
University of Luxembourg
Travail de fin d’études

Bachelor of Engineering in Computer Science

Development of an automated process to execute and
analyse the network behaviour of malware in a controlled

environment

Laurent Weber

Academic year 2008-2009

Tutors:
University of Luxembourg : Mr. Steffen Rothkugel
SES ASTRA : Mr. Alexandre Dulaunoy

Thanks

I want to thank Mr. Alexandre Dulaunoy and Mr. Steffen Rothkugel as well as Mr.
Gérard Wagener who gave me the opportunity to work on this project. Furthermore, I
want to thank SES ASTRA for providing me with an office and support and for using
their infrastructure. I also want to thank the University of Luxembourg for their sup-
port. Finally, I want to thank everyone else who supported me during the realisation of
this project.

Laurent Weber

2

Declaration of honor

I, the undersigned, declare that the attached assignment is wholly my own work, and
that no part of it has been:

• copied by manual or electronic means from any work produced by any other per-
son(s), present or past,

• produced by several students working together as a team (this includes one person
who provides any portion of an assignment to another student or students),

• modified to contain falsified program output, or copied from any other source
including web sites.

I understand that penalties for submitting work which is not wholly my own, or dis-
tributing my work to other students, may result in penalties under the University of
Luxembourg’s Academic Discipline Bylaw.

Laurent Weber

3

Contents

1 Preface 7
1.1 Summary (English) . 7
1.2 Summary (French) . 7

2 Enterprise presentation 8
2.1 SES ASTRA . 8

2.1.1 Activities . 8
2.1.1.1 Broadband access and network solutions 8
2.1.1.2 Satellite IP platforms . 8
2.1.1.3 Internet access . 8
2.1.1.4 Business content delivery 9
2.1.1.5 Content to the home . 9
2.1.1.6 Point-to-point IP links 9
2.1.1.7 Cable operator solutions 9
2.1.1.8 Mobile Solutions . 9

2.2 TFE location . 9

3 Objectives 11

4 Introduction 12

5 The Malware Analyse Framework (MAF) 13
5.1 User requirements . 13
5.2 Technical requirements . 13

5.2.1 Setting up the Windows Image . 14
5.2.2 Modifying sudoers file . 15
5.2.3 The database . 15

5.3 Getting started . 16
5.4 Architecture . 17

5.4.1 The concept . 17
5.4.2 Life cycle of a malware in our Malware Analyse Framework 18
5.4.3 Using one malware per virtual machine 22
5.4.4 GNU Screen . 23

5.4.4.1 General description of GNU Screen 23
5.4.4.2 The technology we use 24

4

Contents

5.4.5 The Configuration . 25
5.4.6 Logging . 27
5.4.7 The Bash Script . 28

5.4.7.1 The cleaning up . 29
5.4.7.2 Setting up the virtual network environment 29

5.4.8 The User Mode Linux Image . 30
5.4.8.1 Adjusting the access rights 30

5.4.9 Copying Images . 30
5.4.10 The Text User Interface . 32
5.4.11 The daemon . 33

5.4.11.1 Starting a User Mode Linux as gateway 34
5.4.11.2 Starting a given number of Windows virtual machines . . 35
5.4.11.3 Managing the started machines 35
5.4.11.4 Importing the malware on the virtual machines 36
5.4.11.5 Executing the malware in the virtual machines 36
5.4.11.6 Logging the networking information 36
5.4.11.7 Making sure that the given number of virtual machines

is always running in parallel 37
5.4.11.8 Managing the database 38
5.4.11.9 Make the daemon process run forever 38
5.4.11.10 The interacting of the whole framework 38

6 The Analysis 42
6.1 Used Dataset . 42
6.2 Top10 list of DNS requests . 44
6.3 Average packets send by the malware . 45
6.4 Most used ports . 47
6.5 Advantages of our solution in comparison to other approaches 48

7 Problems and Choices 49
7.1 The snapshot problem . 49

7.1.1 Description of the encountered problem 49
7.1.2 The solution . 49

7.2 The IP address problem . 50
7.2.1 Description of the encountered problem 50
7.2.2 The solution . 50

7.3 The networking problem . 51
7.3.1 Description of the encountered problem 51
7.3.2 The solution . 52

7.4 The forks problem . 52
7.4.1 Description of the encountered problem 52

5

Contents

7.4.2 The solution . 52
7.5 The database problem . 53

7.5.1 Description of the encountered problem 53
7.5.2 The solution . 53

8 Future work 55

9 Bibliography 56

6

1 Preface

1.1 Summary (English)

The traditional way malware uses to communicate starts to get obsolete. Nowadays,
malware in form of viruses, trojan horses and worms use new technologies to communi-
cate with each other, and with the attacker. If traditional malware communication via,
for example IRC control and command centers is still used, malware programmer starts
to explore other technologies, like peer-to-peer (P2P), unknown or proprietary protocols.
The first part of this report will be dedicated to the conception as well as the implemen-
tation and deployment of a framework allowing the secured and automated execution of
malware, in a controlled environment.
The second part will present the analysis of the report generated by the framework and
the integration of the virtual machine management framework into the already developed
malware analysis framework at SES ASTRA.

1.2 Summary (French)

Les méthodes de communication traditionnelles utilisées par les malware (codes mali-
cieux) commencent à devenir obsolètes. De nos jours, les malware, sous forme de virus,
chevaux de Troie et vers de toutes sortes, utilisent de nouvelles technologies pour com-
muniquer entre eux ou avec l’attaquant. Si les malware traditionnels communiquaient
par le biais de serveurs IRC de contrôle et de commande, les programmeurs actuels de
malware commencent à explorer d’autres technologies, comme par exemple le peer-to-
peer (P2P), des protocoles inconnus ou bien propriétaires.
La première partie de ce rapport se concentre sur la conception et l’implémentation ainsi
que le développement d’un framework donnant la possibilité de l’exécution automatisée
de malware dans un environnement sécurisé et contrôlé.
La seconde partie présente l’analyse des captures réalisées par le framework et l’intégration
de celui-ci dans un framework déjà déployé chez SES ASTRA.

7

2 Enterprise presentation

2.1 SES ASTRA

SES ASTRA operates the ASTRA Satellite System, offering a comprehensive portfolio
of broadcast and broadband solutions for customers in Europe and beyond. ASTRA
broadcasts television and radio programmes directly to millions of homes, and pro-
vides internet access and network services to governments, large corporations, small-
to medium-sized enterprises and individual households. ASTRA is headquartered in
Betzdorf, Luxembourg, from where the company conducts centralized functions such as
spacecraft and payload operations, 24x7 technical assistance and corporate activities.
In addition, affiliate offices in key markets in Europe provide local sales and marketing
support. ASTRA is part of SES GLOBAL, a family of satellite operators and network
providers which, combined, offers global reach.

2.1.1 Activities

2.1.1.1 Broadband access and network solutions

Platforms for telecommunications operators, service providers, corporations and mar-
ket institutions Rapidly deployable, cost effective and secure, satellite-enabled networks
are an elegant solution for businesses with remote communications needs and internet
providers looking to expand their markets. ASTRA can custom-build solutions for a wide
range of business requirements, from one- and two-way satellite internet access for home
and SOHO users to fully-managed IP network platforms for corporations. Solutions for
ISPs, telcos and corporations

2.1.1.2 Satellite IP platforms

Through its IP platforms, ASTRA offers quickly deployable connectivity for remote
communications networks to suit a wide range of applications.

2.1.1.3 Internet access

ASTRA internet access services enable telcos, ISPs and other providers to offer broadband-
type internet connections to home and business users.

8

2 Enterprise presentation

2.1.1.4 Business content delivery

Businesses can use our IP multicast and streaming services to distribute timely infor-
mation to the field with exceptional ease and security.

2.1.1.5 Content to the home

Our streaming services deliver video, audio and multimedia to the home in real-time,
while our ”push” offering loads content onto local storage, for consumer enjoyment on-
demand.

2.1.1.6 Point-to-point IP links

Corporations with remote networks can rely on ASTRA to bridge connectivity gaps
using our IP trunking services.

2.1.1.7 Cable operator solutions

If you’re a cable operator, we can help you enhance your offering for subscribers with
the addition of internet and radio to your service portfolio.

2.1.1.8 Mobile Solutions

ASTRA satellites can deliver downstream Internet traffic directly to small mobile an-
tennas.
source: http://www.ses-astra.com

2.2 TFE location

The ”travail de fin d’études” is done with SES Security and Communication Team -
SCT. This team is responsible, among other things, for the IT Security. Huge company
networks are analysed and monitored there, that makes it a great place for my project
as it’s related to networking and IT Security. Gerard Wagener, who is actually work-
ing there as well, has build a framework (ANNE - Automated aNalysis and Network
Emulation) for his TFE at the University of Luxembourg in 2006. This framework con-
sists of a batch analysis of malicious software so it will provide an ideal input method
for my framework. This work is complementary to ANNE and focuses on the network
capabilities of malicious software. The ANNE framework uses the work of the CSR-
RTeam,1which provides a method to trace, handle and collect dangerous software, so my
framework will also take advantage of this piece of work.

1Computer Security Research and Response Team Luxembourg

9

2 Enterprise presentation

Furthermore, SES ASTRA has a framework that is analysing malware based on Win-
dows emulation [4]. The framework that we will build, will provide a good mean to
compare how malware behaves on an emulated Windows and on a native one. Our
framework will also extend the existing framework for a more advanced analyse of the
malware.

10

3 Objectives

Development of an automated process to execute and analyse the network behaviour of
malware in a controlled environment

Knowing the amount of different operating systems, as well as the amount of differ-
ent software for those it seems quite obvious that there is plenty of different malware
out there. To have the ability to build an automated process that imports, executes and
analyses the network behaviour of such a software a deep operating system, program-
ming and networking knowledge is required. The most important part of this process is
of course the analyse part, but to be able to perform this part a running framework is
needed. This framework should be very robust, as it contains a daemon [6] responsible
for the importation, and execution of the malware in virtual machines. The fact that
a virtual machine could be crashed by a malware should be included in the conception,
but this shouldn’t cause the daemon to crash. So one of the major tasks of the daemon
will be to manage the virtual machines, to see if they are still running in an appropriated
way.
Furthermore, an simple API (Application Programming Interface) should allow other
processes to interfere in a comfortable way with the framework. The best way of gather-
ing information in a reliable and comprehensible way has to be found to grant the best
possible analysis.
The framework should, furthermore, be customizable in a very eased way, for further
usage required by the industrial partner. The MAF (Malware Analyse Framework) will
be integrated in an already existing framework, the ANNE Framework. This frame-
work performs analysis on given malware, but nothing which is capturing and analysing
the network activity of the malware. Our framework will in this way, help the existing
framework to perform a deeper and more complete analyse of the malware. As this
was a need by the industrial partner the possibility to integrate our framework into the
existing ANNE framework had a high priority.

11

4 Introduction

First of all we have to explain the aim of the framework. Why is it important to analyse
malware?
It is important to stay in constant contact with the evolution of the technologies used
by the malware programmers, if you want to find a good way to protect your network
or machines against malware.
Being successful in fighting against malware, means playing a cat and mouse game with
the attackers all the time. In order to detect new technologies used by the malware, a
framework like the one we will present hereafter, could provide a big advantage.
Then, we have to clarify that our framework will only be useful for malware trying to
communicate with other malware or an attacker in a given time. Software operating
without network connection will not be analysed by the framework, as well as software
meant to be executed at a special time in the future. Malicious software presenting the
enumerated properties will be imported and executed in our virtual network too, as we
cannot know what the software is up to, but as it is not generating traffic it will not be
detected by the logging system of the network adapters.

12

5 The Malware Analyse Framework (MAF)

This part describes the design and implementation of the framework created to managed
a given range of virtual machines and execute given malware.

5.1 User requirements

The features our framework has to implement are the following:

• Setting up the environment for the daemon of the framework, including networking,
access rights and database.

• Starting and assure that always a given number of virtual machines are running.

• Take a given malware from the database and copy it to a free virtual machine.

• Execute that malware in a virtual machine.

• Manage crashed virtual machines and not responding ones.

• High reliability on the daemon.

• Text user interface for user or scripts.

• Logging features of the network traffic generated on the virtual network.

• Everything should be working fully automatically without need of any user.

5.2 Technical requirements

As the application is engineered for a UNIX based operating system, we need such an
operating system to make this framework run. At the base this application was build
and run on an Ubuntu operating system. This choice was motivated by the fact that
we wanted to have optimal stability for the host and that we like open-source software.
The whole framework is build using open-source technologies except the kvm module
used to activate hardware virtualization for QEMU [1]. This module is proprietary,
unfortunately, and of course the Windows image used to execute malware on it is not
open-source at all.
Furthermore, the whole framework was implemented using a standard python. No mod-
ules from third parties had to be included, this choice was also performed in order to
have maximum stability.

13

5 The Malware Analyse Framework (MAF)

5.2.1 Setting up the Windows Image

A virtual machine emulates a hardware machine with the associated hardware. In order
to have an operating system on that emulated machine we need an image file of the
operating system. An image is a file containing the raw data that is stored on the hard
disk of the machine.
The framework needs a prepared Windows image in order to operate like we wish. There
have been as little modification to the standard virgin Windows image as possible to
keep the results of the analysis as less tainted as possible.
First, as the daemon should be controlled remotely, it needs some way to interact with
the network. Therefore we decided to install a SSH server. SSH runs on Linux therefore
we used a Cygwin1 environment which provides a working environment to execute *unix
designed programs in Windows.
Then, the name of the local network has to be changed from ”Local Area Network” to
”LAN” this was done to avoid any problems related to spaces in the name of the network
adapter.
Furthermore, the image has to be setup with an task scheduler entry to start a script,
called changeIP.bat on startup of the machine.
This batch file gets copied in the Windows root folder C: before the booting of the ma-
chine. It is needed as each Windows image has the same IP address after the copying
and this results in IP address conflicts, as we use many virtual machines running in
parallel. The main goal of that file is to change the IP address of the booting machine
to the IP address contained in the batch file.
This batch file contains a netsh command to setup the network environment, the com-
mand is the following:

netsh interface ip set address name=”LAN” static ”10.111.111.23” ”255.255.255.0”

This sets the IP address to 10.111.111.23 of course this is only an example and the net-
mask to 255.255.255.0 these options have to match our virtual network. All IP addresses
can be used, except the 10.111.111.1 (reserved for the bridge) and 10.111.111.2 (reserved
for the tap1 device) and 10.111.111.254 (the default gateway address used by the User
Mode Linux).
The script is assigning the IP addresses in a automated way and taking care that there
are no duplicated IPs on the network, and it writes them in the database.
Finally, the Windows firewall has to be turned off so that an host can ping another host
in the same network.

1Cygwin is a Linux-like environment for windows, it provides, for example an OpenSSH Server. Official
web presence of the project: http://www.cygwin.com/

14

5 The Malware Analyse Framework (MAF)

5.2.2 Modifying sudoers file

Another thing that is needed for the framework to run is a modified sudoers file. The
user has to have the rights to execute some commands he usually is not allowed to, for
example setting up tap devices. All these actions are performed in the startup bash
script, and the privileges are dropped and keep to the strict minimum. The fact that
the user is allowed to execute only a few commands seems to be ideal for our purpose
and avoid an improbable but possible compromising at root level. The user should be
allowed to perform the following tasks:

• /sbin/losetup: To be able to set up and down loop devices.

• /bin/chmod: To be able the change the properties of the files.

• /bin/chown: To be able to modify the owner of the files.

• /bin/umount: To be able to unmount devices.

• /bin/mount: To be able to mount devices.

• /bin/mkdir: To be able to create devices.

• /usr/sbin/brctl: To be able to create and delete networking bridges.

• /sbin/ifconfig: To be able to set network interfaces up and down.

• /usr/sbin/tunctl: To be able to create and delete tap devices.

• /bin/mknod: To be able to create new nodes.

• /sbin/route: To be able to configure new routes.

5.2.3 The database

To have the ability to trace back what machine was started when, and with which
properties we use a mysql database. This database is a central part of the framework as
every process running a virtual machine uses it, as well as the daemon instance.
The database contains two tables:

• The manageVM table, used to manage what images are ready to use and which
have been used. This table contains the fields: id, status, and the time the entry
was done.

• The managing table, used to store start time of the machine, ip, mac, vnc, the
tap device to use, telnet port, the status as well as the path where the malware
is located and the folder where the results should be stored. The id of the virtual
machine used, this is taken from the manageVM table, and finally the starting
time of the execution of the malware.

15

5 The Malware Analyse Framework (MAF)

On one hand, the daemon uses the last entry of the managing table to compute the
next IP address, VNC port, telnet port and mac address.
On the other hand, heavy usage of the database is done by each process, the status has
to be updated according to the status of the machine running in the process. How the
status are distributed in the manageVM table can be found in the following table:

Status Requirement
FREE When the image is ready to use.
USED When the image is being used or has been used.

Figure 5.2.4.1: The manageVM table status distribution.

The distribution of the status of the managing table can be found here:

Status Requirement
TODO A malware gets copied into the database but no machine is ready.
BOOT The virtual machine is beeing booted.
FREE The machine is running, but there is no malware.
RUN The machine is running and the malware is being executed.
UP The machine is running, and waiting for malware.
STOP The machine has run a given time and was stopped normally.
KILL The machine had to be killed due to a problem.

Figure 5.2.4.2: The managing table status distributrion.

The status are set when they reach different parts of the code. For example the
”TODO” is set immediately after the Text User Interface commits a malware, or the
status ”UP” is set as soon as the machine responds to a ping request. ”KILL” is used
when the machine was killed due to a fail during booting or during the setting up of
the logging mechanism. ”STOP” is used if the timeout time has been reached. This
timeout is used to properly shutdown machines after a given time, as malware mostly
act immediately after having been fired up the execution of the code is done very early
so the traffic is also generated early in the uptime of the machine.

5.3 Getting started

Fist of all, we need to be sure that we always have images ready to use, to fire up
our virtual machines. This is guaranteed by a simple script, described in section 5.4.9
The daemon script should now run until it gets stopped by the user. Despite this, no
interaction with the framework is needed and the logs should grow automatically when
malware is executed and it tries to connect to the internet or perform other network
related works, for example network or port scanning.

16

5 The Malware Analyse Framework (MAF)

5.4 Architecture

Here we’ll present the architecture of the framework. The framework is build in different
parts, acting together as if they were one.

5.4.1 The concept

The whole framework is using an host - guest infrastructure. This choice was performed
in order to have a safe infrastructure to execute a malware. The idea is not to spread
malware and help it to propagate and infect other machines, the malicious software
should stay in our sandbox.
On one hand you have the host system, that is the operating system running on the
physical machine. This system should never be compromised by malware, and stay
clean and operational.
On the other hand, there are the guest operating systems, which purpose is to provide
an environment to execute and analyse malware.
These guest operating systems are run on the host in so called virtual machines. There
are several virtual machines software available, for example Qemu, Xen, Virtual Box
and VMware. For our needs we decided to use Qemu, as this software is able to run
with user privileges only, so provides us with a high security level as, even if the virtual
machine gets compromised by the malicious software, it can’t gain administrator rights.
Another very good point of qemu is that it can be easily scripted, this means that you
can easily use scripts to set it up and manage it. This would be much harder using some
other virtual machine.
Qemu is able to run without any graphical user interface, so you can use it without
any problems on a server. This doesn’t mean that you cannot see whats going on on
the machine. Qemu allows you to set it up in a way that it is using a VNC server.
Through this server you can connect to the virtual machine and see what is going on
the machine as if you were sitting in front of it. If used on a server you need to setup
X-forwarding to be able to use it.If you don’t want that you also have the possibility to
connect through telnet to the monitor of qemu, and using this method you can easily
use special commands to drop memory or make a snapshot.
Furthermore, a very positive point is that Qemu can use hardware acceleration if you
have the adequate hardware. On the Thinkpad T60 or similar hardware like T61, which
has been used for the design of the framework Intel VMX support was given, and worked
fine after having been activated in the BIOS. This was great advantage for the imple-
mentation and debugging of the framework, as it was no problem to start 3 instances of
Qemu at the same time, which would have been impossible without the kvm module.
Another very good point for Qemu is that it doesn’t need any modification at the host
kernel level, which allows an eased deployment on different machines.
Finally, we also used User Mode Linux (UML) to have a sort of virtual machine running

17

5 The Malware Analyse Framework (MAF)

a Linux operating system. We choose UML as it is faster then Qemu and designed to
run Linux based operating systems. Like Qemu, it can be run entirely as user, which
make this piece of software pretty attractive for our purpose.

5.4.2 Life cycle of a malware in our Malware Analyse Framework

In order to permit to the reader to fully understand what we are talking about, we will
now present a graphical, high-level representation of each step a malware runs through.
Therefore we start at the beginning, at the Text User Interface, and walk on through
the rest of the framework until the capture is finished. As said, this is a very high level
explanation and we will discuss the single sections more in detail later in this work.

Figure 5.4.2.1 User or script submitting a malware to the framework

On this representation you can see the user, or a script using the Text User Interface to
submit a malware (represented by a picture of the biological Rotavirus) to the database
of the framework, where the malware gets stored in. This database is used as a queue
where threated and un-threated malware is stored.

18

5 The Malware Analyse Framework (MAF)

Figure 5.4.2.2: Daemon taking an new malware out of the database.

This figure shows what happens next with the malware. It get taken out of the database
by the daemon and then analysed further on, this will be discussed on the following
lines. We decided to use the BSD mascot daemon picture2 named Beasti as a graphical
representation of our daemon. The fact that the daemon is running should make clear
that the daemon should run forever.

Figure 5.4.2.3: Daemon starts a virtual machine.

As soon as an un-threated malware is found in the database a new virtual machine is
started by the daemon. Why we start a new machine for every malware is discussed in

2BSD Daemon Copyright 1988 by Marshall Kirk McKusick. All Rights Reserved.

19

5 The Malware Analyse Framework (MAF)

the next section.

Figure 5.4.2.4: Malware is copied on the machine.

Once the machine has been successfully started, we copy the malware over the network
to this machine.

20

5 The Malware Analyse Framework (MAF)

Figure 5.4.2.5: Capture is started.

After a successful copy the capture of the network traffic is started on that machine.
Now every communication with the network is logged.

21

5 The Malware Analyse Framework (MAF)

Figure 5.4.2.6: Malware is executed.

Finally, the malware is executed on the virtual machine by the daemon. Everything that
gets logged by the network capture is most probably related to the malware.
Of course, the way the framework works in detail is a lot more complicated, and we will
explain every action in detail in the rest of the document, for example why we first start
the capture and execute the malware only after that, or which information we find in the
captures that are not related to the malware and why these information are contained
in the logs. As said, this was just a very high level representation of the life cycle of a
given malware in our framework. Now we will present the more technical part.

5.4.3 Using one malware per virtual machine

Copying images is certainly the part that takes the longest in the whole execution of the
framework. In this section we will explain why we don’t simply execute all the malware
on one, physical machine, or on some images and why we prefer to use a virgin image
for every malware.
The main idea related to the fact that we only execute one malware on one virtual
machine is that in doing so we can determine what malware does what. You could for
example dig into what does a malware did on the file system. You are then sure that
only this special malware was run on that image. Hence, it must be that malware that
changed the image.
Another point is that if you would execute more than one malware on a machine you

22

5 The Malware Analyse Framework (MAF)

could not know exactly what malware is doing what, as it could be possible that they
both try to connect to the Internet. Using one malware per image lets you refine the
analysis on each malware.
Using a physical machine to execute malware on it is not possible because we would
have the same problems as described above. So in order to have an optimal solution we
use a virtualized machine and a new, clean operating system image for every malware.

5.4.4 GNU Screen

Our application makes a lot of usage of GNU Screen, so it’s mandatory to know what
GNU Screen is and what it does.

5.4.4.1 General description of GNU Screen

GNU Screen is a terminal multiplexer. It provides virtual terminals in a single window.
So multiple applications can be started with a single login, of course you can also have an
interactive shell. So in our case we will start everything that is related to the framework
in one window, the SSH script, the script copying images, the User Mode Linux, the
tcpdump and the script starting the virtual machines. Each of those will get a terminal
with an own name, so that you can easily recognize what window is doing what.
Another very interesting feature of GNU screen is that you can attach or detach sessions.
So when you have started the screen session with your terminals, you are able to simply
detach the session, so it will go to the background, and you get your prompt back. This
is very useful when you are connected through a SSH connection to a server, where the
framework is actually installed.
Later, you can reconnect to the server, at any moment an reattach the GNU screen
session and you can continue your work. So in our case you can see the progress of the
framework while you were doing something else. This is possible as the framework works
in a fully automated way.
We have written a screen class that handles everything related to GNU screen. Creating
a screen session, adding window to that session and naming them, closing window after
usage. This is all done with the following commands:

screen -L -S screenName -m -d

This starts a screen session and the -L enables the logging. Everything happening in
the screen is logged in a file that is stored in the present working directory and named
screenlog.0 (more on logging in section 5.4.6). The -S gives our GNU screen session the
name screenName. In our framework we name the session framework. Finally the -m
-d flags define that we want to start the session in the background, so it is started in
detached mode. If we want to know what is going on in the screen session we have to

23

5 The Malware Analyse Framework (MAF)

reattach to it, this can be done with the command screen -r. If we do so, we have an
empty GNU screen session. So, how do we start applications in this screen session? In
our framework we do it with the following command:

screen -S screenName -X screen -t winName prog

where the -S flag is used again, to define to which session we want to add our application,
this is useful as it could be possible that we are running more screen sessions on the
machine. The -X flag tells us that we want to execute a command. As a parameter
of this command we give screen -t winName prog. This means that we want to start a
new window with the application prog and with the name winName. This is very useful
for later, so with a good chosen window name we immediately know which window is
running what when we reattach to the session.
So now we are able to start GNU screen sessions and to add windows to this screen. This
is good, but imagine you run the framework and come back later, then you will have
plenty of useless windows, as the execution of the code is over, but the corresponding
window not closed. This could happen for example after the pinging of a virtual machine.
So we have to close windows after the execution of the code, after a successful ping reply
for example or after the tcpdump capture is over. This has been implemented too, with
the following command:

screen -X -p winName kill

This command executes a command, with the -X flag. The -p parameter is used to
indicate that we want to apply the command to the winName window. Finally the
command to be executed is kill which closes the window.
We had plenty of problems related to this GNU screen idea, this was caused by a bug
in the GNU screen version hosted on the official Ubuntu repositories. After compiling
the GNU screen version from the official git repository3 of the project all the problems
were magically gone.
Different reasons why we chose GNU screen instead of forks are discussed in section 7.4

5.4.4.2 The technology we use

The following section will explain why we chose to use GNU Screen and what advantage
it provides us.
GNU Screen is just a tool we use in order to reach an asynchronous engineering tech-
nology. An asynchronous application is per definition non-blocking, this gives us many
advantages. No process has to wait until the other finishes its execution. So, if even if
a process crashes this doesn’t affect the whole framework as only this one single process
will crash, and not the others.

3git clone git://git.savannah.gnu.org/screen.git

24

5 The Malware Analyse Framework (MAF)

Another advantage for this asynchronous version of the framework is that you can, with-
out any difficulty, deploy it in a distributed computing way. You could image to use the
different processes on different machines to speed the analyse up on huge data sets. A
non-blocking approach gives you this flexibility, where a blocking approach would not
allow you to do so.
An integration of the framework with a [5] mapreduce-like framework could also easily
be realized as there are already libraries for python available.

5.4.5 The Configuration

All the configuration is done in one single configuration file. We chose to make only one
file, even if different scripting languages are acting together, as it’s easier to keep an
overview.
The configuration file has a strict structure explained in detail later in this section.
Anyway, the user has not to worry about how the configuration file is written, as an
interactive configuration script is writing the configuration file for him. This means
that the user has to answer some questions, and then the configuration file gets cre-
ated by the script. This allows us to control first if the input given by the user is
correct. Assuming he tells the configuration file creating script that he wishes to use
/home/kabel/.ssh/malware.rsa as a certificate for the SSH connection and there is no
such file, the script will block until he gets a valid certificate as input. This control is
done on several inputs, and allows us to filter out typing errors in a firstly, but also some
errors related to user permissions. If the user forgets that he is not allowed to write to
a folder he gets a warning too. This allows us to have a proper configuration file, that
our scripts understand and that is, at a very high certitude, working. The configuration
script proposes default values for all the questions, these answers should be the right
choice for most of the cases, so that the user only needs to hit enter to come to the next
question. Such a question with an proposed answer is:

Please enter the size (in Bytes) of the Image you want to use:[5368709120]

Here the proposed value is: 5368709120. The user can take this value by hitting return,
or, if he has another image than we have, he can type in his value and hit enter after.
If he does so the new value is written to the configuration file. Of course the user can
also change the configuration file, located at /etc/framework/virt conf.cfg, manually but
then it’s more probable that an typo or another problem infiltrates our configuration
file.
The configuration file builder is called each time the daemon is started, but if you already
have an valid configuration file you can skip the part related to the creation of a new
configuration file. This can be done by answering ”y” when the application asks the
following question:

Do you have already a configuration file and you want to use it?:[y/n]

25

5 The Malware Analyse Framework (MAF)

As our application is highly configurable the configuration file has a certain length. We
tried to keep the file as short as possible but long enough to keep all relevant information
to make the application work on any computer and as any user. In order to keep the
configuration file human readable and understandable we split it into different parts
We will now present a sample configuration file:

[DB]
host = localhost
password = pulpfiction23
user = honeybunny
database = status
[Folder]
cleanimage = /home/honeybunny/cleanImages/xpSp2Admin3raw1.iso
numberofcopies = 10
infectimages = /home/lweber/infectedImages/
sizeofimage = 5368709120
mountpoint = /mnt/
reserveimages = /home/lweber/reserveImages/
[Misc]
debug = 0
path = /home/lweber/virt logs/
nbvm = 2
timeout = 10
[SSH]
rsakey = /home/lweber/.ssh/qemu rsa
[tcpdump]
filter = src not 10.111.111.1 and dst not 10.111.111.1

Most of this is self-explaining. The first part, contains the database related part: Host
where the database is located, password and username of the database user as well ass
the name of the database we want to use.
The Folder section handles everything related to the images and their location: The
absolute path to the clean image, the number of copies of that image that should be
done (at the beginning), where the copied images will be stored, how big the image is
(in bytes). (This size indication is used to check if the image is not corrupted before we
use it. Generating a hash for the image would be even more reliable but takes way too
long on large files.) The mount point where you want to mount the images that will be
used. The reserve image folder, the folder where we want to store the copies done by
the image-copy script described in 5.4.9.
The Misc section handles everything that doesn’t fit in a specific category of the con-
figuration file. So the debug level is stored here, as well as the folder where we want to
store the logs of the framework. A very important information is the number of virtual

26

5 The Malware Analyse Framework (MAF)

machines we want to be run by the framework, this value should be adapted to the ca-
pabilities of the machine the framework is running on. Finally, this section also contains
the timeout value, the time how long the machine runs before it gets stopped.
The SSH section simply contains the path to the rsa-key needed for everything that is
related to the SSH connection between host machine and guest network.
The tcpdump session contains the filter used by the tcpdump program. The default
value used by the framework is to discard everything that comes from and goes to the
tap device connecting the network to the host. This is done in order to get rid of the
SSH traffic generated by the SSH connection we establish to execute the malware.

5.4.6 Logging

During the working on this application we have found out that logging is one of the
major needs for this framework. The logging of the network traffic, which is the main
goal of this framework, is one kind of logging that has been implemented, but that’s not
the only logging that is done in the framework. Indeed, we have to keep track of what
happens when in the framework. We have to know exactly which process did what, and
when it did it. This is certainly important in case an error happens, but not only. As
described in section 5.4.4 we can detach a session at anytime, and reattach it at any
time. Then we have to know exactly which process did what and when, in order to be
able to checkout the results as fast as possible.
Furthermore, as the framework will be implemented further on, it is important for the
next developer to have good debugging messages in order to be able to understand what
is happening how and when, and most notably why. This might sound weired, but
remember that everything is running in parallel. Many machines are set up and execute
malware in parallel, all the time. Given these facts, the user or programmer might loose
the overview. Therefore we mainly implemented three kinds of logging:

• Logging to a file, here we use a syslog like syntax to write messages down, here an
example of an error message:
Sun, 24 May 2009 22:54:42 ERROR IN: pingVM There was a problem in pinging
a VM
Sun, 24 May 2009 22:54:42 DEBUG IN: mvImage Ping is False - Killing machine.

• Logging in the GNU screen windows directly. Some debugging messages are written
to the matching window in the screen session. This allows the user to be informed
immediately about the advancement of the process, so for example the responses
of pinging are always written down in the according window, then the user knows
that the process goes on and can figure out when the ping requests got an answer.

• Screenlog. The GNU screen tool comes with the capability to log everything that
happens in a session. We use this feature of the tool too. Even if mostly we

27

5 The Malware Analyse Framework (MAF)

discard these logs, they might be important the day we get serious troubles with
the framework. Due to these logs, we are able to understand what went wrong,
and why we didn’t get the result we wished, even if we reattach the screen session,
where the problem occurred, a few hours or days later. Thanks to these logs we
can go through the whole process and be sure to find the problem and then try to
fix it.

5.4.7 The Bash Script

The first script that needs to be run before you can use MAF (Malware Analyse Frame-
work) is a bash script. This bash script takes care of the setting up of the whole
framework. It sets the rights on devices to a minimum and creates tap devices. This
script needs to be run as a root user. It is the only part of the framework that requires
root privileges, afterwards a restricted user can perform all the tasks, with one condition,
that this user has some entries in the sudoers file, as described in section 5.2.2.
This script also launches some python scripts, like for example the interactive configu-
ration file builder, which is discussed further more in section 5.4.5. Tasks that this bash
script should perform are the following:

• Clean everything up from the last run, for example it could be possible that the
application crashed.

• Setup the virtual network.

• Change the rights on the files, so that everything can be run with user privileges.

Here is a graphical representation on how the script works:

Figure 5.4.7.0.1: The script preparing devices for the framework

28

5 The Malware Analyse Framework (MAF)

5.4.7.1 The cleaning up

For an optimal control of the environment we have to know exactly how our operating
system is setup. As we make strong usage of the networking capabilities we have to be
sure that the virtual network is up and running before we start to use it.
So we make sure to clean up everything we need before we start the main daemon pro-
cess. This is done each time the daemon is started, also just after a reboot. We prefer
to clean up twice rather than to have problems due to an unclean environment. The
rationale behind this approach is that the daemon may have crashed before and was
not able to clean up the environment. This task, which is crucial for the daemon, is
performed by a bash script. It searches for tap devices that are up and shuts them
down and after this it tries to remove them from a bridge, if such one exists and finally
destroys the bridge.
The mounted devices are also an important point. As our framework mounts and un-
mounts constantly images to folders of the given mount directory we have to make sure,
that before we start this directory is clean, and that there are no mounted folders from
previous runs, else we could , in certain circumstances, encounter problems. This is done
by the daemon when it is started. Here we assume that the user is a responsible user
and that he takes care where he mounts his directories in order to not destroy other
users mounted devices, even if the script is written in a way it should only unmount and
delete the folder it uses itself, something could go wrong or a user could choose the same
folder name as the framework does.

5.4.7.2 Setting up the virtual network environment

As the virtual network is the heart of the framework we investigated this part in a very
detailed way, and tried a lot of different configurations.
First of all, we tried with vde, which is a wrapper for QEMU to connect to a virtual
network. It even provides a virtual switch, called vde switch which does a great job.
Despite the easy setting up we had problems to connect User Mode Linux to it, and
we decided to give it up. Furthermore, vde switch had to be run as a root user, which
is not a good idea if you execute malware, this could lead to a compromisation of the
host operating system for example if a malware would be able to execute code through
a buffer overflow in that piece of code, then it would have root privileges on the host.
Secondly, we tried to connect the different virtual machines through tap devices and
bridges, which seemed to be more fault tolerant, and if there was a problem it was easier
to spot the error than with the tricky and not very transparent vde switch. So we took
this approach to provide us a reliable network that could be setup by scripts in an eased
way. In opposition to the vde switch the tap devices only needed to be setup as root,
but then were run as a normal user, which would dramatically reduce the effect of a
compromising.

29

5 The Malware Analyse Framework (MAF)

The work of the script is to create ten tap devices and to put them together on a bridged
interface. In order to be able to access our virtual network from the host operating
system we had to give an ip address to one of the tap device. So our scripts gives
the ip address 10.111.111.2 to a tap interface. This allows us to connect from our host
operating system to the network. Furthermore through this configuration of the network
each machine can access the other if that is wished, and the host has also the ability to
access the virtual machines which is a mandatory property for the proper operation of
our daemon.

5.4.8 The User Mode Linux Image

The main goal of the whole framework is to observe malware networking, they need to
communicate with the attacker or with other malware, so virtual machines should be
able to communicate between each other.
User Mode Linux provides us a possibility to do that with a very low execution overhead.
Furthermore, it allows us to play with malware without having to fear that our host
system could be compromised, as it runs a kernel as normal user, so it is like in a
sandbox. We use the User Mode Linux as a gateway for our framework. It is a standard
Ubuntu without any modification, except that it has been setup with a static IP address,
the IP address 192.168.1.254 and of course the netmask has to be adapted too.

5.4.8.1 Adjusting the access rights

Assuming that these virtual machine will deliberately be infected with malware we have
to take care that the permissions of the resources don’t allow any malicious software to
break out of the sandbox and attack our host or/and the Internet.
To give the malware as less chances as possible the setup script also changes and limits
the rights on certain devices, for example /dev/net/tun or /dev/kvm to the minimum
they need to run.

5.4.9 Copying Images

During the implementation of the framework, we encounter certain troubles related to
the speed of execution of the framework. Indeed, copying the images just before using
them made took more than 5 minutes. Of course as more machines were running and
copying their image at the same time the longer this period got. All in all, if you do a
capture of 10 minutes, that makes 15 minutes for every machine.
Soon we found out that this was unacceptable. First it made the debugging process a real
horror as you had to wait very long until you saw a result, and in that time your PC was
unusable as the CPU load was way to high. Secondly, one of the idea of the framework
was to be fast. It should not last 5 minutes before you could execute the malware, as, for
the nearly 8000 malware we have here this would last 80 000 minutes. Which represent

30

5 The Malware Analyse Framework (MAF)

27 entire days, assuming you only run one machine, and that the daemon never crashes,
and this is only to set the machines up, no capturing time is considered here. This is just
way to long. So we decided to write a script that copies images in the background all
the time, so at the end when an image is needed immediately it is ready to use and you
can execute malware on it in less than 20 seconds, which is, of course a big difference to
the 5 minutes mentioned above.
This script makes only sense if you don’t restart the daemon all the time. If you start
the daemon and then you let it idle, then it’s a very good idea, but else you don’t make
a lot of win as each image will be taken as soon as it’s ready to use. As in future, the
framework will be included into the ANNE framework, which hangs on an honeypot
that is capturing malware once in a while, the strategy chosen here, seems to be the
best appropriated. Because then you can be sure that when a malware is caught, it can
be immediately analysed by the ANNE framework and then our framework will analyse
the network capabilities of the malware on an ready to use image in less than 20 seconds
after having got the job. So you will have the results of the analysis in a very short time
period. Here is how the script is working:

The script notifies the daemon that an image is ready to use through the database.
In fact, it inserts a new row in the manageVM table which has as a status ”FREE”. As
this script is also started into a screen window it prints out some information each time
an image has been successfully copied. This is, like explained in section 5.4.6, to allow
the user to follow the progress of the process.
This script works in a way that it copies an image after another until it reaches a given
maxImages number defined in the configuration file, then it simply makes sure that
there are always at least a given minImage number images present. Once this minImage
number is reached it restarts copying images, it does this forever.

Figure 5.4.8.1: The script copying images in the background

31

5 The Malware Analyse Framework (MAF)

The framework will start a machine as soon as an image is present and the number
of virtual machines running is smaller than the number of virtual machines wished, as
defined in the configuration file. So we could run the malware on a machine within
seconds. This is, no doubt, a very good point for the framework.
The script copies the clean image from the /home/USER/cleanImages to
/home/USER/infectedImages (where USER is the user name of the user executing the
script.) Except if the user changed the default values in the configuration file, or during
the interactive configuration file builder.
After this has been done the images are ready to be used, only the images from
/home/USER/infectedImages are used, the /home/USER/cleanImages stays clean and
will not be used to execute malware on it. This image is the base image, it is prepared
as described in chapter 5.2.
The script will use the images when an image is ready and the wished number of virtual
machines is not exceeded. It will start a GNU screen window for every virtual machine
with each of the images, so that the machines are independent and can not cause the
daemon to crash. The only way the daemon and the virtual machines are communicating
is through the mysql database described in the chapter 5.2, and of course the short SSH
communication described later in this section.

5.4.10 The Text User Interface

First of all, you have the text interface, on one hand giving you the ability to use the
whole framework as standalone program, making it possible to start a given malware
without having the need to modify any line of code. On the other hand you can use
the framework from a script, like it will be used later on. The ANNE framework will
interact with our framework and use it through the text interface. So this user interface
gives a lot of flexibility to the whole project.
The user interface is not only used to insert malware in the database which forms the
input queue, but also to query the database to find out what the state of the different
machines are. When submitting a malware to the framework the text user interfaces gets
an id back. This id can be used to query the database at any moment. So a constant
interaction between the text user interface and the framework must be possible. This is
realized through the mysql database, and the -s flag of the text user interface.

32

5 The Malware Analyse Framework (MAF)

Figure 5.4.9.1: The Text User Interface in the framework

5.4.11 The daemon

Secondly, you have the main part of the framework, the daemon. This daemon has to
take care of a lot of things, we’ll enumerate them here and then explain how we real-
ized the implementation of the whole daemon and which problems we encountered. The
daemon has to take care of the following actions:

• Start a User Mode Linux virtual machine, used as a gateway.

• Start a given number of Windows virtual machines, used to execute the malware.

• Take care that the machines are running properly and stop them if they don’t
answer for a to long time.

• Import the malware from the database entry performed by the Text User Interface
into the virtual environment.

• Store the results of the network traffic analysis in the folder written to the database
by the Text User Interface.

• Execute the malware in an unused virtual machine.

• Take care that there are always a number of giving virtual machines running in
parallel.

• Update the database to have a constant possibility to know the state of each virtual
machine.

• Run the whole process forever.

33

5 The Malware Analyse Framework (MAF)

Figure: 5.4.9.0.1: The daemon

5.4.11.1 Starting a User Mode Linux as gateway

As we don’t want the malware to access the Internet, neither our own enterprise network,
we have to isolate it entirely from the other devices. But how to test what a malware
wants to do in relation to network if we don’t provide it with a minimal network infras-
tructure? So, to have a little virtual network we have also a virtual default gateway: as
a gateway we use a User Mode Linux running Ubuntu intripid. This gateway is set up
automatically to every virtual machine that is booting. Further details regarding how
this process is done will be described in the 5.4.11.2 subsubsection.
The default gateway is set up in a User Mode Linux and not in a QEMU, because of
the CPU load. A User Mode Linux needs less resources than a QEMU virtual machine,
and as it’s running Linux anyway, we think it’s a good choice, because resources are as
so often the limiting factor.
In a first period this gateway gives the malware the possibility to feel like in a real net-
work, except that there is no Internet connectivity. Malware performing network scans
will detect other machines and also be able to talk to other, similar malware running
on another virtual machine. You could imagine a Peer-to-peer networked malware ex-
changing commands this way, or agreeing on a specific time, when to attack a victim.
The default gateway could run any type of services, for example an IRC server or an
FTP server. For our tests we only used a fake DNS server4 to log all the DNS requests.

4Mini Fake DNS server from: http://code.activestate.com/recipes/491264/ adapted and modified to
fit to our needs

34

5 The Malware Analyse Framework (MAF)

5.4.11.2 Starting a given number of Windows virtual machines

The Microsoft Windows virtual machines are the victims we expose to the malware.
They are run on QEMU basis and are prepared like described in the section 5.2.1. At
the launch of the daemon a parameter has to be given, holding the number of virtual
machines that should be used. This number is written in the configuration file. Depend-
ing on the hardware, this could be more or less, but we wouldn’t exaggerate as running
to many virtual machines could lead in a very slow processing.
Once the text user interface launches the daemon the virtual machines start to be setup.
The daemon starts as many GNU Screen window as there are wished virtual machines,
so each virtual machine has it’s own GNU screen windows and if a malware brings a
virtual machine to crash it doesn’t affect the whole daemon, but only this screen win-
dow dies. A lot of malware uses mechanism to detect virtualization software; if such an
environment is detected it tries to make it crash [2].
Using an sqlite3 database at the beginning caused us much problems due to concur-
rent writing accesses to the database. After long implementation tests using system V
semaphores we decided to rebuild the application to use a mysql database, was quickly
done as all the sql-related actions were done in a single class. After this change we didn’t
encounter any problems anymore. This is due to the fact that mysql is a whole Database
Management System (DBMS) that handles concurrent requests by it self, in comparison
to sqlite3 which doesn’t implement any logic to handle concurrent writing access to the
tables it holds. The daemon reads the last given IP address as well as vnc port, telnet
port, mac address out of the database and increases it all by one: those are the details
used to start a virtual machine.
To make sure that each virtual machine has a different mac address and ip address the
mac address is given in the start command of QEMU, and the IP address is written in
a batch file. To make this batch file used by the virtual machine the image has to be
mounted as loopback device, with the following command:

sudo mount -t ntfs-3g image mountPoint -o loop,offset=32256,force

and then copied in the root folder, where image is the image we want to use for the virtual
machine and mountPoint is the mount point for the image, defined in the configuration
file. After this the loopback device is unmounted again and used to start the virtual
machine. This machine executes the batch file when Windows boots, as described in
detail in the 5.2.1 subsubsection.

5.4.11.3 Managing the started machines

After a machine has been started by the script the managing work starts. The script
has to make the boot process reliable and also make sure to check if the machine was
started in a normal way and if the network is up.

35

5 The Malware Analyse Framework (MAF)

This is done by pinging the host. When the host is up and running and the network was
started, with a valid and known IP address, it is reachable by ping requests. The time
the virtual machine needs until it is up and running and ping replies reach the daemon
may vary. This is due to the fact that sometimes the hard disk has to be checked on
consistency due to the copying of the images. This goes pretty fast due to the small size
of an image and on good hardware, so it never takes very long until a machine replies,
assuming no other problems were encountered. To be sure that we don’t use an image
with an wrong size, which indicates that there was a problem while copying, we compare
the byte size of the clean image and the copied one. Therefore the byte size of the clean
image has to be written in the configuration file. Of course, a checksum like an md5 or
sha1 hash would be more reliable, but calculating a hash on a big file like our image just
takes way too long, so we decided that the byte size fits our needs.

5.4.11.4 Importing the malware on the virtual machines

The malware that will be executed into the virtual machines has to be imported into
them first. As described in 5.2.1 the virtual machine are running a SSH Server. This
SSH server is used to secure copy the malware into the virtual machine.
This caused some problems, as the IP address of the host is changing all the time:
different IP address but same fingerprint, so the host SSH client was complaining that
it is not a valid host. This can be avoided by telling to the host not to check if the host
is known. This is done in /etc/ssh/ssh config
To avoid to have to type in the password each time, which is not possible if you want to
automatically import malware, we use certificates, which can be given as parameter:

scp -i cert.rsa malware Administrator@10.111.111.42:

This command is used to copy the malware file named malware to the machine with the
IP 10.111.111.42 using the cert.rsa certificate. The file is copied as user Administrator,
the : indicates that we want the file to be copied to the home directory of the user.

5.4.11.5 Executing the malware in the virtual machines

After the import of the malware into the virtual environment, it has to be executed.
Again this is done through the SSH server and with a certificate.
First of all, the malware needs execute rights. This is easily accomplished by changing
the mod of the file to give execute rights to the owner. Then the malware is executed,
and the SSH connection to the virtual host is disconnected.

5.4.11.6 Logging the networking information

After having copied the malware to the virtual machine we start the logging process.
We start it already before we execute the malware in order to be certain that we get all

36

5 The Malware Analyse Framework (MAF)

traffic generated by the malware. To log we use the tool tcpdump on the host that takes
as a parameter the tap device used by the virtual machine. Logging on the host instead
of somewhere in the virtual network has a lot of advantages. So if a machine crashes we
still have the logs and we mustn’t fear that we won’t have any space left on the virtual
machine. Furthermore we don’t need to care about how to get the capture to the host
system before we destroy the used image.
Tcpdump is started with the following parameters:

sudo tcpdump -i tapX -w folder/malwareName.pcap -s0 -n filter

where -i tapX indicates the tap device we need to use. -w folder/malwareName.pcap tells
the program where to store the capture with the malware name and the ending .pcap
The -s0 flag tells the tool to always log the whole packet. Would this option be omitted
only 68 bytes of each packet would be logged. We want to know everything about a
malware, so we log everything the malware is transmitting. The -n filter indicates the
filter we want to use, this filter is defined in the configuration file and has the default
value src not 10.111.111.1 and dst not 10.111.111.1. This tells tcpdump that it should
not log everything that is going from the source IP address 10.111.111.1 to the virtual
machine and also not everything thats going from the virtual maachien to the IP address
10.111.111.1 We need this to get rid of the SSH traffic we generate when connecting to
the virtual machine through SSH to execute the malware. So everything that is logged
now is generated from the malware, with one exception: our observation have shown that
when the machines are started, they try to connect to time.windows.com, this certainly
to synchronize the time through ntp (network time protocol). These requests can also
be ignored as they are always the same.
Every tcpdump is started in it’s own GNU screen window so you can follow the course of
the captions. You see what virtual machine’s traffic is still capturing, after the capture
the window is closed. More on Gnu Screen in the 5.4.4 section.

5.4.11.7 Making sure that the given number of virtual machines is always running
in parallel

Making sure that there are always the given number of virtual machines running is done
through the database. This aspect is very important in order to not to waste time.
Each time a machine is booted, it creates an entry in the database, with the status
”BOOT”. Once the machine is reachable through ping requests, the status is updated
to ”UP”. After the malware was copied on the machine and executed, the status is set to
”RUN”. If anything goes wrong during the booting or if there was a problem during the
networking set up, for example a busy tap device that couldn’t be freed, then the machine
is stopped and the database field ”status” updated to ”KILL”. If everything went
smooth, the machine is stopped 10 minutes (or the timeout given in the configuration
file) after the execution of the malware. As we only want to analyse immediately acting

37

5 The Malware Analyse Framework (MAF)

malware, this is enough time to boot the machine entirely and execute the malware as
well as seeing its consequences.

5.4.11.8 Managing the database

Assuming that the database is independent, not linked exclusively to one process, we
have to take extremely care of how we write to that database. This caused us a lot of
problems because threats started to write to the databases at the same moment, and
then the database was locked. We implemented a solution with system V semaphores
but this was rather complicated, and against the idea of the daemon, to keep it simple
to avoid crashes of the daemon itself. So we threw this approach away and rethought
the whole database connection mechanism.
Using mysql instead of sqlite solved also a lot of problems, and now the framework is
using the database without any concurrent access problems.

5.4.11.9 Make the daemon process run forever

As the main goal of the daemon is to run in a reliable way as long as it is wished, the
whole process has to take care that there is always a trace on how many machines are
running and how many are free and can be used for other malware.
Again, this is mainly done with the database. The daemon queries the database to find
out how many machines are free. This is easy to find out, simply check the last ’n’
entries (where n is the number of virtual machines taken from the configuration file)
and see if there are entries where the status is set to ”KILL”. Every machine having
the status ”KILL” or ”STOP” has stopped to run, so if there are not more machines
running than wished (in the configuration file) we can start new machines until we get
that wished number of machines running in parallel.

5.4.11.10 The interacting of the whole framework

As the framework is rather complicated we’ll try to explain it in the way it is run. So
first the root user needs to execute a bash script. This is the only part that has to be
done as root. We have to be root or else we wouldn’t be allowed to do all the operations
needed. The bash script has been described in detail in section5.4.7

What the configuration script does exactly is described in the 5.4.5 section. The
database created by the createDatabase script, is described in the 5.2.3 section.
After this point, we don’t need root privileges anymore, the rest can be done as a normal
user with some sudo rights. The modification needed in the sudoers are explained in
section 5.2.2
Of course, the bash file takes care of the actual situation. For example if the database
already exists, it will not drop the existing values, as they might be important. Another
example is the configuration file building script: if there is an existing configuration file,

38

5 The Malware Analyse Framework (MAF)

it asks you if you want to keep this file or overwrite it with new values.
So now we’ll show how a malware is inserted and run in the framework.

39

5 The Malware Analyse Framework (MAF)

F
ig

ur
e:

5.
4.

10
.1

0.
1

T
he

be
ha

vi
ou

r
of

th
e

fr
am

ew
or

k

40

5 The Malware Analyse Framework (MAF)

On this graph you can clearly see that the database is the main point of this work.
The two main parts of the application, the daemon and the text user interface, both,
connect to the database to either write down new jobs or update the status of current
ones.
The status hold by the database are the real important information, that has to be right
all the time.
First, a user or a script uses the text user interface to commit a malware-job. This job
is then inserted into the database and an unique id is returned. As explained in detail
in the 5.4.10 section.
Then, the daemon starts different processes, all started in an GNU screen session. Each
of these processes has his own job. One script is used to build image copies from the
clean image, this is done all the time in the background. Another script is starting
virtual machines every time one is needed. The SSH script is used to copy and execute
malware on the virtual machines. It waits all the time and queries the database to see
if an entry has an status set to ”UP”, if so, malware is copied on that machine and
executed. Lastly, a last GNU screen window is used to start the User Mode Linux in it.
So you can attach this window at any moment and see the status of the booting or the
requests the fake DNS Server gets.
The SSH script, also starts a tcpdump program in a GNU screen window each time the
execution of the program reaches a certain point. In order not to be flooded by the
window in the GNU screen session, we have to close the window after using it. How we
do this is explained in detail in the 5.4.4 section.
The processes in the daemon make heavy usage of the database, to know what they have
to process next. Each process is updating the database after having processed its task.

41

6 The Analysis

6.1 Used Dataset

Before we start the analyse of the malware we have to know our enemy. Therefore we
scanned the malware we used with the GPL licenced open source anti-virus toolkit for
UNIX called Clam AntiVirus1.
As we used rather old malware for our tests we had a good recognition rate. However
some malware wasn’t recognized at all, this malware seems to have a low spread rate,
as all the other of that time period having been recognized.
Here is the table summarizing the detection of the malware.

1Official Website of the project: http://www.clamav.net/

42

6 The Analysis

Malware Detection by ClamAV
0005e7b17e99a65518f270304b96b9c5.exe Trojan.Eggdrop-79
003c057bc5e071e4c01003f0a4dbe1d8.exe Trojan.Poebot-14
004b1c98c7a533e08550a6583285168d.exe Trojan.Mybot-7794
0060f37823ad3d96bf2a9711a139615a.exe Trojan.Mybot-7292
00b920257fd4b09759f122a050af733b.exe Trojan.SdBot-4867
00c208a54242f24f503a24db0a30e707.exe -
00ca5281eab44feec8a4ddeb79543a81.exe Trojan.Dropper-901
00d858f0b4ce5cba9d94fc63c3850c2e.exe Trojan.Poebot-108
00dccfeeb58e5f4d536d498317ad0cc2.exe Worm.Sasser.H
00e47d25d56b516258a15facd6da23d0.exe -
0101db68c80aff68cf2ce92569feb097.exe Trojan.SdBot-4284
0123d39925b012a38b581492f9b35a11.exe Trojan.SdBot-4155
01471043c1945ba838ff7898f4a72713.exe -
016c1c4915b5658e1c4120775f51707f.exe Trojan.SdBot-4169
018362267460f8a0d3ec05847d6cc738.exe Trojan.SdBot-5137
020425481c927c537aab6090413bcea9.exe Trojan.Delf-601
0410741e2e5bf23fdad90372a3b8d50b.exe Trojan.SdBot-1210
04af7239845601e9d785a7824b6ca34e.exe -
059b73e45d131569f008312f4eb2568e.exe -
09adee9dd91cb978df6d7ba4c1bf9e76.exe Trojan.Aimbot-25
09be1135f31788376e575777f2dc77a0.exe Trojan.SdBot-4179
10be774286859a0a42f3d7d49e8c45cb.exe -
09f6da7d496ee8351e4ad26ff015851b.exe -
33c6589b5101f6918ce31b8639985bb3.exe Trojan.SdBot-6778
340f782a9b5c782e662e57153f1d7919.exe Trojan.Packed-142
3435f105762fe4cccc4050c31babebc7.exe Trojan.MyBot-8956
3437ab44892cb4ded1384d309ae7f52f.exe Trojan.Eggdrop-15
34465dc2b7efa34abcaf5bcdfabd6130.exe Trojan.Ircbot-305
46c3701d771c978a282b17100dc0cba0.exe Trojan.SdBot-1208
564be3ff18279a1f43fbf729c2c24d34.exe Trojan.Mybot-6502
575063c315e58cde4812a289da68a3ac.exe Exploit.DCOM.Gen
5784cd80a681996e83fbf481578102c8.exe Trojan.Lineage-80
9c38226a4e42bdcfb57e7167493849f7.exe Trojan.SdBot-4179
ae0b5e6c6ac05c6aae19b2317806e8bb.exe Trojan.Mybot-6527
ae24016e72b127602e8bfde2b08ea69b.exe Trojan.Mybot-5937
fffdbe89431a3dde4a82edfbe6b71d76.exe Trojan.IRCBot-1067

Table 6.1.1: Malware scanned with ClamAV.

43

6 The Analysis

As you can see, a lot of bots are contained in the data set. This is exactly what we
need, as bots usually connect to a network of a certain type, for example an IRC server
that is used as a command center. What connections the malware tried to setup will be
analysed in the three following sections.

6.2 Top10 list of DNS requests

During our testing phase, we logged several DNS request on our fake DNS server running
on the User Mode Linux. Here is a list of the top 10 DNS requests performed by the
malware:

Number of requests Domain
14121 img.brainkill.net
281 home.paltalkdc.com
222 ircd.darkroot.at
140 home.paltalkdc.com
89 alabama3.isthebe.st
36 h4ck.bleah.info
24 kam.alf4-radmin.com
23 asn.ma.cx
8 power.prout.be
3 xt.ircstyle.net
Table 6.2.1: The 10 most used domain names.

This list has been generated from the logging done in the User Mode Linux. We didn’t
consider the requests for time.windows.com as these requests are done each time when a
Windows virtual machine is booted. This request should synchronize the time through
the network time protocol.
Furthermore, these DNS requests already show us that the different malware act in dif-
ferent manners. So, for example, at the first place in the table is a malware performing
a huge amount of DNS requests to a specific domain: img.brainkill.net. This malware
doesn’t seem to care about the fact, that there is no Internet connection available and
that the malware can’t reach that server; it simply continues performing requests.
Doing assumptions now, on how the malware is programmed might be a little bit early,
but everything seems to indicate that the malware is performing an endless loop, query-
ing the DNS server for a specific domain, and if that domain is not reachable it continues,
certainly until it gets a positive answer from the server.
This behaviour of a malware is not very clever, as the malware generates a lot of traffic
and might be detected easily due to that. A malware doing less requests, like for instance
the last entry of the table with only 3 request in 10 minutes, might be less suspicious, as
the malware is less active and shows up less often in the firewall logs or similar detection

44

6 The Analysis

mechanisms.
Performing DNS requests at all might not be a very good idea, as this can be logged in
a DNS server run by a company. It would be less obvious to detect a malware using an
IP address instead of first resolving a domain. At least, then the address, the malware
wants to connect to, would not show up in the logs. Of course, this only works if the
malware doesn’t try to connect to a dynamic IP address.

6.3 Average packets send by the malware

Another analyse we did on the malware was to count the packets the malware sent. We
will present this results in form of a table, showing the number of packets send by each
malware and at the end we will compute and present an average of packets sent. This
result was computed with the results we had from our captures: each capture lasted 10
minutes and was performed under the same conditions. So we think that the average
presented here is representative, even if the data set we used was only a small one (37
captures). If you use a bigger data set, of course the average will change, but we belief
it will stay close to these results.

45

6 The Analysis

Malware Packets sent and logged
0005e7b17e99a65518f270304b96b9c5.exe 56
003c057bc5e071e4c01003f0a4dbe1d8.exe 24
004b1c98c7a533e08550a6583285168d.exe 506
0060f37823ad3d96bf2a9711a139615a.exe 0
00b920257fd4b09759f122a050af733b.exe 1728
00c208a54242f24f503a24db0a30e707.exe 15
00ca5281eab44feec8a4ddeb79543a81.exe 212
00d858f0b4ce5cba9d94fc63c3850c2e.exe 35
00dccfeeb58e5f4d536d498317ad0cc2.exe 4370
00e47d25d56b516258a15facd6da23d0.exe 2
0101db68c80aff68cf2ce92569feb097.exe 61
0123d39925b012a38b581492f9b35a11.exe 2
01471043c1945ba838ff7898f4a72713.exe 2
016c1c4915b5658e1c4120775f51707f.exe 0
018362267460f8a0d3ec05847d6cc738.exe 1712
020425481c927c537aab6090413bcea9.exe 675
0410741e2e5bf23fdad90372a3b8d50b.exe 2
04af7239845601e9d785a7824b6ca34e.exe 44
059b73e45d131569f008312f4eb2568e.exe 17
09adee9dd91cb978df6d7ba4c1bf9e76.exe 4
09be1135f31788376e575777f2dc77a0.exe 302
09be25601f6d0a80b692a23e5cada5f0.exe 15
10be774286859a0a42f3d7d49e8c45cb.exe 1706
09f6da7d496ee8351e4ad26ff015851b.exe 2
33c6589b5101f6918ce31b8639985bb3.exe 930
340f782a9b5c782e662e57153f1d7919.exe 176
3435f105762fe4cccc4050c31babebc7.exe 23
3437ab44892cb4ded1384d309ae7f52f.exe 1019
34465dc2b7efa34abcaf5bcdfabd6130.exe 341
46c3701d771c978a282b17100dc0cba0.exe 56
564be3ff18279a1f43fbf729c2c24d34.exe 6
575063c315e58cde4812a289da68a3ac.exe 2289
5784cd80a681996e83fbf481578102c8.exe 20
9c38226a4e42bdcfb57e7167493849f7.exe 4
ae0b5e6c6ac05c6aae19b2317806e8bb.exe 514
ae24016e72b127602e8bfde2b08ea69b.exe 115946
fffdbe89431a3dde4a82edfbe6b71d76.exe 40
Average 3590

Table 6.3.1: Packets sent by malware

46

6 The Analysis

This indication is interesting, as the amount of packets sent by a malware shows us
how much traffic it generates and so how much noise it makes in the network. Being
a successful malware is the same principle as being a successful burglar. The less noise
you make the more chances you have to be successful and stay undiscovered.
In our analyse the average packets transmitted by a malware during a capture of 10
minutes is 3590 packets.

6.4 Most used ports

Analysing the network activity of the malware we executed, we found out that there
was, indeed, a lot of activity going on.We filtered out the ports numbers of the different
tcpdump-logs and analysed them on occurrence. As suspected, the most activity was on
port 6667, which is the port most irc servers are running on. As we used old malware for
our tests, this confirms what is known about old malware. Most of them are controlled
by irc command and control centers. This clearly shows that our framework is working
like it should, and gives a certain certitude on the logging performed. On the following
histogram we present the results of the logs. This graphic represents the occurrence if
each port.

The x-axis represents the ports and the y-axis how often a connection was established
to that port. The histogram uses a logarithmic scale representation.

Histogram 6.4.1: Port usage by the malware.

As you can see, port 53 also got a lot of requests. This port is the port used by the
DNS server. So malware was trying to translate domain names to IP addresses. These
requests have been logged by the fake DNS server installed in the User Mode Linux,
as described in section 5.4.8 and the list of the 10 most asked domains is presented in
section 6.2

47

6 The Analysis

6.5 Advantages of our solution in comparison to other
approaches

The following section will describe what the advantages of our solution are.
There are a lot of malware testing frameworks available. What are the advantages of
our framework? When you are fighting malware activities and want to protect your
network or your systems against new, spreading malware, you have to be able to get a
fast analyse of the malware, in order to know what it tries to do, and where it is sending
stolen information.
As nowadays most malware use encryption and/or compression to protect its source code
[3] from being reverse-engineered, at least in an automated way, you have to figure out
other possibilities to find out what the malware is up to. The manual reverse engineering
of a malware costs too much time, and due to packers it is hard to automate this process.
By logging the network traffic generated by the malware, we have a way to find out what
the malware wants to communicate and to whom. This lets protect us against the given
malware. For example, if the malware tries to connect to port 2342 we could simply
modify our firewall policy in a way that it discards everything going to port 2342.
All in all, we could say that a static analyse of the malware is not a fast solution, as it
involves a lot of manual work. Therefore our framework is much faster. On the other
side, executing a malware is not a perfect solution either, as by this way you can only
observe one part of the malware, the one that generates traffic. You can not figure out
what the logic of the malicious software is, as you only see one way of execution. If the
port 2342 is open, our malware might use this port to communicate with the attacker. If
this is the case you will never find out what the malware would have done if the port was
closed. If you want a complete analyse of the malware a reverse engineering is certainly
a better approach than our framework.

48

7 Problems and Choices

Due to the complexity of the task, it was sure that we would encountered different
problems. As expected, we encounter some problems, which were more or less time
consuming. We’ll present some of the major problems in this section.

7.1 The snapshot problem

7.1.1 Description of the encountered problem

The virtualization software we use, Qemu, is a very advanced tool. It has a monitor,
which allows you to perform different tasks like, for example, dump the memory, or turn
the machine off. We use this monitor, which is accessible over telnet to turn off the
machines, as described in the previous sections.
We also wanted to use this monitor to perform a snapshot of the virtual machine, once
it was booted. A snapshot stores the state of the image at a given moment. In theory
this snapshot can be used to restart the machine from this stored point.
In our continuous wish to speed up the framework, we considered and tried out this
technique. The idea was to use 3 snapshots of virtual machines having a different IP
address. We would then always use this 3 IP addresses in order to get rid of the problem
described in section 7.2.
We found out that performing a snapshot of an virtual machine image at a given time
was no problem, but unfortunately restoring the status of the image and continue the
usage of the machine always failed. This seems to be a bug in the software. Or at least
we didn’t manage to make it work. Even not with in the developer version, which we
compiled and tested.
So we had to give up this idea.

7.1.2 The solution

This problem was solved by a work around. As we could not find the bug in the source
code of the QEMU developer version, we implemented an other way to spare time. This
method is discussed in detail in section 5.4.9

49

7 Problems and Choices

7.2 The IP address problem

7.2.1 Description of the encountered problem

One problem we encountered very early in the development phase was a problem related
to the IP addresses that have to be unique. In deed, if you use the same image file
and start 3 machines simultaneously, you will get IP address conflicts, as each machine
will have the same IP address, assuming you don’t run an dhcp server and use fix IP
addresses.
A lot of solutions have been tried and implemented to solve this issue in the best way.
The first idea was to simply start a dhcp server, that distributes IP addresses when a
dhcp-lease request gets in. That idea seemed very good at the beginning, and worked
fine, but the dark side of that idea was that it started to be impossible to trace the
machines, as you could not really know for sure what machine got what IP address,
and how should the further processing with the copying of the malware then go on?
So, we tried to give IP addresses related to the mac addresses of the machines, which
seemed to be a good idea, as the mac address of the network devices can be passed as an
argument when calling qemu. In order to make this work we had to write an entry for
every IP address that could be given by the dhcp-server in the configuration file. This
idea seemed okay, but not ideal, as a mechanism had to be implemented to know when
the dhcp server gives an IP address to a client, some sort of trigger.
Another approach was the idea to use only a given number of machines, lets say 3, and
use them with fixed IP addresses in order to be sure that we know the IP address of
each machine. The drawback with this idea was that you loose a lot of time, due to the
fact that the images have always to be overwritten after usage, which of course could
have been sped up by the script like the one described in section 5.4.9. Furthermore, the
point that made us give up this idea, was that we had to prepare each image manually.
This means that you have to make a copy of the image, boot it, change the IP address,
shutdown the machine and go on. Imagine you have 10 machines you wish to use, this
would lead to a lot of work, done manually and would cost a huge amount of time. The
solution we found than does all this in an automated way, and lets the user invest his
time in the evaluation of the log files and not in the setting up of machines.

7.2.2 The solution

The task of setting up the machines, so that they would be ready to use without more
preparation than described in section 5.2.1, has been implemented the in following way:
First, before anything else, the image of the Microsoft Windows System gets mounted
as a loopback device by our script.
For this, the image has to be in a raw format, and not in some compressed format like
qcow2, which we used at the very beginning of the project because it made copying much
faster. The fact that there is no compression anymore is the only negative point of this

50

7 Problems and Choices

technology, but this issue has been fixed with the script described in 5.4.9.
After the image was mounted as loop device, it can be used as a normal part of the file
system. In this way you can access everything that is located on the C: drive without
any problem. We use this possibility to copy a file on the drive, containing a short batch
script that setup the IP address as well as the netmask we want to use for this specific
image. The content of this batch file has been described in section 5.2.1. So we only
need to make sure that this image contains an IP address that no other machine on the
network is using at that moment. This solves the problem in an elegant and simple way.
No interaction with the user is needed, it is fast, much faster as if the user had to do it
manually. In fact, in practice, the mounting of the image, copying the generated batch
file onto the file system and after unmounting the file system again takes less than 10
seconds. Knowing the startup time of Windows this is at least 10 minutes faster.
As described in 5.2.1 the batch file is executed at boot time by a scheduled job. After
this the image has the correct IP address and the right netmask to be reachable on the
virtual network.

7.3 The networking problem

7.3.1 Description of the encountered problem

After having solved the IP address problem, the next network-related problem made it’s
apparition. We wanted to have a simple network, easy to set up and easy to maintain
with low fail potential. This network should make every machine accessible through all
other. This includes the User Mode Linux gateway as well as the other virtual machines,
running in our case, a Microsoft Windows operation system.
Building a network with virtual machines, is a wish that many User Mode Linux seem
to have, therefore there are solutions for this. The main solution is using a software
simulating a switch. This software is called vde switch. We tested this software and
found out that is doesn’t fit our needs. This software has to be run as root user, which is
not good for a framework that is build to execute malware, because if a malware is able
to execute code on that vde switch, then this malware would be root on our machine
and able to compromise not only the whole machine, but also the whole private network,
as well as we would allow, if something like this happens, the software to connect to the
Internet and continue it’s spreading.
Furthermore, this approach seemed easy to setup, but while testing it we had plenty of
problems due to unclean setup of the switch. The machines were not reachable. We
didn’t manage to make it work in a reliable way, so we searched for another solution.

51

7 Problems and Choices

7.3.2 The solution

Another approach that had to work according to our researches was using tap devices.
A tap device is a virtual network kernel driver. They simulate network devices in such
a way that usual network applications can use them. A tap device doesn’t contain a
physical network device. Each virtual machine, no mater if it is a qemu machine or a
User Mode Linux machine gets his own tap device. Using a tap device in an automated
way is easy to setup an easy to manage. Failures only occur if an tap device is already in
use so we only have to take care that a tap device is free before we use it. This is done by
carefully freeing the devices after the usage. Building a bridge with all the tap devices
used made a small virtual network, exactly what we needed. Pinging machines through
the network is no problem anymore, as well as pinging the virtual machines through the
host. To be able to communicate from the host system to the virtual network we need
to assign an IP address belonging to the network to one of the tap interfaces. Once this
is done everything works like a charm.

7.4 The forks problem

7.4.1 Description of the encountered problem

The framework makes very large usage of parallel execution of code. To implement this
in a decent way wasn’t that easy. In fact, we tried to solve the problem using forks. Every
new machine was started in a new fork, all the actions performed by the different forks
were related to one machine. So the iterative processing through the code was chosen
in a first implementation. Using forks forced us to make an synchron communication
through the code. This idea lead to different problems. The debugging of the application
started to get really hard as soon as the forks were implemented. This made the whole
developing slow.
The replications of an error in the code were hard to catch in a decent way. So if an error
occurred, most of the time, this resulted in an fork crashing. Somehow that was not
important as the framework was built in such a way that a fork crashing could not made
the daemon crash. The problem was, again, the time cost. As said, catching an error in
a decent way was not always an easy job, and an error could not always be detected as
soon as possible. So it costs time until a machine is free again, this time could be spared.
So we rethought this part and built another solution fixing this problems. Despite the
better solution, some malware had already been tested using the forked system. This
means that we have a working solution implemented with forks.

7.4.2 The solution

The solution to this problem has been implemented as follows. Instead of forks we now
use GNU screen, longly presented in section 5.4.4. This approach is significantly different

52

7 Problems and Choices

from the approach with the forks. Indeed, we use this GNU screen in an asynchronous
way, which allows us to get rid of all the problems mentioned in the section above. First
of all we start these GNU screens once, at least for the copying image part described
in section 5.4.9 and for the script performing all the SSH related actions. The script
starting a machine is still only called when needed the same is true for the tcpdump.
So if the virtual machine crashes before the tcpdump could start, we don’t even start it.
This makes us win a big amount of time, and the script are still able to run in parallel
without any problem. A big advantage of using GNU screen is that the debugging is
also facilitated extremely. It is easy to find out where the problem occurred, if some
occurred, as you can print immediately to the window. As we split the complex problem
into small parts, we know exactly what part is doing what and usually every part gets
it’s own, named after the script, GNU screen window.
Choosing an asynchronous implementation with GNU Screen instead of an synchronous
implementation using forks has another big advantage. Indeed, it simplifies the data
processing a lot. Many huge projects are using this technology for their data processing,
for example the MapReduce [5] programs, that are running on Google’s cluster each day.

7.5 The database problem

7.5.1 Description of the encountered problem

As the database is used with very high density in our project, we had to be sure that
everything related to the inserting, updating and reading of the database was done
correctly. A failure in updating the status of a virtual machine would make fail this
machine to be used in a proper way. This would cost a lot of time.
The first implementation used an sqlite3 database. Sqlite is an embedded relational
database, it is very small, and uses a simple file to store the database. We found this a
good idea, as in this way we would be able to backup the database by only moving one
file, or drop the whole database with only one delete command. There would be no need
to connect to a database system first. Unfortunately as sqlite locks the whole database
for every transaction, we encountered a lot of problems due to a locked database, when
we wanted to update or insert something into it. As our framework always runs more
instances of windows machines in parallel, we had to figure out how we could avoid
deadlocks. A lot of engineering and prototyping was done in this part of the work, but
no suitable solution was found.

7.5.2 The solution

As definitely no solution fitted our needs best, we decided to switch the database sys-
tem, and use mysql. The fact that doing backups is here a little bit more work is not
important, as we don’t need backups of the database. In fact, the database is only for

53

7 Problems and Choices

managing the current session, afterwards it gets nearly worthless, except perhaps for
debugging purposes.
Once we reimplemented our sql class in a way it should use a mysql database instead of
an sqlite database [7] our troubles went away. This version of the framework is using a
mysql database with 2 tables as described in 5.2.3

54

8 Future work

The Malware Analyse Framework is now a running project. We think the requests of
the industrial partner have been fulfilled, and that our framework is easy to use and
customizable with ease.
The fact, that this work was related to the research work of a PhD student doing his
researches in the same company, made that the framework had to be highly configurable,
as it is not sure at the moment in what case of application the framework will be used.
In order to give the company the most flexibility, two versions of the code are ready to
use, and have been tested and both are totally operational. One is using forks and the
other is using GNU Screen. Even if both are working, we strongly recommend the usage
of the version using GNU Screen as the stability and reliability as well as the debugging
are better.
A possible scenario could be the further development of the framework in order to per-
form some fuzzing on the malware. So you could imagine that if the malware wants to
access an IRC server, our framework could start an IRC server and make the malware
believe that the IRC server in our virtual network is the one it wants to connect to.
In order to speed up the whole process it would be good to have a framework that uses
snapshots. So, one future work would be to investigate this aspect and to, either fix the
software if it is a bug, or figure out why it is not working at the moment with our set-up.
After that, the framework would really be ready for deployment in a productive envi-
ronment.

55

9 Bibliography

[1] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In ATEC ’05: Pro-
ceedings of the annual conference on USENIX Annual Technical Conference, pages
41–41, Berkeley, CA, USA, 2005. USENIX Association.

[2] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether: malware
analysis via hardware virtualization extensions. In CCS ’08: Proceedings of the 15th
ACM conference on Computer and communications security, pages 51–62, New York,
NY, USA, 2008. ACM.

[3] Éric Filiol. Les virus informatiques : théorie, pratique et applications. Springer,
2004.

[4] Alexandre Dulaunoy Gérard Wagener and Radu State. Automated malware analysis.
hack.lu, 2007.

[5] Sanjay Ghemawat Jeffrey Dean. Mapreduce: Simplified data processing on large
clusters. MapReduce J., 2004.

[6] Mark Mitchell and Alex Samuel. Advanced Linux Programming. New Riders Pub-
lishing, Thousand Oaks, CA, USA, 2001.

[7] Michael Owens. Embedding an SQL database with sqlite. Linux J., 2003(110):2,
2003.

56

