
Towards an estimation of the accuracy of TCP reassembly in network forensics

Gérard Wagener
University of Luxembourg

gerard.wagener@ses-astra.com

Alexandre Dulaunoy
SES ASTRA

a@foo.be

Thomas Engel
University of Luxembourg

Thomas.Engel@uni.lu

Abstract

Today, honeypot operators are strongly relying on net-
work analysis tools to examine network traces collected in
their honeynet environment. The accuracy of such analysis
depends on the ability of the tools to properly reassemble
streams especially TCP sessions. Network forensics anal-
ysis quality is tight to those tools and we evaluated widely
used network analysis tools. We pinpoint TCP reassembly
errors with their causes and propose algorithms and ana-
lytical techniques to measure them in order to improve net-
work forensic analysis.

1 Introduction

In network forensics, network packets are captured and
analyzed in a later stage [2]. Full packet capture is more
granular than Netflow exports [1]. Crovella et al. claim that
in a context of network trace analysis, it is mandatory to
have correctly working software that is able to reconstruct
network traces [5]. Network captures are sometimes done
by other people than those who are doing the capture anal-
ysis. In some cases, the network capture tool was not well
calibrated during the capture. Intuitively two kinds of po-
tential errors are introduced during network capture analy-
sis. The first class of errors is caused by the capture opera-
tor and the root cause of the second class is the presence of
software implementation flaws in network analysis tools.

The contribution of this paper is to estimate the accu-
racy of TCP reassembly. Thus we start to pinpoint dis-
covered TCP reassembly errors, followed by proposals of
algorithms and equations to measure them, aiming to im-
prove network forensics analysis. We validated our ap-
proaches with experiments based on popular research tools,
like Tcptrace and Tcpflow [1]. We monitored a host
for 47 days in order to simulate an high-interactive honey-
pot [1] and discovered various TCP reassembly challenges.

In section 2 is sketched a state of the art for TCP re-
assembly. Discovered problems and proposed solutions are
enumerated. Flow definitions and relations between them

are presented in section 3, followed by a TCP reassembly
model. This model was designed to deal with reassembly
challenges and its purpose is estimate TCP reassembly er-
rors. Section 4 describes the experiments we did with our
network traces. This article is concluded in section 5 and
future work activities are enumerated.

2 Related work

An intersection of network forensics and intrusion detec-
tion is the process of TCP reassembly. This is an non trivial
task [4]. Many problems can emerge during the transmis-
sion of a packet. They can be delivered out of order, repli-
cated and corrupted.

TCP is a complex protocol and many different imple-
mentation flavors exits. Most TCP stacks behave differently
in various scenarios [4]. In network forensics additional
constraints are present. A first constraint is that some ambi-
guities can emerge during the reassembly process due to the
lack of knowledge of the network topology. In other words
packets might be captured that never reached their target.
Network normalization techniques are proposed to remove
such ambiguities [8]. A second constraint is that incom-
plete network packets can be captured [11] which influence
the reassembly process. A third constraint emerges when
attackers try to circumvent the reassembly process [7, 12].
Song et al. [12] describe attacking methods in order to test
network intrusion detection systems aiming to see whether
they are vulnerable or not. Sarang et al. tackled the problem
of TCP reassembly when attackers are present [7]. They
focus on attacks against available memory for intrusion de-
tection systems. They established equations aiming to com-
pute the number of resources available to the attacker for
being successful. Beside available memory, it is essential to
have a correct implementation of the TCP protocol. In this
article we focus on implementation flaws of TCP reassem-
bly and we elaborated a methodology to measure them.

On the one hand, in intrusion detection systems, the
stream reassembly and the stream analysis are closely
linked in one system. On the other hand, in network foren-
sics, one system performs the TCP reassembly and an-

other one performs the stream analysis. It is obvious that a
mandatory requirement is that the two systems use the same
flow definition. M.I. Cohen et al. propose a forensics pack-
age melting network forensics, memory forensics and disk
forensics [2]. Eric Cronin et al. discovered that network
eavesdropping is a non-trivial task. They also discuss that
the party intercepting communications can be confused. In
this case the sender communicates with the recipient in such
a way that the eavesdropper cannot understand or misinter-
prets the communications. Different and exotic hardware
or operating system can cause a similar phenomenon. Thus
we created a TCP reassembly model and a methodology to
measure potential reassembly errors.

3 Monitoring flows

In this section we are going to define the network moni-
toring terms we are using in this article.

3.1 Flow identification and sessions

An unidirectional IP flow is a set of IP packets and can
be characterized by a 5-tuple [3, 5, 6] (Source IP address,
Source port, Destination IP address, Destination port, Pro-
tocol) ∈ I . The protocol parameter identifies which pro-
tocol is used. Frequent used protocols are TCP and UDP.
There is a mathematical relationship F between captured
packets and flow identifier shown in relation 1 where P̂ is
the set of captured packets and I is the set of flow identifier.

(I,F , P̂) ⊂ I × P̂ (1)

The 5-tuple identifier is extended in Netflow [3] by the
addition of N other parameters like ingress interface and
type of service. Assuming that all parameters can be rep-
resented by numbers, the relationship F ′ between a general
flow identifier and a set of captured packets is shown in re-
lation 2.

(NN ,F ′, P̂) ⊂ NN × P̂ (2)

In this article we focus on TCP flows which are defined
as a set of TCP packets identified by a 4-tuple (Source IP
address, Source port, Destination IP address, Destination
Port).

3.2 TCP reassembly model

The main purpose of TCP is to serve as transport layer
and to guarantee that a data stream is correctly transfered
to a given destination, using an unreliable network. Due
to the diversity of TCP reassembly designs let R be the set
of reassembly functions. A reassembly function maps TCP
packets with streams. The purpose of such a function is to

recover the initial stream, emitted by the sender, from cap-
tured TCP packets. Let P̂ be the set of captured TCP pack-
ets. P̂ = {p1, . . . , pt, . . . , pT }. A packet that was captured
at time t is noted pt. A packet contains checksums in order
to detect transmission errors. These checksums are verified
with the function ω which returns the value 1 if the packet
has a correct checksum and 0 otherwise. The set of TCP
packets with a correct checksum is defined in equation 3. In
a network capture we only have the checksum information
to see whether the packet is correct or broken, although it
was shown that checksums are not always reliable [13].

P = {pi ∈ P̂ | ω(pi) = 1} (3)

For a given set of captured packets, P and a reassem-
bly function ρ ∈ R there is a set S that includes the data
streams, recovered from TCP packets.

A reassembly function ρ ∈ R reassembles TCP
packets and is defined in equation 4 such that k, j ∈
{1, 2, 3, . . . , N}. The number j identifies the flow and the
index k identifies the offset in the stream.

ρ : P → S

ρ 7→ f j
k

(4)

Furthermore we define a function σ, shown in equation
5, that maps TCP packets to TCP sessions. A TCP session
starts with a connection establishment and finishes with a
connection close, like it is described in the RFC 793. The
variable sk holds TCP packets belonging to a TCP session.
sk = {pi|{(pi, k)} ⊂ F}. Thus the set E contains subsets
of TCP packets that belong to a TCP session. An algorithm,
to extract these subsets is proposed in section 4.1.1.

σ : P → E
σ 7→ sk

(5)

Each session is mapped to a data stream, defined in func-
tion 6. Ideally the data stream, should be identical with the
data stream emitted by the sender.

η : E → S
x 7→ η(x) (6)

A reassembly function ρ is composed of the session
function and the session mapping function, shown in propo-
sition 7.

P → S
ρ = σ ◦ η (7)

3.3 TCP reassembly challenges

TCP reassembly is a difficult task. Although a standard
specification of the protocol, described in RFC 793, there
are different implementations. Each reassembly tool has its

own specification of stream. The tool Tcptrace matches
a session with a stream, the tool Tcpflow links one tu-
ple with one stream. The tools Tcptrace and Tcpflow
put data sent from the sender to the receiver in one stream
and data from the receiver to the sender in another one. A
stream generated by the tool Wireshark, the successor of
Ethereal [1], puts data sent from the sender and from the
receiver in one stream.

Furthermore some implementations might be defectively
coded. Applying a code checker, like Valgrind [10] on
reassembly tools, software errors could be detected, like
memory leaks, the use of invalid file descriptors and the use
of uninitialized memory. By observing such phenomena we
are searching for strategies to estimate TCP reassembly er-
rors and verify reassembled streams.

3.3.1 Multiple sessions per flow

High-interactive honeypots, resources which purpose is to
attacked, are frequently monitored by capturing the traffic
towards them. When we apply the traditional flow relation,
defined in equation 1, we notice that the source/destination
IP address and the destination port is constant for the given
monitored resource. We are interested in the case where the
same source port is reused. The set of packets that belong
to multiple sessions using the same source port is described
in equation 8.

pa, pb ∈ P
Mp = {(σ(pa) 6= σ(pb)) ∧ (ρ(pa) = ρ(pb))}

(8)

The phenomenon of having multiple sessions per flow
might be reduced to the birthday problem [9], assuming that
the source port distribution is uniform. It consists of the
probability Pb of finding at least two streams, in a set of n
streams belonging to the same flow. The applied birthday
problem is formulated in equation 9. Pr = 216 − 1024 −
1 represents the TCP port range an operating system can
choose as source port.

Pb = 1− Pr!
Pn

r (Pr − n)!
(9)

3.3.2 Corrupted streams

As we have defined in equation 4 the payload of TCP pack-
ets are put in a stream at an offset defined in the TCP header.
Moreover header information indicates corrupted or dupli-
cated packets and out-of-order received packets.

We are looking for a verification process for reassembly
functions in order to detect wrongly reassembled streams.
On the one hand for estimating the accuracy of the reassem-
bly of streams we can compare reassembled streams with
different independent tools. On the other hand we want to

1

2

3

4

5

6

7

8

9

P
1

P
2

P
3

b vector (captured packets)

1 2 3 4 5 6 7 8 9

Offset 0 1 2 3 4 5 5 6 7

d vector (generated stream by)

t

1

D
H f s' q wl g

P
0 0 0 0 100 10 S

P
2 0 1 3 101 13 A

P
3 0 1 5 108 13 A

P
0

P
1 0 1 0 101 13 A

P
4 0 0 108 10 F

TCP header

TCP payload

0

P
4

c matrix

Figure 1. Detecting corrupted streams

be able to understand why streams were reassembled dif-
ferently at the end of the reassembly process. Therefore we
aim to have methods to check streams. The input of these
methods is composed of a reassembled stream and the raw
captured packets. We put the payload of TCP packets in
a vector

−→
b shown in figure 1. This vector represents one

TCP session. pi ∈ P,
−→
b = (σ(pi)). The packets are put at

arrival order in the vector. A TCP packet pi is a tuple (TCP
header, and TCP payload).
In a next step we consider a reassembled stream

−→
d as a vec-

tor of bytes shown in figure 1. From the vectors
−→
b and

−→
d

we generate a matrix c shown in figure 1 serving to check
the reassembly process. The column τ contains the time
stamp attached during the capture. The variable ∆H is the
difference of the real packet length and the effective cap-
tured packet length. For packets that were completely cap-
tured ∆H is 0. The variable λ quantifies the TCP payload
length. The number of occurrences of the packet’s payload
in the stream is specified by the variable f . The offset in
the stream of the payload is described with the s′ variable,
followed by the q variable which is the used sequence num-
ber in the TCP packet. The column ω(pi) indicates correct
or incorrect checksums. Finally the column g contains the
TCP flags present in the TCP header. This matrix is sorted
according sequence numbers and a matrix c′ matrix is the
result. Here it is already worth to mention that in the best
case for a reassembly function ρ(pi) = f j

k , j = s′. Two
choices are possible if this statement does not hold: (i) the
stream was not correctly reassembled or (ii) the payload of
the TCP packet pi was found more than once, i.e. f > 1.
The computational complexity for establishing the matrix c
is O(n2) because the frequencies of the TCP payloads in
the stream is required.

3.4 Reassembly error estimation

After the presentation of the TCP reassembly model and
TCP reassembly challenges we are interested in establish-
ing probabilities for quantifying TCP reassembly errors.
Two kind of potential errors are presented (i) potential er-
rors at packet level and (ii) potential errors at stream level.
Of course for a given reassembly tool it should first be
checked if these probabilities should be computed or if they
could be neglected due to a correct software design.

3.4.1 Errors at packet level

A potential error at packet level is a probability that a de-
fective packet caused a wrongly reassembled stream. The
probability that faulty checksums influence stream reassem-
bly is defined in equation 10.

Pc =
|{pi ∈ P̂ | ω(pi) = 0}|

|P̂|
(10)

Neglected IP fragmentation in a reassembly process in-
duces the probability of observing fragmented IP packets
during the reassembly process defined in equation 11 where
φ is a function that returns 1 if a packet is fragmented and 0
otherwise.

Pf =
|{pi ∈ P | φ(pi) = 1}|

|P|
(11)

In order to avoid errors caused by fragmented IP pack-
ets or by faulty checksums it must be ensured that the used
reassembly function correctly handles such packets.

3.4.2 Errors at stream level

A potential error at stream level is the probability that quan-
tifies how many streams seem to be corrupted.

On the one hand the set E contains TCP sessions and on
the other hand we have the set of recovered streams. Ide-
ally the number of reassembled TCP sessions should be the
number of recovered streams. The number δ represents the
difference of reassembled sessions and recovered streams
δ =| E | − | S |. If δ is zero, no mismatch was detected.

One the one hand, we call invisible streams, TCP ses-
sions present in the set of captured packets and the proba-
bility of having such streams is defined in equation 12. On
the other hand we name an additional stream, a stream that
was not generated from a session shown in equation 13.

δ > 0 : Ip = 1− | S |
| E |

(12)

δ < 0 : Ap = 1− | E |
| S |

(13)

Equation 13 and 12 give an idea about the number of
streams that does not match with the number of sessions.
However these equations might say that there is no error
even if there are errors that compensate each other. An ex-
ample is an invisible stream that compensates a additional
stream. Therefore it is essential to check if the streams
are consistent. The probability where multiple sessions are
present in a TCP flow is defined in equation 14.

Pspec =
|{σ(pi) | pi ∈Mp}|

|I|
(14)

The methodology proposed in figure 1 establishes a
sorted matrix c′ which can be used to detect reassembly in
some cases. The cases where ambiguities are present can
also be detected. Streams can be wrongly reassembled due
to incomplete collected payloads or mixed packet payloads
which induce a faulty offset computation.

At first and foremost the packet capturing process must
capture the complete packets in order to reassemble cor-
rectly a stream. The libpcap1 library, used by the tool
Tcpdump provides two packet lengths. The caplen is the
packet length effectively captured, and len is the length
of the initial sent packet length. The parameter ∆H =
len − caplen can be different than zero which means that
the packet was not completely captured. Incomplete packets
that are used by reassembly functions cause non-corrective
errors due to the lack of captured information, show in equa-
tion 15.

P∆H
=
| {p ∈ σ(pi)|∆H > 0} |

| P |
(15)

Incorrect offsets can also be caused by software defects.
In a correct reassembled stream no holes should be present
which can be formulated if relation 16 holds where s′0 = 0.

i > 0 : s′i = λi−1 + s′i−1 (16)

4 Experimental evaluation

Section 3 shows a TCP reassembly model and TCP re-
assembly challenges. In this section we describe our prac-
tical experiments we did aiming to measure the accuracy of
TCP reassembly.

4.1 Methodology

Based on two captures created with the tool Tcpdump
we evaluated the popular research tools Tcpflow and
Tcptrace. Our purpose is to estimate reassembly errors.
The library libcap provides an API2 to manipulate captured

1http://www.tcpdump.org
2Application Programming Interface

hotspot proxy1

Start date 2006-05-15 2008-03-21
End date 2006-05-17 2008-05-06
Number of packets 3833988 41609423
Number of IP packets 3781761 41609423
Number of TCP packets 1227920 41609423
Number of UDP packets 2534954 0
Number of Non-IP packets 52227 0
pcap file size 1.3GB 38GB
Wrong checksums 5 0

Table 1. Used data sets

network packets. In the following sections we use a custom
program that uses the pcap library and reads stored packet
capture already in pcap format.

Table 1 shows the data sets we used in our experiments.
We used two network captures: With the proxy1 capture
we simulated the situation where a given destination IP ad-
dress and source address is monitored over a large period of
time, like it is the case for high-interactive honeypots. We
captured the traffic from a web proxy. The hotspot cap-
ture contains traffic from an hotspot which was active last
year during two days and contains more versatile TCP pack-
ets. Inside the proxy1 capture an host running Windows
XP SP2 was monitored and the hotspot capture contains
packets initiated from different operating systems. On our
captures we executed the tool Tcpflow and Tcptrace.
Moreover our custom pcap program extracts all the tuples
from a pcap file, according the 5-tuple relation presented in
equation 1.

4.1.1 Counting the number of TCP sessions

We also counted the number of sessions inside a pcap file
in three steps. At first we generated with a script a list that
summarises the TCP packets in the pcap file. From each
captured TCP packet we extracted the time stamp, followed
by the tuple and TCP flag. In a second step we processed
this list and created a list for each tuple. In the algorithm
proposed in figure 2 we inspected the TCP flag. If a TCP
connection is established with a SYN flag and terminated
with a FIN or RST flag we incremented a counter per list.
This counter represents the number of sessions.

4.2 Results

4.2.1 Proxy1 capture analysis

In the proxy capture, 0 IP packets had a bad checksum.
Thus Pc = 0. Next 0 IP packets were fragmented and
Pf = 0. Moreover 7942 tuples were extracted directly from
the pcap file with a script. The computation of P∆H =

1: end con← 0
2: sessions← 0
3: while (pkt = read packet()) do
4: if (IS FIN SET (pkt.flag)) then
5: end con← 1
6: end if
7: if (IS RST SET (pkt.flag)) then
8: end con← 1
9: end if

10: if (IS SY N SET (pkt.flag)) then
11: if (sessions = 1) then
12: sessions← 1
13: else if (end con = 1) then
14: sessions← sessions+ 1
15: end if
16: end if
17: end while

Figure 2. Counting session algorithm

0.57 provides the proportion of incomplete captured pack-
ets, which prevent a correct stream reassembly. The tool
Tcpflow has processed 7930 flows. We see that 12 flows
are missing. This can be explained due to the fact that
the tool Tcpflow wanted to generate too large files which
were refused to be created. In case only a connection es-
tablishment is present in a tuple and when no data is ex-
changed, the tool Tcpflow does not create the correspond-
ing stream. The tool Tcpflow maps sessions and streams
by generating stream files that are identified with a tuple.
Thus the tool Tcpflow generated 7930 streams which ex-
actly matches with the number of processed tuples. The
mismatch between the number of sessions and streams can
be detected by computing Ip = 0.88. In case multiple ses-
sions per flows are present, which can be measured by cal-
culating Pspec, the tool Tcpflow mixed the sessions.

The tool Tcptrace refused to process a pcap file of
38GB. Therefore we split the 38GB pcap file in small pcap
files using Tcpdump. Each generated file has a size of 2GB
which were processed by the tool Tcptrace. The tool
Tcptrace processed 73937 5-tuples. We see that 5-tuple
are missing due to the fact that sessions were interrupted
by cutting the file. A second reason for this difference is
that some flows only contain TCP packets to establish a
TCP connection but no data is exchanged. The computa-
tion of Ip = 0.016 indicates mismatches of streams and
sessions. By comparing Ip for the tools Tcptrace and
Tcpflow, we see that the tool Tcptrace extracts more
streams than the tool Tcpflow. The small deviation of the
tool Tcptrace has two origins. At first a session that only
contains packets of a connection establishment are counted
as a session with our algorithm and the tool Tcptrace

does not create a session for them. The second reason is
that some sessions could not be stored due to the use of in-
valid file descriptors. For a capture of 38GB recorded dur-
ing 47 days, we computed Pspec = 0.98 which means that
the flows contain more than one session. The phenomenon
of having more than one session per flow emerged after
three days and can be explained by the birthday problem,
discussed in section 3.3.1. If, in equation 9, n increases,
p(n) also increases. In case of a continuous captured traffic
n increases.

4.2.2 Hotspot capture analysis

This capture contains more heterogenous TCP sessions due
to the fact that we are monitoring a transit network and not
a specific resource like in the previous proxy capture. In
this capture some packets contain a bad checksum. Thus
Pc = 13 × 10−6. In this capture no fragmented IP packets
were present and Pf = 0. The computation of P∆H = 0.43
shows that packets were not completely captured. The tools
Tcptrace and Tcpflow have the same number of invis-
ible streams, Ip = 0.23. On this capture we also applied
the tool Valgrind on the tools Tcptrace and Tcpflow.
For the tool Tcptrace we observed that 5 times invalid
addresses were read and 36196 invalid file descriptors were
used. For the tool Tcpflow we noticed that 11 times in-
valid addresses were read and 4 times uninitialized buffers
were used. These numbers motivate further analysis and
building a methodology to check if streams were correctly
reassembled.

5 Conclusion

In order to use the output of a network forensic tool
against some one we believe that it is mandatory to firstly
check the captured input data and the capabilities of the
used tools. Secondly an output should validated with other
independent tools. Two families of errors can emerge.
Firstly it might be that the capture tool was not correctly
calibrated and some packets are truncated. Next streams
might be defectively reassembled due to caused ambiguities
that end in implementation flaws. An additional need is that
the analysis tools have the same interpretation of flows, ses-
sions and streams. We proposed a TCP reassembly model
and a stream verification methodology that can be used to
derive and compute reassembly errors. For the future work
activities, we firstly planed to continue the evaluation of
our stream verification methodology and we are trying to
establish a precise classification of TCP reassembly error
causes. Based on such classification we can create proba-
bilistic models for estimating TCP reassembly errors. Fi-
nally we plan to contribute to existing free and open source
TCP reassembly software to correct or improve them.

Acknowledgments

This work is partially funded by U-2010, an integrated
research project of the 5th Call of the 6th European Re-
search Frame Program. We also want to thank Dr. Radu
State for his useful comments and corrections and the mem-
bers, of the SECAN LAB for their fruitful discussions.

References

[1] R. Bejtlich. The Tao Of Network Security Monitoring: Be-
yond Intrusion Detection. Addison-Wesley Professional,
2004.

[2] M. Choen. Pyflag - an advanced network forensic frame-
work. Digital Investigation, 5(1), August 2008.

[3] B. Claise. Cisco Systems Netflow Services Export System,
Oct 2004. RFC 3954.

[4] E. Cronin, M. Sherr, and M. Blaze. On the reliability of
current generation network eavesdropping tools. Interna-
tional Federation for Information Processings, 222(2):103–
113, 2008.

[5] M. Crovella and B. Krishnamurthy. Internet Measurement,
chapter Issues in capturing data, pages 101–102. John Wiley
& Sons Ltd, 2006.

[6] A. Das, N. David, Z. Jospeh, M. Gokhan, and C. Alok. An
FPGA-based network intrusion detection architecture. In-
formation Forensics and Security, 3(1):118–132, Mar 2008.

[7] S. Dharmapurikar and V. Paxson. Robust tcp stream re-
assembly in the presence of adversaries. In SSYM’05: Pro-
ceedings of the 14th conference on USENIX Security Sym-
posium, pages 5–5, Berkeley, CA, USA, 2005. USENIX As-
sociation.

[8] M. Handley, V. Paxson, and C. Kreibich. Network intru-
sion detection: evasion, traffic normalization, and end-to-
end protocol semantics. In SSYM’01: Proceedings of the
10th conference on USENIX Security Symposium, Berkeley,
CA, USA, 2001. USENIX Association.

[9] E. H. McKinney. Generalized birthday problem. American
Mathematical Monthly, 73:385–387, 1966.

[10] N. Nethercote and J. Seward. How to shadow every byte of
memory used by a program. In VEE ’07: Proceedings of
the 3rd international conference on Virtual execution envi-
ronments, pages 65–74, New York, NY, USA, 2007. ACM.

[11] L. Schaelicke and J. Freeland. Characterizing sources and
remedies for packet loss in network intrusion detection sys-
tems. In Workload Characterization Symposium, pages 188–
196. IEEE, Oct 2005.

[12] D. Song, G. Shaffer, and M. Undy. Nidsbench - a network
intrusion detection test suite. In Recent Advances in Intru-
sion Detection, 1999.

[13] J. Stone and C. Partridge. When the crc and tcp checksum
disagree. SIGCOMM Comput. Commun. Rev., 30(4):309–
319, 2000.

