
Breaking Tor Anonymity with Game Theory and
Data Mining

Cynthia Wagner, Gerard Wagener, Radu State, Thomas Engel
University of Luxembourg

FSTC, SECAN-Lab
Luxembourg

Email: {cynthia.wagner, gerard.wagener, radu.state, thomas.engel}@uni.lu

Alexandre Dulaunoy

SES-S.A.
Luxembourg

Email: a@foo.be

Abstract—Attacking anonymous communication networks
is very tempting and many attacks have already been ob-
served. We consider the case of Tor, a widely-used anonymous
overlay network. Despite the deployment of several protec-
tion mechanisms, we propose an attack originated from only
one rogue exit node. Our attack is composed of two elements.
The first is an active tag injection scheme. The malicious exit
node injects image tags into all HTTP replies, which will be
cached for upcoming requests and allows different users to be
distinguished. The second element is an inference attack that
leverages a semi-supervised learning algorithm to reconstruct
browsing sessions. Captured traffic flows are clustered into
sessions, such that one session is most probably associated
to a specific user. The clustering algorithm uses HTTP
headers and logical dependencies encountered in a browsing
session. We have implemented a prototype and evaluated its
performance on the Tor network. The article also describes
several counter-measures and advanced attacks, modeled in
a game-theoretical framework and their relevancy assessed
with reference to the Nash equilibrium.

I. INTRODUCTION

Anonymous communication systems have emerged as
potential solutions to provide privacy and anonymous web
access. The main idea behind most of such systems is an
overlay network used to mix traffic and so, defeat attacks
based traffic correlation analysis. Tor [7] is the best known
approach due to its large deployment base and proven
security services. Several prior articles [6], [19], [14], [32],
[18], [3], [28], [29], [30] have shown Tor’s vulnerability to
a class of disclosure attacks which detect whether one host
is communicating with another. In most research, the threat
model assumes that a malicious entity can control either
a Tor entry node or a pair (entry, exit) of nodes. In some
cases, attackers inject data or tags into user-related flows
to trigger information disclosure [24]. Several protection
mechanisms have been proposed, like probing exit nodes
[26] or forging browser-related information.

This article presents two main contributions, a Data
Mining driven solution to recover the browsing history
of Tor users and optimal configuration settings based on
game theory for Tor users and operators, as well taking
malicious nodes into account.

Following the discussion in [21], only trusted entry
nodes can be selected in a Tor network. Therefore, we
propose a proof of concept malware called Torinj, targeted
to infect trusted Tor nodes with the aim of reconstructing
overall network activity. We aim to detect the number
of distinct users and to reconstruct the browsing history
for each user. Our malware Torinj is targeted against

Tor exit nodes because, we expect a larger vulnerable
population of exit nodes than entry nodes and expect them
less protected. The added value of Torinj is its ability to
recover a user browsing history even when a trusted entry
node is used. We do not specifically address the disclosure
of users’ identities or locations, but focus on extracting
user-specific behaviors. We describe a practical attack
that leverages a semi-supervised learning algorithm and
a simple traffic injection scheme for this purpose. Several
defensive measures exist, like enhancing user privacy by
manipulating user agent fields or by testing the exit node.
These actions can be countered by an attacker — she can
become more stealthy to capture and reconstruct as many
sessions as possible. We will assess the efficiency of these
strategies with the aid of game-theoretical concepts.

The article is structured as follows: In section II we
present a global view of our architecture with related
attack scenarios. We introduce some background material
and in section III we detail the semi-supervised clustering
algorithm of Tor flows. Section IV describes some defense
and advanced attack strategies for Tor. Section V presents
the experimental results for our approach. Section VI
discusses related work and section VII summarises the
article.

II. DATA MINING A TOR SESSION

It is challenging to reconstruct Tor sessions when only
one exit node can be controlled. The attacker can observe
pairs of outgoing requests and incoming replies but is
unable to differentiate individual sessions. Thus, anony-
mous browsing under this threat model is analogous to
hiding in the crowd. Consequently, it is natural to aim to
isolate individual browsing histories and build individual
user-related trace histories. We describe a new attack (see
Fig.1) that leverages a Data Mining technique together
with aspects of the HTTP protocol to cluster and extract
individual HTTP sessions relayed over a malicious exit
node. In this analysis, we consider only Web traffic.
Several users (in the example, we consider only 2 users)
use 2 Tor entry nodes which build tunnels ending at an exit
node. We assume this exit node controlled by an attacker,
so she can observe the traffic (5 flows) between the exit
node and the 3 servers. The objective of the attack is, first
to establish that only 2 users (A and B) are currently routed
through the exit nodes and secondly to reconstruct the
browsing history for each of them. In this case, flowA1,
flowA2 and flowA3 are used for user A, while flowB1

2010 Fourth International Conference on Network and System Security

978-0-7695-4159-4/10 $26.00 © 2010 IEEE

DOI 10.1109/NSS.2010.54

47

2010 Fourth International Conference on Network and System Security

978-0-7695-4159-4/10 $26.00 © 2010 IEEE

DOI 10.1109/NSS.2010.54

47

Fig. 1. Typical attack scenario

and flowB2 are tagged for user B. The practical attack
(see Fig.2) on Tor is executed as follows,

1) User A issues one (or several) HTTP request(s)
to server 1. This traffic is contained in one flow:
flowA1. The malicious exit node forwards the re-
quest(s) to server 1 and performs a static tag injec-
tion. The static tag is a fixed invisible image that
is introduced in HTTP responses. The image has
a size of 1x1 pixel and is invisible, aiming to not
distract the user while browsing the HTML page.
The image URL is unique for every injection. This
is done by generating a universally unique number
that is used to name the image file. We assume that
the browser cache on the user’s machine is working
correctly and that the image download is done only
once. The file containing the image is hosted on
an attacker controlled server, called tagging server.
For illustrating, we assume the server URL to be
www.taggingserver.com.

2) The browser of user A requests the tag by con-
necting to the tagging server to download it. Even
if another Tor exit node is used to retrieve the
tag, the incoming traffic (flowA2) is intercepted
by the attacker. This step in the attack (see Fig.3)
is essential to logically link flowA2 and flowA1.
The attacker uses the image URL to link the initial
injection performed on the flow flowA1 with the
incoming request. The tagging server replies with
a redirection URI www.taggingserver.com/static.png
— which is a static URL. This reply is provided via

Fig. 2. Injection Attack

Fig. 3. Flow A2 interaction details

the 301 Moved Permanently HTTP response code
[13]. It will also set a unique cookie for the domain
www.taggingserver.com if no cookie was provided
in the request. The browser of user A will retrieve
the file static.png and cache the new URI, which
is the same for all replies performed in this stage.
The advantage of this redirection is, when an URI is
retrieved via 301 Moved Permanently, its response
codes are locally cached by the browser. Setting the
cookie depends on the browser’s capability to accept
third party cookies, but it can also work without
setting the cookie, if an additional synchronization
step between the tagging server and the exit node
is performed. This step is needed to associate the
flow used to download the image tag with the initial
request/response. Obviously, these cookies are not
taken into account when clustering the traffic. This
injected traffic is not considered when assessing the
performance of the Data Mining algorithm.

3) User A issues one (or several) HTTP request(s) to
server 2, contained in flowA3. The malicious exit
node forwards the request(s) to server 2 and per-
forms a tag injection. The tagging server replies with
a redirection URI www.taggingserver.com/static.png.
In this redirection, no cookie is set for the domain
www.taggingserver.com because the request already
includes the cookie received in the previous step.
This reply is provided via the 301 Moved Perma-
nently HTTP response code. However, the browser
of user A will not retrieve the file static.png because
it is already cached locally — the user agent will use
the locally-cached version instead. Due to the miss-
ing download and the provided cookie, the attacker
learns that the incoming traffic and the associated
flow flowA3, are related to a user that has already
been observed.

4) User B issues one (or several) HTTP request(s) to
server 1. This traffic is contained in flowB1. The
malicious exit node forwards the request(s) to server
1 and performs a tag injection.

5) The browser of user B requests the static tag
by connecting to the tagging server to down-
load it. The incoming traffic (flowB2) is inter-
cepted by the attacker. The processing is simi-
lar to the previous case. Here, a download of
www.taggingserver.com/static.png is performed and
no cookie for the domain www.taggingserver.com
is included, the attacker can infer that flowB1 and
flowB2 are associated with a user that has not been
observed yet.

6) Both users (A and B) continue their browsing ses-
sions and will be tracked.

The key idea behind this attack is to have a set of flows
for which we definitely know that the associated users are
different: these are the flows targeted at the tagging server,
from which the 1x1 image is downloaded and the cookies
are issued. Additionally, we assume that connections by
one user will share a set of features despite the Tor infras-
tructure. Such features relate to user agent-specific settings
(e.g. accepted language, version, name), and to outgoing

4848

HTTP requests (cookies, destination URIs). At last we
suppose that users follow a normal browsing behavior —
i.e. after retrieving a HTML page, the next connection
will be targeted towards an URI which is included in
the initial web page. The problem that has to be solve
now is: we need to cluster a large number of data where
we are certain that a small subset belongs to different
clusters. We try to solve this problem by calculating a
relevant distance function defined over pairs of flows. This
function considers content-related similarities, user agent-
specific settings and HTTP-specific protocol elements. A
semi-supervised clustering algorithm takes this distance
into account when performing the clustering.

III. SEMI-SUPERVISED CLUSTERING ALGORITHM

Semi-supervised learning approaches focus on data sets
with only a small amount of labeled data and many
unlabeled data samples. Methods such as k-means [4], a
traditional clustering method, assume that adjacent data
samples tend to have similar labels with the result that
they propagate their labels to unlabeled data samples.

Our algorithm is based on the idea of the semi-
supervised clustering algorithm [33], known as a label
propagation (Fig.4) algorithm with few minor changes.
The main idea is to construct a fully-connected graph,
where only some nodes are labeled. Each label represents
the class name of the node. We assume C different classes.
Each class is initially represented by a flow that was tapped
at the tagging server. The edges between two nodes have
associated weights, which depend on the distance between
two nodes and are controlled by the weight factor σ that
is useful for the label propagation quality. All labels are
propagated iteratively to unlabeled regions and nodes are
either labeled or unlabeled data samples. Unlabeled nodes
are iteratively estimated class-fellowship probabilities that
give the probability that an item is associated with a
class. At the end of the iterations, each unlabeled node is
allocated to the most probable class, that is the class with
highest class-fellowship score. At the beginning there are
only a few flows for which the user is known. These are the
flows that have been used to retrieve the image file from
the tagging server and where cookies have been set. The
aim is to classify the remaining flows by clustering them
on a per user class base. This is done by the clustering
algorithm, which uses a distance function between pairs
of flows to compare them.

Fig. 4. Semi-supervised learning algorithm

We have a set RD composed of labeled data
(x1, y1),...,(xl, yl) and unlabeled data (xl+1, yl+1),...,
(xl+u, yl+u) with l�u, where YL={y1, ..., yl} are the
class labels of the labeled data and YU={yl+1, ..., yl+u}

yet to be observed. D is the dimension of the input space.
We assume that the number of classes C is known and
that all classes are represented in the labeled data samples
[33]. Let X={x1, ..., xl+u} be the different flows, and let
us assume that each x is a D-dimensional vector, that is
xi∈RD. We now want to estimate the class labels of the
unlabeled samples YU from the data items X and their
class labels YL.

The various distances used in this algorithm have to
be defined. We assume two flow-class tuples (xi, yi)
and (xj , yj) which have to be compared. In this case
yi or yj represent the respective class labels and
D = 3. To calculate the distances, the flow xi
is decomposed into a set of requests and responses,
Flowi={(reqi1,repi1),...,(reqik, repik)}. The same is
done for flow xj , Flowj={(reqj1,repj1),...,(reqjl, repjl)}.

We define d(i, j) to be the distance between the two
pairs (reqip, repip) with p= (1 to n) and (reqjq, repjq)
with q= (1 to m).

dij = d(Flowi, F lowj) = d1(reqip, reqjq)

+d2(reqip, repjq) + d2(reqjq, repip)
(1)

where d1(reqip,reqjq) is the Levenshtein1 distance dL of
particular parameters, as the field content of Cookie (Co),
URL, User agent (UA) and Accepted Languages field
(AL).

d1(reqip, reqjq) = dL

“
(reqip[Co], reqjq[Co])

+dL(reqip[URL], reqjq[URL]) + dL(reqip[UA], reqjq[UA])

+dL(reqip[AL], reqjq[AL])
” (2)

Equation (2) calculates the Levenshtein distance between
the requests ip and jq, which is the sum of the numerical
distances of the Co, UA and AL fields.

Distance d2(reqip, repjq) reflects whether or not a
requested URL from ip is contained in reply jp,

d2(reqip, repjq) =

α if reqip[URL] substring of reqjq

0 otherwise
(3)

with α∈N, and α=1. α can be selected in order to tune
the algorithm and considers the weight given to a logical
link of browsing activity. The formula for d2(reqip, repjp)
can also be applied for distance d2(reqjq, repip), to see
whether or not a requested URL from jp is in reply ip.

The labeled and unlabeled data samples are represented
in a fully-connected graph, where the edge between nodes
i, j is weighted. To calculate the edge weight wij , we
refer to the distances and estimated weights are scaled by
σ, a function width scaling parameter.

wij = exp(−
d2

ij

σ2
) = exp(−

PD
d=1(xd

i + xd
j)2

σ2
) (4)

Node labels are propagated through the edges to all
other nodes. As in [33], we define a (l + u)×(l + u)
transition matrix T , where Tij gives the probability of a
transition from node i to j.

Tij = P (i→ j) =
wijPl+u

k=1 wjk

(5)

1Levenshtein distance [9]: Edit distance for measuring the difference
between two strings or how many operations are needed to change one
string into another.

4949

We define a (l + u)×C label matrix Y , where a row
reflects the label probability distribution of a node. For
instance, the element Yic is the probability Yi for flow i
belonging to class c∈C. Initially these probabilities are
initialized with 1/C for the unlabeled data samples.

The label propagation algorithm as it is used by [33]
has three steps.

1) Propagate Y ← TY . All nodes propagate their labels.
2) Row normalization of Y . This maintains a probability

distribution.
3) Clamping of labeled data. We clamp the label distribution

of labeled data to Yic=1, if item Yi had an initial label
of c. This step assures that initial labels are maintained.

These steps are repeated until Y converges. It has been
shown in [33] that the label propagation algorithm always
converges.

To evaluate the labeling algorithm, we use class sensitiv-
ity, class specificity and the number of correct predictions
[2]. In a multi-class prediction problem with C classes, a
C×C contingency matrix Z=zij is used, where zij gives
the number of times a sample belonging to class i is put
in class j.

Class sensitivity gives the value of correctly predicted
samples belonging to class i to xi=

∑
jzij , the total number

of samples associated to class i [2].

Qi =
zii

xi
(6)

Average class sensitivity φ scales the sensitivity for all
classes according to the number of classes C.

φ =

Pc
1Qi

C
(7)

Class specificity gives the ratio of correctly-predicted sam-
ples in class i to yi=

∑
jzji, the total number of samples

predicted to be in class i [2].

Qi =
zii

yi
(8)

Average class specificity ψ scales the specificity of all
classes by the number of classes C.

ψ =

PC
1 Qi

C
(9)

The final evaluation parameter is the quality QTotal, the
value of all correct predictions made.

QTotal =

P
i zii

N
(10)

where N =
∑
ij zij =

∑
i xi =

∑
i yi.

IV. DEFENSE AND ATTACK STRATEGIES

A Tor user can deploy two main types of defensive
measures to counter an injection attack. These can detect
the malicious node and announce it as a rogue in the
global Tor Directory. For this, a user connects to a known
web server and retrieves one particular web page. A hash
function checks whether the reply has been tampered
with. A previously-stored hash value is compared with the
current one, if a mismatch is detected, then the injection
is revealed. This idea was proposed in [22] in the wider
context of security improvements for the Tor network.
Another proposal consisted in carefully distributing Tor
exit nodes usage so as to use disjoint IP networks. We

have not considered the latter proposal in the current game.
Regarding the case of bad Tor exit nodes, Torscanner [26]
is in use. The current process for adding a BadExit flag
is done by the authorities managing the Tor directories,
but up to now, we have not found a router providing a
BadExit flag.

Once a rogue node has been announced, no other user
will use it as an exit node and thus, for an attacker the
game is literally over. The attacker can however minimize
the probability of being detected by performing fewer
injections to improve her stealth, i.e. instead of injecting
the image tag into all HTTP replies, the attacker can use
a probabilistic scheme and tag only a subset, i.e. injecting
into 30 to 10% of the replies only. Thus, we deduce that
the probability of being detected is indirectly proportional
to the injection probability.

Another set of measures directly attack the Data Mining
approach. Users can manipulate the HTTP headers that
disclose information about their browser. The user agent
field can be spoofed or completely removed. Privoxy2

allows the specification of a list of user agents that can
be used for this purpose. Another header that can be
changed or removed is the accepted languages, but it is
not reasonable to assume a random choice for this purpose,
since popular web sites use this field to provide customized
content/layout. For example, English speaking users hardly
access the Russian website of Google, except in order to
remain anonymous.

We model the game between an attacker and Tor users
using the definitions proposed in [10]. Let a 3-tuple Γ =
(N, (Ai, Ri)1≤i≤n) be the game between Tor users and
the attacker, where
• N is a set of n players
• Ai is a finite strategy set (ai ∈ An)
• Ri: A→R is payoff function, where A = A1×...×An
The game has two players, N={Tor user, attacker}.

All Tor users act as one single collective player. The set
A1 corresponds to the Tor user actions and A2 to the
attacker’s actions. We define the Tor user strategy as a set
of actions A1 = {a1,0, ..., a1,3}, where
• a1,0: Every user works normally — the web client is

used without any privacy protection mechanisms
• a1,1: Everybody modifies the user agent — for

each request, a user agent is randomly selected and
spoofed in the requests

• a1,2: Everybody deletes user agent — no information
whatever is leaked to the attacker

• a1,3: Everybody deletes accepted languages — no
language-specific information is leaked

The attacker strategy is defined as a set of vectors
A2={(a2,θ)} where θ={0.1,0.2,...,0.5} is the injection
probability. An attacker plays by choosing the probability
of injecting a frame into a given HTTP reply.

One purpose of game theory is to find the optimal
strategy profiles for players, resulting in the computation
of a Nash Equilibrium that leads either to a pure or a
mixed strategy. According to [10], the set of probability
distributions over a strategy set Ai is a mixed strategy set

2Privoxy: http://www.privoxy.org/

5050

for a player i.

∆(Ai) =

8<:qi : Ai → [0, 1] |
X

ai∈Ai

qi(ai) = 1

9=; (11)

where ∆(Ai) ≡ Qi, Q =
∏
iQi.

The expected payoffs for a player i from a strat-
egy profile q are Ea∼q=

∑
a∈A q(a)Ri(a), such that

q(a)=
∏N
i=1 qj(aj) iff a Nash equilibrium results from

∀qi ∈ Qi,E[Ri(q∗i , q−i] ≥ E[Ri(qi, q−i)].
A Nash equilibrium in the context of a Tor system

game means that neither the Tor user nor the attacker
can increase their expected payoffs, assuming that neither
player changes her strategy during the game.

Computing payoffs: The payoff for each player should
model her gain as well as possible. Two different goals
are important for an attacker. First, she should reconstruct
sessions as accurately as possible by maximizing QTotal.
Secondly, she should remain as stealthy as possible and
thus perform only least possible tagging. Previously we
have shown that the more an attacker tags, the higher the
probability of being detected. The payoff function for the
attacker, pa, can be defined as, pa = (1-θ)×QTotal. For
the Tor user, the payoff pu is a measure of the achieved
privacy and can be defined as, pu = (1 -QTotal).

A. Advanced attacks

When a Tor user deploys a user agent-changing strategy,
the impact on the clustering is immediate. Due to the
user agent field, the distance component will be biased
and members belonging to the same class will be miss-
classified due to large distances. Thus, for an attacker,
it is natural to learn the list of user agents used by an
individual user. This would bias the distance function
towards weighting out large differences in the user agent
field. There is a straightforward extension that an attacker
can perform which leverages the processing of HTTP
error messages. According to the HTTP specification [13],
a server can reply with a HTTP Error 302 - Moved
temporarily error message, that includes an alternative
URL to which the redirection should occur. The web
browser immediately retries the alternative URL. If this
happens, the user agent field in the request is changed.

Fig. 5. Tagging server attack with HTTP Error message

From an attacker perspective this can be used
to discover the list of user agents in use by a
user. Similar to the basic attack, an image tag (i.e.
www.taggingserver.com/uuid.jpg) is injected in a reply that
is being relied by the exit node. The user’s browser
does not have the image in the cache and will connect
to the tagging server to retrieve it. For this, the client

spoofs the user agent header by using one of the val-
ues from its list. The tagging server receives a request
for the resource uuid.jpg. Instead of sending back the
corresponding file, the server will generate a universally
unique identifier uuid1, reply with a HTTP Error 302
Moved temporarily message and provide the alternative
URL: www.taggingserver.com/uuid1.jpg. Thus, the client
will contact the tagging server www.taggingserver.com
and ask for uuid1.jpg. For this request, another value
for the user agent list is used and hence disclosed. The
tagging server replies with one more HTTP Error 302
Moved temporarily error and an additional alternative
URL: www.taggingserver.com/uuid2.jpg. This process can
be repeated up to 5 times without detection by the user.
The fifth request can be answered by sending back the
image file. The use of a universally unique identifier is
required to differentiate user-initiated requests. Obviously
the file uuidx.jpg has not to exist in real and x is used
by the tagging server to count HTTP Error 302 Moved
temporarily messages that have been sent back already.

To differentiate between new users and users already
observed, the final download of the image file and a cookie
tracking mechanism is required. New users will download
the file and will have a cookie set, while previously
observed users will rely on the locally-cached data and
will use the domain cookie in all requests (see Fig.5).
In the end, the attacker has learned five values used to
scrub the user agent header. Large lists can be retrieved
by generalizing the attack and having more than one tag
injection. Starting with the first request, n different image
tags are injected. If these are not cached, the client will
retrieve them from the tagging server. Each individual
request will reveal one value used to scrub the user agent
field. For each individual image tag up to five alternative
URLs will be provided and thus disclose a total of 5n user
agent values.

V. EXPERIMENTAL RESULTS

Tor Internet

exit nodes

tor users

attacker

HTTP
services

HTTP Requests/Responses
crossing a Torinj infected

exit node

Fig. 6. An overview of the Torinj framework
We have implemented a proof of concept malware

called Torinj (see Fig.6), composed of three compo-
nents: a unmodified Tor client, an embedded intercept-
ing proxy and a hidden C&C (command and control)
channel. A standard, unmodified Tor client is integrated
within Torinj providing access to the Tor network layer.
Torinj behaves like any other Tor client and provides
similar services including relay or exit functions. It in-
cludes a small HTTP proxy used to intercept and re-
lay HTTP requests. Interception and relaying are acti-
vated by the attacker using the hidden C&C channel
that relies on the hidden service protocol [25] available

5151

General Information Data set
1 2 3 4 5 6 7 8 9 10

Request/Response pairs 402 411 404 462 416 401 408 408 420 406
User-Agents 11 10 10 8 12 11 12 7 6 4

Cookies 43 62 48 50 81 51 66 44 95 48
URLs 56 160 133 109 167 144 182 128 148 156

text/html 0.520 0.198 0.227 0.380 0.450 0.185 0.228 0.215 0.231 0.211
text/css 0.280 0.001 0.042 0.005 0.027 0.015 0.045 0.030 - 0.075

application/x-javascript 0.055 0.061 0.070 0.017 0.042 0.053 0.128 0.110 0.058 0.067
application/shockwave-flash 0.045 0.005 0.022 - 0.022 - 0.032 0.038 0.010 0.052
image/jpeg/png/gif/x-icon 0.0308 0.67 0.601 0.413 0.381 0.555 0.463 0.545 0.564 0.491

text/javascript 0.020 0.015 0.002 0.012 0.020 0.035 0.010 - 0.014 0.035
text/plain 0.018 0.022 0.017 0.014 0.030 0.02 0.020 0.012 0.091 0.022

application/xml 0.005 0.007 0.007 - - 0.01 0.005 0.013 0.002 0.012
text/xml 0.002 0.005 0.005 0.007 0.015 0.002 0.002 0.01 0.002 0.005

Miscellaneous Content 0.004 0.007 0.002 0.131 0.011 0.002 0.010 0.009 0.004 0.004

TABLE I
GLOBAL STATISTICAL INFORMATION

Sensitivity, Specificity and Qtotal for 3 different θ
Data set classes θ = 0.1 θ = 0.2 θ = 0.3

C φ ψ Qtotal N φ ψ Qtotal N φ ψ Qtotal N
1 7 0.469 0.522 0.795 357 0.534 0.824 0.886 306 0.616 0.823 0.877 285
2 9 0.354 0. 486 0.647 357 0.454 0.713 0.712 320 0.541 0.716 0.737 285
3 8 0.466 0.537 0.536 358 0.521 0.75 0.644 323 0.549 0.747 0.676 275
4 6 0.448 0.536 0.643 364 0.478 0.541 0.693 332 0.523 0.55 0.780 273
5 5 0.551 0.664 0.723 357 0.604 0.692 0.810 315 0.708 0.796 0.838 290
6 8 0.538 0.527 0.852 352 0.522 0.6 0.873 314 0.557 0.728 0.882 289
7 11 0.307 0.589 0.608 362 0.33 0.685 0.701 308 0.422 0.685 0.711 270
8 7 0.323 0.485 0633 349 0.314 0.508 0.719 317 0.405 0.512 0.764 259
9 4 0.495 0.626 0.728 371 0.448 0.92 0.70 313 0.576 0.947 0.812 271
10 4 0.507 0.688 0.820 360 0.638 0.689 0.818 302 0.696 0.719 0.918 269

TABLE II
SENSITIVITY φ, SPECIFICITY ψ, Qtotal , THE NUMBER OF CLASSES C AND THE NUMBER OF SAMPLES N FOR DIFFERENT THRESHOLDS θ

in Tor to provide some anonymity [19] to the C&C
interface and its user. The attacker accesses the C&C
channel of each Torinj bot through the Tor network. For
testing we used three machines. The first machine M1

ran an unmodified Tor exit node (v0.2.1.14-rc). M2 ran
BIND3(v.9.4.2), as DNS server with tcpdump4 to capture
all DNS queries/responses. M3 had an Apache5 web server
(v.2.2.6), hosting the transparent image simulating a mali-
cious payload. From a legal and ethical point, we avoided
injecting malicious JavaScript payloads like XSS-proxy6

or BEEF [5]. The machines were synchronized with NTP
[16] for precise timestamps. Connected to the Tor network,
we set up a web proxy implemented in Perl7(v.0.23) and
extended it to inject tags. We used iptables8 to reroute
traffic originated from the Tor exit node to our Perl proxy
server via the Internet. Inside the web proxy we generated
tags. As information sources we used tcpdump on M1 and
M2, web server logs and web proxy logs. The processing
was done using Perl, sqlite3 [20] and a modified version
of tcpick [23].

A. Passive attacks

We ran a Tor exit node for a period of 28 hours and
passively inspected captured HTTP headers. We observed
similar results to [15], 96% traffic is HTTP and only

3https://www.isc.org/software/bind/
4http://www.tcpdump.org/
5httpd://www.apache.org
6http://sourceforge.net/projects/xss-proxy/
7http://search.cpan.org/dist/HTTP-Proxy/
8http://www.iptables.org/

4% traffic is end-to-end encrypted with HTTPS. Our
injection attack works only for HTTP replies that have
the associated MIME [17] type set to text/html and
consequently we measured the proportion in real traffic.
As shown in Table I, about 30% of all HTTP replies have
the MIME type set to text/html. Over this timeframe,
we injected 627 reply messages and observed 879 unique
download requests from the tagging server. Our exit node
provided 2Mbit/s bandwidth and we assume our attack
undetected because the exit node did not get blacklisted.

B. The hidden exit node

We aimed to assess the accuracy and precision of our
attack. For this, we installed a hidden exit node and asked
students in class to use it. We performed ten different
experiments with total control of the browsing history. By
this, we knew exactly which URLs belonged to which user
session and thus, we were able to compare our results with
reality (see Table I). Further, we investigated the impact
of the tagging process. While tagging all HTTP requests
having the MIME type set to text/html is possible,
an advanced attacker could be less invasive and tag only
a subset of the HTTP requests. For instance she could
use a probabilistic scheme driven by a threshold, i.e. for
each HTTP reply, a random number (between 0 and 1) is
generated and if it is less than a predefined threshold then a
HTML injection is performed. Tagging has been done for
three different threshold values, the injection probabilities
θ. The outcomes are given in Table II. We learned that 30%
of the HTTP responses contained HTML documents, so an
attacker can set θ = 0.3 (σ = 1) as maximal value, which

5252

gives the best prediction quality and can be explained that
more request/responses are known. To show the robustness
of our method, we calculated the standard deviation for our
10 data sets, which is 0.08.

C. Defense strategies: playing Tor games

We applied the game theoretical model to data set
7, calculated the payoffs (see Table III) and computed
the Nash equilibrium using the Gambit library [27]. We
obtained an equilibrium (see Table IV) with two pure
strategies. A pure strategy can be defined as a set of
actions providing a complete definition of a user’s strategy,
allowing to say what move a player could make in any
situation. This result shows that under game assumptions,
the best strategy is to randomly change the user agent.
This is unexpected since we were anticipating a different
outcome. It seemed far better to delete the user agent field
and thus provide no information at all. We believe that the
random spoofing of user agents adds more noise and so
disrupts the clustering process.

Payoff values for attacker pa and user pu

θ a1,0 a1,1 a1,2 a1,3

pu pa pu pa pu pa pu pa

0.1 0.42 0.52 0.77 0.20 0.42 0.53 0.45 0.45
0.2 0.36 0.51 0.70 0.24 0.32 0.55 0.32 0.54
0.3 0.23 0.54 0.65 0.24 0.29 0.5 0.27 0.51
0.4 0.30 0.42 0.62 0.23 0.26 0.45 0.22 0.47
0.5 0.23 0.38 0.53 0.22 0.23 0.39 0.26 0.37

TABLE III
PAYOFFS FOR ATTACKER pa AND Tor USER pu

Nb Attacker Tor User
0.1 0.2 0.3 0.4 0.5 a1,0 a1,1 a1,2 a1,3

1 0 0 1 0 0 0 1 0 0

TABLE IV
NASH EQUILIBRIUM TABLE

We have studied the impact of changing the user agent
list for a end user population. In data set 7 we varied
the proportion of users changing their user agent. We
considered a list of 11 user agents. Changing the user
agent is implemented by randomly choosing one value
on a per-request basis. We simulated this strategy using
real data by directly changing the user agent field in the
raw data and ran a simulation with θ = 0.3 (σ = 1). We
observed that the accuracy is strongly impacted when all
users change their user agent, which resulted in a loss in
classification quality (Qtotal).

D. The influence of changing the weight control factor σ

!"#$

!"#%$

!"&$

!"&%$

!"'$

!"'%$

!"($

!"(%$

)$

!$)!$ *!$ +!$,!$ %!$ #!$ &!$ '!$ (!$)!!$

-./0/12$!")$ -./0/12$!"*$ -./0/12$!"+$

34567487$09$1$8:14;<4;$=<;>1$?)@)!!A$04$/:7$B612</C$-.D0/12$

-
.
D
0
/1
2$

=<;>1$

Fig. 7. The influence of σ on QTotal

The weight factor σ influences the label propagation
quality as it is responsible for the width scaling of the
weighting function. A good choice is therefore essential
for achieving good classification results. In [33], σ is
estimated by using the Kruskal algorithm [8] to create min-
imum spanning trees as a heuristic to set the σ-parameter.
We used a different method. We referred to a grid search
evaluation to estimate the best values for σ for maximizing
the classification quality QTotal. The grid search ex-
periment uses tag-injection values θ={0.1,0.2,0.3} refing
a tagging of 10-30% of all data. We observe that the
classification quality QTotal changes with different σ-
values and results improve the more data is tagged (see
Fig.7). Best results are obtained for weight control factors
ranged between 30-50 in our case.

VI. RELATED WORK

The main purpose of Tor is to provide anonymous
communication services by setting up an overlay network
with entry guard, relay and exit nodes. A client connects
to the entry guard and sets up a path towards the exit
nodes. In this circuit, each node only knows its predecessor
[7]. Profiling attacks on encrypted web proxy traffic have
been studied by analyzing the number of bytes exchanged
[12]. In [15], they captured traffic at entry guards and
exit nodes to get insights into Tor by studying cleartext
protocols like HTTP and Telnet. They detected that HTTP
is the most frequently used protocol and they determined
the number of users passing their entry guard, because
they could see the user location. Since traffic from an
exit node is anonymized, it becomes hard to differentiate
users. [7], [15] gave a thread model for Tor. An attacker
can intercept traffic fractions or generate, modify or delay
traffic and compromise Tor nodes. In [7], various attacks
on different Tor nodes classes are described and [15]
even presents countermeasures against traffic intercepting
exit nodes with major assumption on attackers performing
DNS reverse lookups in real time. Furthermore, efforts
are made to erase sensitive information like user agents
and cookies from HTTP requests by using local proxy
implementations, e.g Privoxy. In [31] is shown that many
Tor users transmit sensitive information, like account
names, user names and passwords through the Tor network
without using end-to-end encryption. More similar to our
approach is the timing attack with JavaScript injection
described in [1]. They assume that both, entry and exit
node are controlled by an attacker and that JavaScript can
inject unique temporal signals for each browser. The aim
and approaches of our work are different from [1] because
we aim to reconstruct the browsing sessions by controlling
only an exit node and mine observed traffic, while in [1]
they aimed at identifying clients by time-based attacks.

VII. CONCLUSIONS

We have described a new inference attack against
anonymous communication systems that combines an ac-
tive tag injection scheme with a Data Mining algorithm
to cluster observed traffic flows. Each cluster corresponds
to the browsing history of one user. We have assessed the
performance of this attack on several realistic data sets and

5353

proposed a formal modeling framework based on game-
theoretical concepts. More advanced attack and defensive
strategies have been evaluated in context of this framework
and an optimal set of strategies has been identified (in
the sense of the Nash equilibrium). We did not intend
to reveal the user location or identity, but it could be
done by going beyond a simple HTML injection by
injecting malicious JavaScript like Beef [11] or XSSProxy,
because simple JavaScript injection would build permanent
connections (for the lifetime of a browsing session) and
allow advanced recognition actions against users’ privacy.
Our approach has some limits. If all users use end-to-end
encryption as SSL, our method is not able to correlate
pairs of requests/replies to reconstruct browsing histories.
However, based on our experiments, less than 3% of all
traffic is encrypted. Another limitation of our method is
due to the maximum life-time of an established Tor tunnel
that is currently set to 10 minutes. The described attack
is particularly suited for Web browsing reconstructions.
User agent-specific headers and HTTP parameters drive
the clustering phase. A further challenge is to extend our
approach to the more general case of any application using
anonymous overlay networks. Several browser plugins
already block image tags. PithHelmet9, an optional ad-
blocker for Safari10 includes this option and also blocks
images matching a (fixed) list of common banner ad sizes,
e.g. 1x1pixel. It blocks them by displaying a transparent
graphic of the same size after downloading them first, in
order to define the image size, so our attack still works.
ICab11 mobile, a little-known third-party browser for the
iPhone has a user-editable list of sizes to block. But
again, even if 1x1 images are blocked, they have to be
downloaded first. The more general ad-block functionality,
by Adblock Plus12 for FireFox, simply does not download
content from URLs matching any of a list of patterns. This
offers no protection against our attack unless the image-
hosting site gets blacklisted. An interesting future work
consists in counting Tor users. This is particularly difficult,
since many exit nodes have major differences in terms of
bandwidth, service policies and location. For this purpose,
we are currently researching extrapolations based on local
(one or several exit nodes) observed network traffic.

ACKNOWLEDGMENT

This project is partially supported by the EFIPSANS
EU Project.

REFERENCES

[1] T. Abbott, K. Lai, M. Lieberman and E. Price, Browser-based
attacks on Tor. Privacy Enhancing Technologies, 7th International
Symposium PET 2007, LNCS 4776, 185-199, Springer Verlag, 2007.

[2] P. Baldi, S. Brunak, Y. Chauvin, C.A.F. Andersen and H. Nielsen,
Assessing the accuracy of prediction algorithms for classification:
an overview. Bioinformatics review, vol.16 no.5 2000, 412-424,
2000.

[3] K. Bauer, D. Maccoy, D. Grunwald, T. Kohno and D. Sicker, Low-
resource routing attacks against anonymous systems. Proceedings
of ACM Workshop on Privacy in the Electronic Society, 2007.

9http://www.culater.net/software/PithHelmet/PithHelmet
SampleAdBlocking.php

10http://www.apple.com/safari/
11http://www.icab.de/
12http://adblockplus.org/en/

[4] C.M. Bishop, Neural networks for pattern recognition. Oxford
University Press, 0198538642, 1995.

[5] R. Cannings, H. Dwivedi and Z. Lackey, Hacking Exposed Web 2.0:
Web 2.0 Security Secrets and Solutions. McGraw-Hill Osborne
Media, 0071494618, 978007149618, 2007.

[6] D. Chaum, Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, vol.4, no.2, 1981.

[7] R. and N. Dingledine, Tor: The second-Generation Onion Router.
Proceedingss of the 13th USENIX Security Symposium, 303–320,
San Diego, CA, USA, 2004.

[8] J.B. Kruskal, On the shortest spanning subtree of a graph and
the traveling salesman problem.. In Proceedings of the American
Mathematical Society, volume 7, 48-50, 1956.

[9] M. Gilleland, Levenshtein distance, in three flavours.
http://www.merriampark.com/ld.htm.

[10] A. Greenwald, Matrix Games and Nash Equilibrium. Lecture in
Game-theoretic Artificial Intelligence, Brown University CS Dep.
Providence, US, 2007.

[11] J. Grossmann, R. Hansen and P. Petkov, Cross Site Scripting
Attacks: Xss Exploits and Defense. Syngress Media, 13-978-
1597491549, 2007.

[12] A. Hintz, Fingerprinting Websites Using Traffic Analysis. Privacy
Enhancing Technologies, 171–178, 2002.

[13] HTTP. RFC2616, http://www.w3.org/Protocols/rfc2616/rfc2616.html.
[14] B.N. Levine, M.K. Reiter, C. Wang and M. Wright, Timing at-

tacks in low-latency mix-based systems. Proceedings of Financial
Cryptography, 2004.

[15] D. Maccoy, K. Bauer, D. Grunwald, T. Kohno and D. Sicker,
Shining Light in Dark Places: Understanding the Tor Network.
PETS’09: Proceedings of the 8th International Symposium on Pri-
vacy Enhancing Technologies, Leuven–Belgium, Springer-Verlag,
63–76, 978-3-540-70629-8, 2008.

[16] D. L. Mills, Network Time Protocol (Version 3) Specification,
Implementation and Analysis. RFC, 1992.

[17] MIME - Media Types. RFC2045, http://www.isi.edu/in-
notes/rfc2045.txt.

[18] S.J. Murdoch and G. Danezis, Low-cost traffic analysis of Tor.
Proceedings of The IEEE Security and Privacy Symposium, 2006.

[19] L. Overlier and P. Syverson, Locating Hidden Servers. Proceedings
of the IEEE Symposium on Security and Privacy, IEEE CS, 2006.

[20] M. Owens, Embedding an SQL database with SQLite. Linux Jour-
nal n.110, vol. 2003, Specialized Systems Consultants In., Seattle,
WA, USA, 1075-3583, 2006.

[21] Ø. Lasse, Locating Hidden Servers. SP ’06: Proceedings of the
2006 IEEE Symposium on Security and Privacy, Washington, DC,
USA, 100-114,2006.

[22] Securing the Tor Network.
http://www.freehaven.net/˜arma/SecuringTheTorNetwork.pdf.

[23] F. Stablum, Tcpick. http://tcpick.sourceforge.net/.
[24] Timothy G. Abbott et al, Browser-based attacks on Tor Lecture

Notes in Computer Science.
[25] Tor: Hidden Service Protocol. http://www.torproject.org/hidden-

services.html.en.
[26] Torscanner. http://code.google.com/p/torscanner/.
[27] T. Turocy, Gambit. http://gambit.sourceforge.net/, 2007.
[28] X. Wang, S. Chen and S. Jajodia, Network flow watermarking attack

on low-latency anonymous communication systems. Proceedings of
the IEEE Security and Privacy Symposium, 2008.

[29] X. Wang, J. Luo, M. Yang and Z. Ling, A novel flow multiplication
attack against Tor. Proceedings of the 13th IEEE International
Conference on Computer Supported Cooperative Work on Design,
2009.

[30] W. Yu, X. Fu, B. Graham, D. Xuan and W. Zhao, Dsss-based flow
marking technique for invisible traceback. Proceedings of the IEEE
Security and Privacy Symposium, 2007.

[31] K. Zetter, Tor Researcher Who Exposed Embassy E-mail Passwords
Gets Raided by Swedish FBI and CIA. 2007.

[32] Y. Zhu, Y. Fu, B. Graham, R. Bettati and W. Zhao, On flow corre-
lation attacks and countermeasures in mix networks. Proceedings
of Workshop on Privacy Enhancing Technologies (PET), 2004.

[33] X. Zhu and Z. Ghahramani, Learning from labeled and unlabeled
data with Label Propagation. Technical Report CMU-CALD-02-
107, Carnegie Mellon Univ., 2002.

5454

