Torinj : Automated Exploitation Malware Targeting Tor Users

Gérard Wagener
quuxlabs
gerard.wagener@quuxlabs.com

Alexandre Dulaunoy
quuxlabs
alexandre.dulaunoy@quuxlabs.com

Radu State
University of Luxembourg
radu.state@uni.lu

24 May 2009

Abstract

We propose in this paper a new propagation vector
for malicious software by abusing the Tor network.
Tor is particularly relevant, since operating a Tor exit
node is easy and involves low costs compared to at-
tack institutional or ISP networks. After presenting
the Tor network from an attacker perspective, we de-
scribe an automated exploitation malware which is
operated on a Tor exit node targeting to infect web
browsers. Our experiments show that the current de-
ployed Tor network, provides a large amount of po-
tential victims.

1 Introduction

The ubiquitous computation and network infrastruc-
ture, currently deployed, is exposed to numerous
risks. Recently the conficker worm, a self-spreading
malicious software (malware) infected millions of ma-
chines [9]. Malware often uses multiple attack vec-
tors. According to the authors of [9] the conficker
worm can also propagate via network shares and USB
sticks. Moreover some evil web pages infect visitors
with malicious software [17]. Some users believe that
Tor [6], an anonymous communication service, can
help to mitigate against privacy and confidentiality
attacks. Tor can be summarized as overlay network
aiming to hide one’s identity which is formally proved

[7]. According to Eric Cronin [5] eavesdropping is a
difficult task due to the fact that packets could be
misinterpreted. An additional problem for attackers
is to wiretap at a strategic point where multiple hosts
can be sniffed. However, Tor simplifies traffic eaves-
dropping for an attacker. An attacker simply needs
to install Tor exit nodes and participate in the Tor
network. Another advantage for an attacker to use
Tor, is its proven anonymity which is tempting to
create a stealthy and anonymous command and con-
trol center for controlling the eavesdropping and the
infection of machines.

In this paper, we propose a novel propagation
mechanism of malicious software via Tor and the con-
tributions of this paper are

e an estimation of the vulnerable browsers aiming
to tune the web browser infection.

e a mechanism to enforce interactions with the
web browsers aiming to distribute malicious pay-
loads.

The remaining paper is organized as follows:

Section 2 describes related work and focus on po-
tential attacks on Tor. An attacker incentive model
is presented in section 3 which motivates the de-
sign and implementation of an automatic exploitation
malware using the Tor network, shown in section 4.
Section 5 concludes the article and announces future
work activities.

2 Related work

The main purpose of Tor is to provide anonymous
communication services. This is achieved by set-
ting up an overlay network composed of entry guard
nodes, relay nodes and exit nodes. A client that
wants to use the Tor network connects to entry guard
and then establish a circuit towards the exit nodes.
In this circuit each node only knows its predecessor
[6]. Profiling attacks on encrypted web proxy traf-
fic were already studied by analyzing the exchanged
number of bytes [8]. McCoy et al. studied Tor traf-
fic [10]. They captured traffic at entry guards and
exit nodes. Thus, they were able to study some clear
text protocols like HTTP and telnet. The purpose
of their study was to gain some insights about the
Tor usage. In their study they could establish the
number of different users passing through their entry
guard, because they could see where they are coming
from. However, when analyzing traffic from an exit
node the traffic is already anonymised which makes
it hard to distinguish users.

From that paper can be concluded that the most
used protocol is HTTP. A threat model for the Tor
network was proposed by [6] and [10]. An attacker
can intercept some fraction of the traffic. She also can
generate, modify, delay some traffic and can compro-
mise a fraction of the Tor nodes. Roger Dingledine
et al. described various attacks on the different Tor
nodes [6] and McCoy et al. even present counter-
measures to detect Tor exit nodes that are intercept-
ing traffic [10]. Their major assumption is that the
attacker is doing DNS reverse lookups in real time.
Furthermore, efforts are done to wipe out sensitive
information like user agents, cookies from HTTP re-
quests. Privoxy [16] is a local proxy implementation
that hides some sensitive information. An experi-
ment, performed by Dan Egerstad [21], showed that
a lot of Tor users transmit sensitive information, like
account names, user names and passwords through
the Tor network without an end to end encryption.
Security improvements in the Tor network are de-
scribed by Mike Perry [15] and especially in the area
of application attacks at the exit nodes. One of the
proposed improvement is to carefully distribute Tor
exit nodes usage to use disjoint IP networks. Mike

Perry also announced to compute checksums of care-
fully selected web pages in order to detect injection
attacks.

3 Attacker Incentive Model

As discussed in section 2, attackers can easily eaves-
drop traffic on a Tor exit node. In this paper we go a
step further and propose an automated exploitation
malware that is capable to infect browsers that pass
through an exit node. An attacker should be able to
estimate the population of vulnerable browsers and
to enforce an interaction with the browsers.

3.1 Passive attacks

Besides the tools like Privoxy that try to wipe out
most of this information some users still provide
browser information like user agents and cookies.
Many browsers set this string. Some browsers start
this string by setting the browser’s name followed
with the version. Other browsers set the browser
family first and then put the browser name between
brackets. Furthermore, some browsers provide infor-
mation about the underlying operating system and
used libraries. This unorganized user agent naming
provides us some insights about the users that are
surfing via our exit node.

Furthermore, the Mitre organization hosts the
Common Vulnerabilities and Exposure Database
(CVE) which contains known software vulnerabilities
from 1999 until now, including browser vulnerabili-
ties. If we observe n browsers, V of them are vulnera-
ble and for V no vulnerability was reported. Thus we
can compute the browser vulnerability ratio b defined
in eq. 1. If all observed user agents are vulnerable
the browser vulnerability ratio becomes 1, and if no
observed user agents are vulnerable b = 0.

1%
V+V

b= (1)

3.2 Active attacks

As previously described, the browser infection ratio
can be computed. User agent strings can be forged.

Tools like Privoxy change user agent strings. More-
over proxies or browsers can be configured to not
download external objects attached to a web site,
where an attacker can place his infection payload ded-
icated for web browsers. Hence, a feedback from an
observed HTTP traffic is desired.

An attacker can tag HTML responses for getting
this feedback. Practically, an attacker can set up a
man-in-the middle attack by installing a transparent
proxy on the Tor exit node.

She can introduce n images or other objects in
intercepted HTML documents. In case a regular
browser is parsing these pages it tries to acquire the
objects. Normally the URL of the object is first re-
solved followed by the download of the object.

We define a tag as an object that is injected in the
intercepted HTML traffic and we propose two tags
per HTML response.

3.2.1 Static tag injection

A static tag is a fix invisible image that is introduced
in HTTP responses. The image has a dimension of 1
to 1 pixel and is invisible aiming to not distract the
user looking at the HTML page. The URL of the
image is fix for all users. We assume that the DNS
cache on the user’s machine is working correctly and
that the lookup of the image domain name is only
done once while the user is surfing. Thus we can
count the number of different users.

3.2.2 Dynamic tag injection

The purpose of the dynamic tag is to enforce an in-
teraction for each visited web page. In case only a
static image is used, the image is normally resolved
once and then it is kept in cache for all the next
web pages that are visited during the life time of
the browser. In order to avoid this caching mech-
anism an attacker can generate a unique sub domain
for each injected dynamic image. Thus the machine
hosting the browser is forced to do a DNS lookup.
An attacker can also observe if a user comes back.
In this case the user restarted her machine, reloaded
her browser with a dedicated web page. In that web
page, the attacker previously injected an image lo-

cated on a unique sub domain. Hence, if the attacker
sees more than one hit for a unique generated sub do-
main, she can deduce that the same user reappeared.

3.3 Attacker Information sources

By intercepting and tagging HTML documents an
attacker can explore three information sources.

DNS server We assume that an attacker controls a
DNS server for generating unique sub-domains
for each dynamic tag. The attacker can log all
the DNS queries including source IP addresses
that do the DNS queries.

Web proxy The tag injection can be done by doing
a man-in-the middle attack. An attacker can
compromise an exit node and set up a trans-
parent proxy for inserting the tags. From this
web proxy the attacker can record all the HTTP
header information like user agents or cookies.

TCP traffic After having compromised an exit
node an attacker can also record all the out going
traffic from the exit code. Thus she has access
to the full communications of Tor users. The
attacker can focus on HTTP responses, espe-
cially on the mime type of a message, aiming to
tune her browser infection. For instance, if she
notices that most HTTP responses are HTML
documents, she could inject images in the trans-
ferred HTML documents. However, if she sees
that the most transfered documents are PDF
files she could launch PDF attacks.

4 Torinj : An Automated Ex-
ploitation Malware

To validate the attacker incentive model we imple-
mented a proof of concept malware called Torinj.
Torinj is composed of three components : an un-
modified Tor client, an embedded intercepting proxy
and a hidden C&C (command and control) channel.
An overview is shown in figure 1. A standard and
unmodified Tor client is integrated with Torinj pro-
viding the access to the Tor network layer. Torinj

attacker
exit nodes

u
a
]

tor users

Internet

HTTP
| services

HTTP Requests/Responses
crossing a Torinj infected
exit node

Figure 1: An overview of the Torinj framework

behaves like any other Tor client and provides sim-
ilar services like relay or exit functionalities. Tor-
inj includes a small HTTP proxy used to intercept
and relay HTTP requests. Interception and relaying
are activated by the attacker using the C&C chan-
nel. The hidden C&C channel relies on hidden ser-
vice protocol [20] available in Tor to provide some
anonymity [13] to the command and control interface
and its user. The attacker access the C&C channel of
each Torinj bot through the Tor network. Torinj in-
fection is working at the interception level and does
not need to lure the users to connect to attractive
services. Torinj infection is done on the unencrypted
HTTP requests/responses crossing the infected exit
node. The exploitation mechanism of Torinj is com-
posed of two steps:

passive attacks, where the Torinj HTTP proxy is
gathering essential information about the HT TP
requests (e.g. browser user agent, Internet media
type) without altering the requests;

active attacks, where Torinj is exploiting the
HTTP requests by modifying the responses
based on the optimal infection scenario learned
by the previous step.

For further technical details we recommend to read
our source code!

4.1 Experiment setup

During this experiment we used three different ma-
chines. On the first machine (M;) we operated an

Thttp://www.foo.be/torinj/

unmodified Tor exit node (v0.2.1.14-rc). On the sec-
ond machine we let run BIND [2], version 9.4.2, as
DNS server and used the tool tcpdump [19] to cap-
ture all the DNS queries and responses. On the third
machine (Ms3) we operated an apache web server [1],
version 2.2.6, hosting the transparent image simu-
lating a malicious payload. From a legal and ethi-
cal point of view we avoided to inject malicious java
script payloads like XSS-proxy or BeEF [3].

All the machines were synchronized with NTP [11]
in order to have accurate timestamps. After having
started to participate in the Tor network, we set up a
web proxy implemented in Perl from CPAN [4] (0.23).
This proxy was extended to inject tags with regular
expressions. We used the tool iptables [12] to reroute
the traffic, originated from the Tor exit node to the
Internet, to our Perl proxy server. The DNS server
was configured with a wild card that it should asso-
ciate all sub-domains with the IP address of our web
server. Thus inside the web proxy we can generate
dynamic and static tags that always point to our web
server. As information sources we used tcpdump ac-
tivated on M7 and Ms, the web server logs, the web
proxy logs. The processing was done with Perl and
sqlited [14] and a modified version of tcpick [18].

4.2 Passive attacks

We operated a Tor exit node for a period of 28 hours
and we passively inspected observed HTTP headers.
In this experiments we observed similar results to Mc-
Coy et al [10]. We observed that 96% of the traffic
was HTTP and only 4% of the traffic was end-to-end
encrypted with HTTPS.

We have also discovered 4973 different user agent
strings which confirms the non existence of naming
convention for user agents. We have found that only
3.2% of the HTTP requests did not have a user agent
set. We assume that these browsers are not vul-
nerable despite they could be vulnerable versions.
Moreover we did an automatic lookup of the user
agent in the CVE list. Although 1845 user agents
did not match an entry in the CVE list (37% of
the browsers), there may be undisclosed vulnerabil-
ities. If a version is not explicitly set for a given
browser, we assume that this browser is not vul-

Different user agents
3589

non vulnerable
vulnerable

3000 -

2500 -

2600 -

1580 -

1000 -

Humber of different user agents

500 -

60088 80688 160008

tine (s}

a 20088 406888 12008

Figure 2: Vulnerable and non vulnerable user agents

nerable (1.3% of the observed browsers). We found
3106 vulnerable unique user agents. Figure 2 con-
firms the fact that there are more vulnerable browsers
than non vulnerable browsers. We measured during
time intervals of 15 minutes the number of vulnerable
browsers and non vulnerable browsers. The number
of unique user agent strings is growing (figure 2) be-
cause most user agent strings contain version num-
bers, with which other browsers they are compatible,
information about the underlying operating system,
patch levels and used libraries. Figure 3 presents the
browser vulnerability ratio, which is varying around
0.63. That means that on average 63 browsers of 100
are vulnerable according the CVE list which shows
the potential of our automated exploitation malware.

4.3 Active attacks

For this experiment we set up and operated the au-
tomated exploitation malware proof of concept for
two and a half hours. We have observed 391 differ-
ent user agents that passed through our proxy. The
proxy injected 126 static tags and 688 dynamic tags.

The purpose of the static tag is to count the dif-
ferent users. If a user opens her browser, the later
resolves the static tag, the static tag is then kept in
the user’s cache and it should not be resolved again.

Browser vulnerability ratio

2.6

60888 an60a 180088

tine (s}

a 20888 46608 12088

Figure 3: Browser vulnerability ratio

On our DNS server we observed 126 hits for the static
image and on our web server we counted 196 hits.
Most of the hits on the web server were done through
our proxy. However 80 of the web server hits passed
trough other Tor exit nodes. When the injected tags
are downloaded through our proxy, our proxy did not
tag these responses again. We also have counted 391
different user agent strings. This number is higher
than the number of static tag injection hits and the
ratio corresponds to 32% which can be explained that
only HTML documents were tagged and other mime
types were directly forwarded without change.

Each HTML document having a body element is
intercepted and a unique dynamic tag is injected and
our proxy injected 688 tags.

4.3.1 Mime type distribution

In order to get a feedback from a user the injected tag
needs to be processed by the user agent and the user
agent needs to connect back to the attacker. This is
often the case when HTML documents are processed.
Table 1 shows the mime type distribution. Roughly
a third of the traffic that goes through the proxy is
composed of HTML documents.

Mime type %
text/html 33
image/jpeg 24
image/gif 16
image/png 06
text/plain 05
Content-Type:application/x-javascript 04
Content-Type:text/css 03
Content-Type:text/javascript 03
Content-Type:text/xml 02
Others: 06

Table 1: Mime type distribution

5 Conclusion and future work

In this paper, we have described the incentive for
an attacker to compromise Tor exit nodes and de-
signed the Torinj scenario targetting the HT'TP pro-
tocol. The experiments further demonstrate the via-
bility of the Torinj prototype and the inherent inter-
est for an attacker to compromise Tor exit nodes. Our
experiments showed that 63% of the browser pass-
ing through an exit node are vulnerable according
the CVE database. Moreover, we showed that inter-
action with the browsers can be induced by inject-
ing tags in HTML documents. By injecting tags in
HTML documents an interaction per web-page can
be enforced which is necessary of malicious payload
distribution. However, additional research efforts are
needed to complete this proof of concept. First of all,
the automated exploitation malware should be oper-
ated over a longer period of time and from different
IP addresses. We already facilitated this work by
making our exploitation software freely available un-
der a GPL license. Furthermore, user agents can be
carefully crafted to trick the exploitation malware.
Therefore other browser finger printing techniques
should be explored. We have only tested the injec-
tion in HTML documents and other mime types, like
PDF, images, movies can be explored. We are also
planning to improve the infection model to find effec-
tive strategies for the attacker to launch automatic
infection while limiting the detection factor.

References

1]

2]
3]

[10]

Apache http
http://httpd.apache.org/.

server project.

Bind. https://www.isc.org/software/bind/.

Rich Cannings, Himanshu Dwivedi, and Zane
Lackey. Hacking Exposed Web 2.0: Web 2.0 Se-
curity Secrets and Solutions (Hacking Exposed).
McGraw-Hill Osborne Media, 2007.

Cpan http::proxy.
http://search.cpan.org/dist/HTTP-Proxy/.

Eric Cronin, Micah Sherr, and Matt Blaze.
On the reliability of current generation net-
work eavesdropping tools. International Feder-
ation for Information Processings, 222(2):103—
113, 2008.

Roger Dingledine and Nick. Tor: The second-
generation onion router. In Proceedings of the
13th USENIX Security Symposium, pages 303—
320, San Diego, CA, USA, August 2004.

Joan Feigenbaum, Aaron Johnson, and Paul F.
Syverson. A model of onion routing with prov-
able anonymity. In Financial Cryptography,
pages 5771, 2007.

Andrew Hintz. Fingerprinting websites using
traffic analysis. In Privacy Enhancing Technolo-
gies, pages 171-178, 2002.

Werner Tillman Leder Felix. Know your enemy:
Containing conficker to tame a malware. http:
//www .honeynet.org/papers/conficker. Last
accessed 18 May 2009.

Damon Mccoy, Kevin Bauer, Dirk Grunwald,
Tadayoshi Kohno, and Douglas Sicker. Shin-
ing light in dark places: Understanding the tor
network. In PETS ’08: Proceedings of the Sth
international symposium on Privacy Enhancing
Technologies, pages 63-76, Berlin, Heidelberg,
2008. Springer-Verlag.

[11]

[12]
[13]

David L. Mills. Network time protocol (version
3) specification, implementation and analysis,
1992. RFC.

netfilter. iptables. http://www.iptables.org/.

Lasse @verlier and Paul Syverson. Locating hid-
den servers. In Proceedings of the 2006 IEEE
Symposium on Security and Privacy. IEEE CS,
May 2006.

Michael Owens. Embedding an sql database
with sqlite. Linuz J., 2003(110):2, 2003.

Mike Perry. Securing the tor net-
work. http://www.freehaven.net/~arma/
SecuringTheTorNetwork.pdf, 2007.

Privoxy. http://www.privoxy.org/.

Niels Provos, Panayiotis Mavrommatis, Mo-
heeb Abu Rajab, and Fabian Monrose. All your
iframes point to us. In S5°08: Proceedings of the
17th conference on Security symposium, pages
1-15, Berkeley, CA, USA, 2008. USENIX Asso-

ciation.

Francesco Stablum. Tepick.
http://tcpick.sourceforge.net/.

tepdump. http://www.tcpdump.org/.

Tor: Hidden service protocol. http://www.
torproject.org/hidden-services.html.en.

Kim Zetter. Tor researcher who
exposed embassy e-mail passwords
gets raided by swedish fbi and cia.
http://blog.wired.com/27bstroke6,/2007/11 /swedish-
researc.html, November 2007.

