
An Instrumented Analysis of Unknown Software
and Malware Driven by Free Libre Open Source Software

Gérard Wagener
University of Luxembourg

SES ASTRA
gerard.wagener@ses-astra.com

Alexandre Dulaunoy
SES ASTRA

a@foo.be

Thomas Engel
University of Luxembourg

Thomas.Engel@uni.lu

Abstract

Reverse engineering is often the last resort for analyz-
ing unknown or closed source software. Such an investi-
gation is motivated by a risk evaluation of closed source
programs or by evaluating consequences and countermea-
sures against infections by malicious programs that are of-
ten closed source. This article presents a success story
where we used and modified free software serving as envi-
ronment for analyzing unknown software. We explain how
a malware sandbox can be constructed based on free soft-
ware. Moreover we describe how we modified free software
to improve malware analysis with additional features or ex-
tensions. Free software helped us to increase the accuracy
of malware or unknown software analysis.

1 Introduction

Key words like confidentiality, access-control, integrity,
authenticity resurface regularly in a security context [24].
For free software, four approaches can be used to verify if
these key words are justified. Firstly, the source code can be
read and tested. A second possibility is to follow the open
discussions in public mailing lists. A third possibility is to
read change logs and a forth possibility is to read the logs
of the public version system (i.e. cvs [5], subversion [8], git
[25]) hosting the piece of software. After having understood
the source code, a formal verification can be done to ensure
assumptions. A third-party can also conduct such an audit.

For closed source solutions such a verification is more
difficult. The above mentioned verification approaches are
privileges of the person having the authorized access. A
non-disclosure agreement can be done with third-parties
[3]. Often these agreements are non-transitive. Each sub-
contractor must sign a non-disclosure agreement with the
person having the author rights. Of course there remains the
possibility of reverse engineering based on security tools,

like disassemblers, debuggers, virtual machines and alike.
Even if a closed source software customer is aware of vul-
nerabilities he or she must wait until the software vendor
provides a new software release. In the free software world,
the customer can patch the program and publicly divulge
the patch.

An increase of malicious software is predicted [20]. Ma-
licious software is often denoted as malware. Malware is
software with malicious intent and a wide spectrum of mali-
cious programs can be found in the wild [2]. Malicious pro-
grams usually penetrate machines without the user’s agree-
ment. Another common infection technique is that a user
installs a trojan horse. Families of malicious programs spy
the user’s activities and send private and confidential data to
third-parties without the user’s awareness. Other families
hijack users’ resources for attacking other machines. An-
tivirus programs are used for detecting malicious software
and for preventing the damage. These capabilities are im-
plemented by the antivirus community which collects ma-
licious closed source programs and reverse engineers them
with the purpose of protecting other users.

This article focuses on the analysis of malicious binary
programs that are closed source and run in a Microsoft Win-
dows operating system. For such programs, reverse engi-
neering tools are needed to find countermeasures, as ex-
plained in section 2, followed by limits of closed source
analysis presented in section 3. Our successful experiences
with malicious software analysis driven by free software are
described in section 4. We profited from free software free-
doms aiming to improve analysis of malicious programs,
summarized in section 5 and the limits are announced in
section 6. The related work is outlined in section 7 followed
by future work activities motivated in section 8.

1.1 Terms and definitions

In this article we reuse the Free-Libre / Open Source
Software definition relying on the Free Software Movement
[12, 33, 9].

1



1.1.1 FLOSS

FLOSS stands for Free-Libre / Open Source Software. It
characterizes software licenses which provide all the four
freedoms F = {F0, F1, F2, F3}, like it is described in the
GNU project [12]. Only a software tool, or a software li-
brary, that provides all the four freedoms in F is considered
as ”free” in this article.

F0 A program can be run for any purpose.

F1 The source code can be studied in order to determine
how a program works.

F2 Copies of the program can be distributed.

F3 Anybody can improve the program and publish re-
leases.

A consequence of the F0 freedom is that a program can
be run for research or operational purposes. Studying the
internals of a program, possible through the F1 freedom,
helps to understand a program and to evaluate the risk of
using the program. The F2 freedom improves the dissem-
ination of a program. When a program is not supported
anymore, someone else can take over the program, improve
it and share the improvements, based on the freedom F3.

1.1.2 Closed source software

A frequently used synonym for closed software is propri-
etary software. Generally, at least one freedom f ∈ F is not
granted. In this article, if not specified, we consider closed
source software as software where at least the freedom F1

is prohibited.

2 Malware analysis

2.1 Discussion

According to the author of [1], a personal computer is a
fundamentally insecure platform due to its open and acces-
sible architecture. A threat originates from software run-
ning on the platform. Thus the author proposes code pro-
tection techniques aiming to protect software, founded on
cryptography and anti-reverse engineering techniques. An-
other reason for protecting software is to avoid software
piracy and intellectual property violations [17].

Software protection is a two-edged sword because au-
thors of malicious software also apply such techniques
[10, 29, 31]. They try to keep their source code secret aim-
ing to protect them against antivirus software or other mal-
ware authors. Once the internals of a malware sample are
revealed, the end of its life cycle is reached. A continuous
race is established between malware authors and malware
analysts.

2.2 Delegation of malware analysis

Strong reverse engineering skills and considerable ef-
forts is required for malware analysis. Automated malware
analysis services are offered by companies. A customer can
submit a malware sample to such a service and later receives
a report of its internals. The sample is often put in a sand-
box at the company side, where observations are done. The
Norman sandbox was developed by the company Norman
[18] and the CWSandbox [34], developed by the university
of Mannheim, was acquired by the company Sunbelt.

2.3 Analysis tools off the shelf

Due to the fact that the source code is not available
for closed source software and reverse engineering is the
last resort, disassemblers, debuggers, virtual machines and
monitoring tools belong to the toolbox of the reverse engi-
neer. Two malware analysis approaches are usually applied.
The first approach is called static analysis. In this case
the malicious program is not executed, only its machine
code is transformed in assembler code with disassemblers
and studied. The second approach is called dynamic anal-
ysis, where a malicious program is executed and observed
[29, 34]. Debuggers, virtual machines and monitoring tools
are used for this purpose. A pleasant phenomenon is that
most free reverse engineering tools / libraries are included
in a GNU/Linux distribution and the below mentioned tools
/ libraries are included in Ubuntu 8.04. Frequently reverse
engineering tools follow a standard unix design [21] and
can be used by a command line interface. Thus they can be
used by scripts or front-ends.

2.3.1 Disassemblers

Disassemblers are very popular for mapping machine code
to assembler code, that is studied later on. A notable disas-
sembler is a proprietary disassembler called IDA Pro [13].
IDA Pro has some powerful features like recognizing sys-
tem functions, extracting and presenting visually control
flow graphs and debugging a subset of machine instructions.

The free tool objdump can also be used to disassemble
programs, with a graphical front-end called dissy. The tool
dissy provides a graphical representation of the disassem-
bled jump instructions. Unfortunately this disassembler is
vulnerable to linear sweep attack [17]. Free disassembler
libraries like libdisasm can be integrated in other free soft-
ware. Free disassemblers are often combined with hex edi-
tors, as it is with case in the free tool ht.

2.3.2 Virtual machines

Malicious programs can be executed in virtual machines
and observed aiming to mitigate disassembler attacks [19].

2



Usually high-level information is gathered from malware
samples, like file system changes, registry changes and net-
work activities. Using virtual machines it is easy to record
the state just before the malicious program execution and
the state of the virtual machine after the execution using
snapshots [19]. These snapshots can then be compared. In
practice the malware sample is executed for a few seconds
to a few minutes and then killed. An alternative to the closed
source virtual machine VMware is qemu [6].

Besides virtual machines, virtual operating systems were
developed. In the User-Mode Linux project, the Linux ker-
nel is instrumented to run in user space. Thus multiple
Linux operating systems can run on top of a Linux system.

2.3.3 Debuggers

Sometimes researchers are interested in intermediate states
of a malware execution. Debuggers can be used for this
purpose, softice is a noteworthy proprietary kernel debugger
[19]. Without any anti-debugging techniques, the execution
of a program can be stopped, at any time, the memory and
the processor state can be inspected. A popular free debug-
ger is gdb which is followed by many graphical front-ends
like ddd and cdbg.

2.3.4 Software monitors

Besides debuggers and virtual machines, other monitoring
techniques were explored. In a Microsoft Windows oper-
ating system, functions of external libraries can be redi-
rected with a proprietary library called detours [14]. Spe-
cialized kernel functions can also be diverted and moni-
tored. One software component runs in kernel space and
monitors tasks. The other one runs in user space and re-
ports observations. Proprietary examples of such monitor-
ing tools are filemon [22] and regmon [23]. Free alternatives
running in a Linux operating system are strace, ptrace and
ltrace.

3 Limits of malware analysis

3.1 Fundamental limits

Static and dynamic analysis, presented in section 2.3,
have fundamental limits. During static analysis, the control
flow may depend on dynamic variables, hardly possible to
determine in advance without emulation. Moreover instruc-
tions can be generated during execution and then executed
which provoke a control-flow graph change during execu-
tion [29]. For the dynamic analysis it was proved, based
on Alan Turing’s Halting Problem, that it is undecidable to
foresee whether a malicious program has finished [10].

3.2 Limits of closed approaches

Malware authors often create programs capable of evad-
ing the analysis process. For this purpose they often ex-
ploit ambiguities or artifacts of the analysis tools. Vir-
tual machines often have unique hardware strings which are
queried by malware samples for the purpose of detection
[19]. Binary patches for the closed source virtual machine
VMware were created, targeting a better camouflage [16].

For free software solutions such changes are easier to
perform, due to the freedoms F1 and F3. Other detection
techniques exploit incomplete implementations. Often spe-
cialized processor instructions are not implemented in vir-
tual machines, executed by malicious programs which of-
ten ends up in the end of the analysis. Free software can be
studied in order to detect such vulnerabilities and patches
can be written.

Malicious programs sometimes pretend to be the moni-
toring program in user space and thus are able to detect the
kernel space component if a successful communication is
observed. This becomes possible due to the fact that most
closed source monitoring program versions are using a con-
stant device name. Users have the ability to change such
constant artifacts in free tools and thus make such a detec-
tion technique more difficult.

Due to the fact that on a standard PC programs are run-
ning concurrently, the monitoring tool or the user must be
able to decide which observations belong to concurrent pro-
grams and which ones belong to the targeted monitored
program. Malicious programs often create multiple pro-
cesses or generate machine instructions in memory regions
where normally no instructions should be and execute the
instructions from there [29]. With this behavior malicious
programs hope to evade the monitoring process. In order
to evaluate the accuracy of the monitoring program it is
mandatory to check (i) if an observation filtering is done
and (ii) how it is done. For free software these checks can
be easily done, enabled by the freedom F1. Checksums on
the machine instructions level are a very powerful technique
for detecting interference with monitoring tools [29]. A so-
lution to this problem is to not modify the memory of the
malicious program, but its environment which is possible
with free software.

Techniques were elaborated to detect proprietary sand-
boxes [26]. The issue with a malware analysis delegation
approach is still a closed-approach for software analysis.
Beside the openness of the API1 to access it, the inner work-
ing of such malware analysis is still unknown or described
in a high-level way. It is important to have access to the
source code of such sandboxes in order to evaluate the ac-
curacy of the analysis.

1Application Programming Interface

3



Table 1. Disassembler attacks

IDAPro♦ objdump♥ ndisasm♥ dissy♥

strip × × ×
√

ls0 ×
√ √ √

dt
√

∅ ∅
√

♦ Closed source ♥ Free software ∅ Not applicable√
Attack success × Attack failure

Table 2. Debugger attacks
gdb♥ softice♦

int3
√ √

device ×
√

Symbols are reused from table 1

4 Malware analysis driven by FLOSS

In our previous research activities we tested some secu-
rity analysis tools and evaluated various anti-reverse engi-
neering techniques [29]. We gradually modified free soft-
ware aiming to improve malware analysis. Firstly, we de-
veloped a free malware sandbox, based on existing free soft-
ware which is able to extract high-level information from
unknown malicious software [29], in a similar way to con-
ventional proprietary sandboxes like the Norman sandbox
and CWSandbox. We improved our sandbox to extract sys-
tem function calls targeting a malware classification [31].
Finally, we transformed our sandbox into a high-level de-
bugger for the purpose of malware reverse engineering.

4.1 Experiments

We wrote some anti-reverse engineering traps and ana-
lyzed our code against closed source and free reverse engi-
neering tools. Table 1 shows results of disassembler attacks
described in [29] and table 2 presents results of debugger
detection techniques, explained in [29].

Table 1 and 2 show that closed source and free tools for
analysis of closed source have their limitations and that free
software does not provide a warranty of always being bet-
ter than closed source software. Nevertheless free software
provides the flexibility of fixing discovered limitations and
does not require a response from the original author. If the
quality is not sufficient one can always improve the tools
which is not possible for closed source software.

5 Improving results by FLOSS modification

We now describe how we used and changed other free
tools for malware analysis. Our goal was to create a fake en-

submit

ANNE
daemon

Plugin
2

Plugin
N

Sandbox

submit

query

Input queue

User

Bot / Malware collector

Output queue

Analysis
rules

Plugin
1

Figure 1. ANNE framework architecture

vironment, based on free tools, in which to execute and ob-
serve closed source malicious software. This environment
is a framework of free software called Automated Analysis
and Network Emulation (ANNE) [29, 27].

5.1 Requirements

We target reverse engineering based on freedom F0.
Next the freedom F1 allows us to evaluate the risk of our
framework in depth. This is a mandatory requirement to
best control the framework. Moreover the freedom F2 per-
mits us to share our framework, composed of free software
among other malware researchers. We do not want to offer
a service to third-parties but we want to make the frame-
work freely available. Thus other researchers can judge and
extend the framework themselves and have not to rely on
service descriptions. Malware authors often quickly find
anti-reverse-engineering techniques. Therefore it is manda-
tory to be not dependent on third-parties to create counter-
measures by code modifications. The freedom F3 permits
this solution.

5.2 ANNE architecture

A generic architecture is presented in figure 1. Users
or robots can submit malware samples in a persistent input
queue. In doing so the user gets a unique identifier of their
job. This unique identifier can be used to query the analysis.
The daemon polls the queue and performs malware analy-
sis and puts results in the output queue. The user can get
results by providing their unique job id. Proprietary sand-
box services ship analysis results via email. Moreover they
are protected with security codes in order to make robots
and queuing attacks inefficient. A free sandbox can be set
up in environments where only trusted users can use it, in a
distributed fashion. The sandbox can be operated not only
at one company but at several institutions. Thus queuing
attacks and denial of service attacks can be mitigated.

The daemon takes a malware sample and processes it ac-
cording to user-defined rules. The analysis task is divided

4



into different subtasks {1, . . . , N}. Each subtask is done
by a plug-in. Each plug-in follows the standard unix phi-
losophy. It takes command-line parameters and communi-
cates via standard input, standard output and standard error.
An example of a plug-in is the static disassembler objdump
which is encapsulated in a wrapper script that adopts the
output format. An other example is a plug-inthat computes
the entropy of the binary giving an indication of encrypted
or packed binaries. Until now the most powerful plug-in to
the ANNE architecture was the sandbox.

5.3 Usage of side effects of free software
tools

In this section we explain how the freedom F0 is a benefit
as no fixed usage of the software is prescribed. Initially
the tool wine was developed aiming to execute Windows
binaries on top of a Linux operating system. The rationale
why we chose wine to execute malware samples is that we
have full access to the source code which is not the case for a
native operating Microsoft operating system. Full access to
the source provides a greater flexibility than using a public
API.

After having inspected the source code of the compo-
nents, we noticed that wine’s file system and process man-
agement and networking capabilities should be mitigated.
We did the mitigation by installing wine in a User-Mode
Linux which is connected via a virtual network with the
host operating system. The developers of wine created an
elaborated debugging system. From this debug system we
gather information about file system and registry access.
The sandbox program is a standard Linux process that is
executed via the daemon. The sandbox takes a malicious
program as command-line argument along with a timeout
value. Due to the Halting Problem, we do not know when
the malware sample finishes. Therefore we kill it after the
timeout expired. After having examined analysis results,
the user can trigger a new analysis with a different timeout
value. In practice we execute a malicious program for one
minute and if we do not observe sufficient actions we then
execute it for five minutes.

The sandbox process copies the malware sample in the
User-Mode Linux, tagged in figure 2 as (1). The local con-
troller in the User-Mode Linux is then executed via SSH
(2). The local controller ensures that wine’s environment is
clean, by restoring the initial file system and registry and
moves the malware sample inside (3). The local controller
enables the debug mode of the tool wine and then starts it
(4). Inside the User-Mode Linux was a DNS2 server and
a TCP3 server. The default DNS server points to the lo-
cal DNS server. In case the malware sample makes a DNS

2Domain Name System
3Transmission Control Protocol

User Mode Linux

Local
Controller

Wine

Debug
Messages

Sandbox

(1)

(7)

(2)

(4)

(8)

(3)

Tiny
DNS

socat

DNS
LOG

Socket
LOG

(5)

(5')

(5'') (6'')

(6')

Figure 2. Sandbox

query (5’) it connects to our local fake TCP server (5”) us-
ing the resolved IP address. Thus we can capture the first
bytes of the malware sample’s communications. After a
timeout the local controller kills wine and compares wine’s
file system with the initial one aiming to see file system and
registry changes. The debug messages of wine, the DNS
logs and the captured TCP communications are stored (7).
The sandbox plug-in recovers wine’s debug messages, the
DNS logs and the TCP communications via ssh4 (8). Again
here we see that the freedom F0 allows non standard usage
of free software. With such a free software instrumenta-
tion we are able to extract the following information from a
malware sample:

• File system changes (by comparing file systems)

• File access (from debug messages)

• Registry changes (by comparing files)

• Registry access (from debug messages)

• DNS queries (by our DNS server)

• Initial bytes from a socket (by a fake TCP server)

5.4 Changing the scope of free software

After having described a proof of concept of a malware
sandbox, in section 5.2 which is based wholly on free soft-
ware, we propose mechanisms on how the sandbox can be

4Secure Shell

5



improved by modifying the source code of the components
profiting from the freedom F3.

5.4.1 Improving the interception of malware commu-
nication

The sandbox presented in section 5.2 suffers from various
drawbacks. In case the malicious program does not use the
DNS service, the sent network packets do not reach our
TCP server. Moreover we used standard ports on which
the TCP server listened. When a malicious program uses
non-standard ports, network packets do not reach our TCP
server. Thus we modified the tool wine so that ports and
destination addresses are rewritten on the fly triggered by
an environment variable. This change was the first change
of the scope of wine, because the purpose of wine is not to
detour socket connections. The reader might notice that the
goal of connection detours could also be done on a routing
level or by library detours even on closed source software.
At that time of study, our choice was the easiest to imple-
ment.

5.5 Monitoring system function calls

Closed source software like detours can be used for do-
ing system call monitoring in a Microsoft Windows operat-
ing system. In our sandbox based on free software only an
environment variable must be set in order to profit from a
debugging feature implemented in wine. All executed func-
tions belonging to wine or related libraries are printed on
standard error. This feature can be discovered by reading
the source code of wine or by reading the documentation
provided by the developer community of wine. As already
discussed in section 3.2 an algorithm should decide which
function calls belong to the targeted monitored program and
which ones belong to concurrent programs. A naive ap-
proach is to monitor function calls belonging to the mem-
ory area containing the machine instructions of the targeted
monitored program. Unfortunately malicious programs of-
ten try to evade a monitoring process and they may gener-
ate machine instructions in other controlled processes or in
dynamic allocated memory. Due to the fact that we stud-
ied the source code of the tool wine, we noticed that debug
messages can be used to reconstruct a memory map, where
functions are located.

By a formal exclusion mechanism we can decide which
functions belong to the malicious program which belong
to concurrent programs, which functions are internal ones
[31]. We executed only one malicious program at once.
Thus we have only to decide which function calls belong
to wine and which ones to the malicious program.

In figure 3 we see that each function call has a return
address. This is the address in memory where the program

Program Function

p
i
,f

i
: machine instructions

Function call example

fopen

CreateFile

CreateFile

fclose

_lclose

p
1

p
2

p
3

call
p

4

f
1

f
2

f
3

ret

Return address

fopen

CreateFile

CreateFile

fclose

_lclose

WriteFile

4040

199

44

48

81

50

Observed function calls

Return address

1

2

3

4

5

1 10

11

12

13

81

80
    fclose

71

70     _lclose 

109

110
   CreateFile

149

150
    WriteFile

199

200
    fopen

Memory map

...
...

...
...

...

Function calls executed by a malicious program

Function calls executed by concurrent programs or wine

Execution flow

Figure 3. System function call filtering

continues its execution after the function call. In the debug
messages these return addresses are included. Along with
other debug messages we can reconstruct the memory lay-
out.

5.5.1 Interactive sandbox

As described in section, 5.2, ANNE extracts high-level ac-
tions from malicious programs like other proprietary sand-
boxes. While reading a generated report from a sandbox
containing actions performed by a malware sample, ques-
tions emerge like:

• If the malware sample is executed again, does the mal-
ware sample perform the same actions?

• What is the termination cause of the malware sample?
Was it killed by the sandbox or were conditions not
fulfilled for the execution, like missing files or registry
keys.

These questions served as motivation to (i) understand
the implementation details of the sandbox and (ii) to im-
prove the monitoring process. To achieve this, access to the
source code is needed in order to study it and modify it.

Due to the Halting Problem we were not able to find a
master algorithm for solving all these questions. Thus we
opted for a manual user interactive sandbox, shown in fig-
ure 4, serving as a tool for elaborating execution heuristics
for malware monitoring. For this purpose we developed ad-
ditional features in wine, like setting invisible break-points
and memory dump facilities. The additional features were
then used by a custom, also free, debugger called fiw [28]
that we published at the security conference [30]. More-
over we developed additional features like disassembling

6



fiw

UML Protection Layer

Virtual network

wine

File
System Registry

r/w

Internal Command Line Interface

r/w r/w

Memory

Notify
ACK

r/w

 Command Line Interface

S
S
H

Figure 4. FIW architecture

memory, using free disassemblers, performing environmen-
tal changes, the interception of TCP communications. By
environment changes we mean file changes and registry
changes. The key concept is that each function call executed
by wine must be acknowledged by the debugger. We also
developed some automated debug actions, used for reach-
ing the state of a malware sample in a quicker fashion. An
example is a multi-threaded malware. One thread is scan-
ning the network for the purpose of propagation and another
thread implements a backdoor. If only the internals of the
backdoor are studied the function calls related to the net-
work scan can be acknowledged automatically.

6 Limits of FLOSS instrumentation

The freedom of studying the source code and the free-
dom of changing the source code of free analysis tools are
great benefits in the context of malicious software analysis.
However some freedoms can turn into limits.

Due to the fact that the source code is available for a
free sandbox, malicious programs can be more easily in-
strumented to corrupt analysis results by exploiting imple-
mentation weaknesses. Despite giving malicious authors
this freedom we prefer to keep the legal and technical ca-
pabilities for improving a sandbox. However it was shown
that analysis results can be corrupted without studying the
source code [26].

Free software is often developed by a single author do-
ing the initial work to make the program usable. During the

life time of the program, authors may abandon the devel-
opment or make sporadic changes. In such case, the free
software while being included in free software distribution
is managed by each of them. This could lead to situation
where the free software is forked and patch management is
inconsistent among the various distribution [11].

A second challenge is the management of a project forks.
In case the scope of a program is changed, the original au-
thor of the program does not care about the fork, due to
the fact that the fork does not target their goals. They con-
tinue to modify their software and sometimes break patches
of the fork. We experimented this with the tool wine. The
wine project is a highly active project and our customized
patches do not work on the latest version, after only a few
weeks.

Fortunately the new possibilities offered by distributed
version control (e.g. git) can mitigate these problems. The
advantage of such version systems versus traditional ones,
is that no central code repository is required. The develop-
ers of the main project have their repository and the devel-
opers of the fork have their own repository. The developers
of the fork can then merge with the upstream repository and
benefit from all the respective contributions.

7 Related work

Market share studies of free software in different IT ap-
plication domains are presented in [33]. A quantitative
measurement was done in order to compare free software
with closed source software. Moreover it summarizes some
benchmarks where free software is compared with closed
source software. Security through obscurity is another ap-
proach but known to be flawed [15]. In this case, software or
protocols are kept secret hoping to reduce the chance that a
cracker attacks the software or protocol. Vulnerabilities in a
product are often considered as a bad advertisement. There-
fore many closed source software license agreements forbid
public criticism [33].

In the context of security analysis of software, tools
were developed to inspect the source code in a systematic
way aiming to find possible vulnerabilities [32]. Access to
the source code is a mandatory requirement for using such
tools.

In the field of malware analysis closed source like
VMware, and IDA Pro are frequently used, ready to use for
malware analysis. Another quick solution is to resort to ser-
vices, offered by third-parties, for doing this tedious task.

However malware researchers sometimes use free soft-
ware in order to implement and integrate their innovation.
A free decompiler for studying control flow graphs of dis-
assemblers are used by [7]. Hybrid approaches, between
closed source and free software , were proposed to exam-
ine closed source software. A free PC emulator was mod-

7



ified which runs a proprietary windows operating system
designed specifically for malware analysis [4].

8 Future work in FLOSS

As long as authors of malicious software are motivated to
continue to write malware samples the chances are high that
they find countermeasures against monitoring techniques.
Additional effort is required by malware analysts to find
solutions which overcome these countermeasures. A di-
rect consequence of this game is that a continuous effort
is needed to improve malware sandboxes in order to avoid
their future inefficiency. Free software helps to reduce de-
velopment efforts due to the fact that more people can do
the tasks, so everyone profits from the freedom F1 and the
freedom F3. Moreover an empirical comparison can be
done between the malware sandboxes. A prerequisite for
this task is to solve legal and technical problems. Secu-
rity codes are frequently used by the Norman Sandbox and
the CWSandbox in order to hinder robots that submit ma-
licious programs. Such a technique creates a strong limita-
tion to generate a large data set of reports about malicious
programs.

9 Conclusion

The analysis of malicious programs is sometimes chal-
lenging. We started by recalling freedoms of free software.
We presented common applied methodologies and tools for
closed source analysis with their limits. By quickly design-
ing a software prototype, we sometimes noticed that a solu-
tion is worthy to be fully implemented or not. We had this
experience with our idea to build a malware sandbox. The
modification of free software reduces the amount and costs
of the development time due to the fact that reuse of code is
maximized. We managed to provide a proof of concept of
a malware sandbox, built with free software having similar
features to closed malware sandboxes. Moreover we were
able to merge a debugger and a sandbox conceptually and
implemented it by modifying free software and developed
new free software [28, 27]. Closed source and free software
suffer from hard theoretical limits. Closed source analysis
tools often have some artifacts that are exploited by mali-
cious programs in order to detect them. We noticed that free
software is not guaranteed to be better than closed source
software but the freedoms of free software enable a better
camouflage by changing the source code. We preferred a
sandbox based on free software where we can better evalu-
ate the risk and accuracy of the sandbox by going through
implementation details, having the legal and technical pos-
sibilities for performing improvements.

Acknowledgments

This work is partially funded by U-2010, an integrated
research project of the 5th Call of the 6th European Re-
search Frame Program. We want to thank Dr. Radu State
and the members, of the SECAN LAB and LIASIT of the
University of Luxembourg.

References

[1] D. Aucsmith. Tamper resistant software: An implementa-
tion. In Proceedings of the First International Workshop
on Information Hiding, pages 317–333, London, UK, 1996.
Springer-Verlag.

[2] J. Aycock. Computer Viruses and Malware. Springer, 2006.
[3] V. R. Basili, M. V. Zelkowitz, D. I. Sjøberg, P. Johnson, and

A. J. Cowling. Protocols in the use of empirical software
engineering artifacts. Empirical Softw. Engg., 12(1):107–
119, 2007.

[4] U. Bayer, C. Kruegel, and E. Kirda. Ttanalyze: A tool for
analyzing malware. In Proceedings of the 15th European
Institute for Computer Antivirus Research, 2006.

[5] J. Beck. Using the cvs version management system in a soft-
ware engineering course. J. Comput. Small Coll., 20(6):57–
65, 2005.

[6] F. Bellard. Qemu, a fast and portable dynamic translator.
In ATEC ’05: Proceedings of the annual conference on
USENIX Annual Technical Conference, pages 41–41, Berke-
ley, CA, USA, 2005. USENIX Association.

[7] D. Bruschi, L. Martignoni, and M. Monga. Code normaliza-
tion for self-mutating malware. IEEE Security and Privacy,
5(2):46–54, 2007.

[8] CollabNet. Subversion. http://subversion.tigris.org/, 2000.
[9] A. Dulaunoy. Security and free software: Friends? In Pro-

ceedings Hack.lu, October 2006.
[10] Éric Filiol. Computer Viruses: from theory to applications

(Collection IRIS). Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2005.

[11] K. Fogel. Producing Open Source Software: How to Run
a Successful Free Software Project. O’Reilly Media, Inc.,
2005.

[12] http://www.gnu.org/. Last accessed: 18 September 2009.
[13] Hex-Rays. Ida pro. http://www.hex-rays.com/idapro/. Last

accessed August 2008.
[14] G. Hunt and D. Brubacher. Detours: binary interception of

win32 functions. In WINSYM’99: Proceedings of the 3rd
conference on USENIX Windows NT Symposium, pages 14–
14, Berkeley, CA, USA, 1999. USENIX Association.

[15] A. Kerckhoffs. La cryptographie militaire. Journal des sci-
ences militaires, 9, 1883.

[16] K. Korchinsky. Vmware fingerprinting counter measures.
http://seclists.org/honeypots/2004/q1/0015.html. Last Ac-
cessed: August 2008.

[17] C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. In CCS ’03: Pro-
ceedings of the 10th ACM conference on Computer and com-
munications security, pages 290–299, New York, NY, USA,
2003. ACM.

8



[18] Norman. Norman sandbox whitepaper.
http://www.norman.com/documents/wp sandbox.pdf,
2003.

[19] H. O’Dea. Trapping worms in a virtual net. In Virus Bulletin
Conference, pages 176–186, 2004.

[20] A. J. O’Donnell. When malware attacks (anything but win-
dows). IEEE Security and Privacy, 6(3):68–70, 2008.

[21] E. S. Raymond. The Art of UNIX Programming. Pearson
Education, 2003.

[22] M. Russinovich and B. Cogswell.
http://technet.microsoft.com/en-
us/sysinternals/bb896642.aspx, November 2006.

[23] M. Russinovich and B. Cogswell.
http://technet.microsoft.com/en-
us/sysinternals/bb896652.aspx, November 2006.

[24] W. Stallings. Cryptography and Network Security: Princi-
ples and Practice. Pearson Education, 2002.

[25] L. Torvalds. GIT. http://git-scm.com/, 2005.
[26] A. Vidstrom. Evading the norman sandbox ana-

lyzer. http://www.ntsecurity.nu/onmymind/2007/2007-02-
27.html. Last accessed: August 2008.

[27] G. Wagener. ANNE automated analysis and network emu-
lation. http://git.quuxlabs.com/?p=anne/.git;a=summary.

[28] G. Wagener. FIW.
http://git.quuxlabs.com/?p=fiw/.git;a=summary.

[29] G. Wagener, A. Dulaunoy, and T. Engel. Development and
design of a process and a piece of software to analyze un-
known software. Technical report, University of Luxem-
bourg, 2006.

[30] G. Wagener, R. State, and A. Dulaunoy. Automated malware
analysis. In Proceedings of Hack.lu 2007, October 2007.

[31] G. Wagener, R. State, and A. Dulaunoy. Malware behaviour
analysis. Journal in Computer Virology, 2007.

[32] D. A. Wheeler. Flawfinder.
http://www.dwheeler.com/flawfinder/.

[33] D. A. Wheeler. Why open source software /
free software (OSS/FS)? look at the numbers!
http://www.dwheeler.com/oss fs why.html, April 2007.

[34] C. Willems, T. Holz, and F. Freiling. Toward automated
dynamic malware analysis using cwsandbox. IEEE Security
and Privacy, 5(2):32–39, 2007.

9


