-based memory sniffer called “Memsniff” (originally “DaisyDukes”)
was presented by Sherri Davidoff and Tom Liston at the 2008 Cansec West conference. The presen-
ters were able to extract the Outlook Express 6 from a Windows memory image based on consistent
bytes located before and after the password in memory.

11

In this paper, the author used the Memsniff tools to consistently retrieve cleartext Truecrypt
passwords from Linux memory. The author has also created a Sourceforge project called “memsniff”
for development of a bootable memory sniffer, and invites interested parties to join the project:

http://sourceforge.net/projects/memsniff/

Snapshots of interesting process memory that were used in this project are publicly available for
download at:

http://philosecurity.org/research/cleartext-passwords-linux/

7 Conclusion

Cleartext passwords in memory increase the risk that a single compromised desktop or laptop
will be used as a gateway for compromising related accounts, machines and applications. This is
particularly true given Felten et al’s recent report on cold boot data remnance in memory, which
implies that in certain cases, anyone with physical access to a system can recover contents of
memory.

In this report, the author provides detailed location and context information for cleatext pass-
words in Linux memory. This includes Linux login and root passwords, as well as Thunderbird,
Pidgin, Truecrypt and SSH passwords. The author also presents a proof-of-concept demonstration
for consistently recovering the cleartext Truecrypt password from a Linux memory dump. The
“Memsniff” tools used for the demonstration are available on Sourceforge.

It is the author’s hope that this paper is useful to forensic analysts and the Linux development
community.

8 Thanks

The author would like to thank the following individuals for their technical and editing assistance:
Jacob Appelbaum, Blake Brasher, Aaron Culich, Matt Knox, Tom Liston, Matt Malchano, Eric
Michaud, Seth David Schoen, Weitse Venema.

References

[1]Jacob Appelbaum, Advanced Memory Forensics: Releasing the Cold Boot Utilities, The Last
HOPE, New York, New York, July 2008

[2]Mariusz Burdach, Finding Digital Evidence in Physical Memory, Black Hat, Las Vegas, NV 2006

[3]Ed Felten et al, Lest We Remember: Cold Boot Attacks on Encryption Keys,
http://citp.princeton.edu/pub/coldboot.pdf February 2006

[4]Jorge Urrea, An Analysis of Linux RAM Forensics, Naval Postgraduate School Thesis, Monterey,
California March 2006

12

A Appendix A - Testing Procedure

•Unplug laptop power cord and ensure battery is removed.

•Plug in laptop

•Boot into the most recent Ubuntu kernel

•Login (Enter login password)

•Plug in external drive (automount)

•Open three terminals.

•In two terminals, type “su root,” and enter the root password for each.

•One of the root terminals will be used exclusively for capturing data from the system. We
will refer to this as the “data collection terminal.”

•In the data collection terminal, change to the current data capture directory. Create it using
“mkdir” if it does not already exist.

•Start Thunderbird by clicking on Applications→ Internet→ Thunderbird. Click “Get Mail.”
Enter password for default account.

•Start Pidgin by clicking on Applications→ Internet→ Pidgin. Enter password for default
account.

•In the user terminal, type:
$ gpg -d mytestfile1.txt.gpg
Enter the GPG passphrase.

•In the root terminal, type:
truecrypt Desktop/tcvol
Enter the Truecrypt volume password.

•In the user terminal, type:
$ ssh myname2@10.0.1.33
Enter the SSH password.

•Collect the process listing. In the data collection terminal, type:
ps -deaf > linux??.ps
(Replace the ?? with the appropriate test identifier.)

•Collect a memory image or capture process memory using pcat, as appropriate.

•Shut down the system.

B Appendix B - OS and Application Information

•Operating System: Ubuntu 7.10 (10/2007) 2.6.22-14-generic #1 SMP Sun Oct 14 23:05:12
GMT 2007 i686 GNU/Linux

•Gnome: Version: 2.20.0, Distributor: Ubuntu, Build Date: 9/17/2007

•SSH: OpenSSH 4.6p1 Debian-5build1, OpenSSL 0.9.8e 23 Feb 2007

•Pidgin: Version 2.2.1

•Thunderbird: Version 2.0.0.6 (20071008)

•GPG: gpg (GnuPG) 1.4.6

•Truecrypt: 5.1a

13

