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ABSTRACT 

This paper introduces a new method for getting insights into IP 
related data flows based on a simple visualization technique that 
leverages kernel functions defined over spatial and temporal 
aggregated IP flows. This approach was implemented in a 
visualization tool called PeekKernelFlows. This tool simplifies the 
identification of anomalous patterns over a time period. An 
intuitive adapting image allows network operators to detect 

attacks. We validated our method on a real use-case scenario, 
where we inspected traffic of a high-interaction honeypot.  

General Terms 

[C.2.3] Network Monitoring and Management, [H.3.3] 
Information search and retrieval, [D.4.6] Security and Protection, 
[H.5.2] User interfaces. 

Keywords 

IP flow visualisation; Honeypot monitoring; Machine Learning 
with kernel methods. 

1. INTRODUCTION 
Network monitoring is an essential activity for network operators 
and not only consists by passively supervising activities of users, 
but also to dig deeper into available monitored data to detect if 
networks are in good health. Network monitoring per se is 
confronted to many problems, as the different natures of incidents 
or the storage of monitored data. Over the last years, network 

monitoring itself has already been studied in extends in both, 

academia and industrial domain.  

The available data records on the network border in most cases 
are Netflow1 records. This represents manageable quantity of data. 

Most commercially available routers are capable of exporting this 
information. Compared to full-packet captures, Netflow records 
can be described as chronological IP traffic sequences 
representing packet summaries sent between two entities. 
Handling huge data volumes as ~60 000 flows/second is quite 
common which requires prompt and immediate analysis because 
long-lasting offline analysis is impractical. A solution to this 
constraint is to store condensed forms or to perform near real-time 
evaluations. These evaluations are mostly complex and require 

strong interpretation skills of network operators. 

Even more complex than normal traffic analysis, is the inspection 
of high-interaction honeypot traffic [11], because these entities are 
designed to be under attack and all traffic towards and originated 
from a honeypot is by default considered suspicious. After having 
compromised a honeypot, attackers often install customized and 
protected tools without log information. Hence, network 
monitoring and especially early pattern recognition in this kind of 

traffic is crucial. State of the art technologies, like connection 
throttling or bandwidth limiting, are difficult to set up because 
real attacks can hardly be predicted. Intrusion detection, like 
scanning activity detection has also some limits because zero day 
attacks can be launched against honeypots. Comparing attack 
patterns of two different honeypots is also difficult due to the 
amount of noise in traffic. In such cases, early pattern recognition 
and pattern comparison can be supported by visualisation 

techniques. 

In this paper, we describe a new approach for online and offline 
processing of aggregated Netflow records and full-packet 
captures. The objective is to detect attacks and anomalies by 
referring to temporal and spatial aggregated IP flows, respecting 

                                                                    
1 Netflow records RFC3954, http://tools.ietf.org/html/rfc3954  

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 
VizSec ‘10, September 14, 2010, Ottawa, Ontario, Canada. 
Copyright 2010 ACM 978-1-4503-0013-1/10/09…$10.00. 

 



the CIDR2 concept. For this purpose we leverage a kernel method 
evaluation. Our method represents flows in a simple and active 
representation highlighting anomalies in networks like for 
instance important network topology changes.  

In this work, we use an aggregation-based traffic-profiling tool 

called Aguri ([1, 7]) for the network-monitoring task. This tool 
provides flow summaries over time and space and produces 
different profiles pointing out flow correlations. A fine-tuned 
configuration of Aguri influences the aggregation granularity. 
Global aggregation provides an overview of the network 
topology, however, neglects its evolution. The Aguri profiles are 
used to perform a kernel calculus. We have designed a new kernel 
method able to capture differences between the topological and 

traffic volume changes between spatial and aggregated flow data 
without referring to a manual profile comparison. The gained 
differences are then graphically represented by our implemented 
tool, which refers to adaptive colour gradients.  

Our paper is structured as follows: in section 2 we describe the 
theoretical part of our model. We first present the tool Aguri, then 
we briefly give background information how our kernel function 
for the processing and representation of flows works and we 

describe our new visualisation mechanism. In section 3 we present 
the implementation of our tool, by explaining its different 
modules necessary for representing data. In section 4 we present 
the experimental results. In section 5 we discuss research work 
related to our topic and in section 6 we present our conclusions 
with future work.  

2. MODEL DESCRIPTION 
In the following sections we describe the different parts for our 
visualisation model, present the necessary tools we referred to for 
the monitoring part and describe the metrics used for the 
visualisation task. 

2.1 Spatial and Temporal Flow Aggregation 
We have leveraged a flow-monitoring tool supporting IPv4 and 
IPv6 traffic, called Aguri. IP flows are monitored in near real time 
and then get spatially aggregated. Aggregation is particular useful 
to give an overview at subnet layer instead of considering each 
individual flow. Spatial-aggregation is realized with a special 
process where small flow entities are aggregated into larger prefix 
based trees. An advantage of this tool is that when performing 

aggregation, n nodes in a tree can be looked up in near real time 
within !(log n) time complexity. From these temporal and spatial 
aggregations of network traffic, the tool generates four different 
profiles reflecting summaries for the observed network traffic. 
The profiles reflect information on both host sides in a tree-like 
structure. One profile reflects the source addresses, the second one 
is responsible for the destination addresses, the third profile 
captures the source protocols and finally one last profile is used 

for the destination protocols. Temporal and spatial aggregations 
have a different purpose. Temporal aggregation is more coarse-
grained and similar to a summary of profiles, whereas spatial 
aggregation performs better for real-time monitoring. A traffic 
profile generated by Aguri can be seen in Figure 1.  

                                                                    

2 CIDR: “Classless-InterDomain Routing” standard scheme for 
IP-address allocation and packet routing (see RFC1519, 
http://www.faqs.org/rfcs/rfc1519.html ) 

Figure 1: Aguri profile representation 

It shows an extract of an Aguri profile for a source traffic profile, 
summarizing traffic of 5 seconds. The profile is composed of a 
four-line header followed by the monitored network traffic in tree-
like structure that contains IP addresses, prefix lengths and the 
accumulation of bytes transferred and the volume compared to its 
sub tree expressed in percent.  The structures of the other profiles 
are similar. 

We have defined a similarity metric that can compare two Aguri 

profiles in order to detect traffic and structural driven similarities 
between two profiles.  Our metric takes into account the layout of 
IP addresses as well as the aggregated traffic volume. 

2.2 The Kernel Function 
Evaluating high dimensional data, as in our case tree-like profiles 
with IP-related data, can be simplified by referring to Machine 
Learning techniques [12], like the application of kernel methods. 
A kernel function K can be defined as a mapping K: X " X! [0,#] 

from a high dimensional input space X to a similarity score K (x, 

y) =$i !i(x)!i(y)=!(x)"!(y), with !i(x) being a feature function 
over a data sample x. We define a new tree kernel function that we 
apply on the profiles generated by Aguri, in order to detect 
similarities between two profile trees.  
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Equation 1: Kernel function 

The kernel function is composed of two different feature 
functions. The first part is s(ai, bj) which is the similarity measure 
for the topological changes in our network by comparing suffix 
length of nodes, defined as 
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Equation 2: Topology distance measure 

The second part of our kernel function is the volume part v(ai, bj) 
that deals with the volume changes at different time intervals by 
looking at the percentage of traffic in a node, defined as Gaussian 
kernel (with % being the width scaling parameter), 

%!AGURI-1.0 

%%StartTime: Tue Dec 01 13:54:12 (2009/12/01  13:54:12 

%%EndTime:  Tue Dec 01 13:54:44 (2009/12/01  13:54:44 

%AvgRate: 323.40Kbps 

 

[src address] 1293591  (100.00)% 

0.0.0.0/5 7351 (0.58%/99.22%) 

          10.0.0.0/9     13545  (1.05%/30.79%) 

         10.4.0.13        237599  (18.37%) 

              10.91.0.0/24  19625  (1.52%/10.09%) 

                  10.91.0.22       100920  (8.57%) 

                  10.91.1.4        16664   (1.29%) 

       72.0.0.0/5 21618  (1.67%/37.09%) 

         74.125.79.91     202791  (15.68%) 

          74.125.79.93     214301  (16.57%) 

         74.125.79.99     27396  (2.12%) 

         74.125.79.104    13649   (1.06%) 

         83.231.205.49    324379   (25.08%) 

         83.231.205.50    73506  (5.68%) 

::/0 10067  (0.78%/0.78%) 

%LRU hits: 95.52%  (1790/1874)   reclaimed: 0 



! 
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2
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Equation 3: Volume in percent measure 

Our kernel function defined in Equation 1 takes as input two 
Aguri trees and returns a numerical value and has the purpose to 
identify similarities in the network traffic. The higher this value is, 
the more similar are two Aguri trees. The lower the kernel value is 
the more dissimilar the input is.  

2.3 Visualizing Aguri Trees 
In this section we describe the visualisation mechanism for 
processed Aguri trees by our kernel method. 

For this, we refer to the values of our kernel function for Aguri 
trees, denoted K, which are put into a vector v that describes the 

traffic evolution in a sliding window manner. This vector v is then 
mapped to a rectangle that is sequentially put into an image. The 
rectangle is then filled with a colour derived from the kernel value 
K itself. The colour of the rectangle describes the intensity of the 
evolution. We define an image as a two-dimensional space having 
an x- and y-axis. The discrete time is defined by t = (t0, t1, t2, ..., 
tn). The time step denoted &, corresponds to an interval of & 
seconds where Aguri trees are exported such that from time ti to 
ti+1, & seconds have elapsed. 

The first rectangle on the top left in our image represents the 
kernel value K for the first time period and is defined by the 

coordinate (x0, y0). For representing the next received kernel value 
at time step t1 we have the coordinates (xi + r, yj), with r being the 
rectangle width. When reaching the end of a line, we set a line 
break by resetting xi to 0 and incrementing yi by the rectangle 
height r.  

The freshness ' of a picture is defined in Equation 4. The size of 
the data window has an impact on the freshness of the images. A 
short window means a smaller image and so a fresher image, 
whereas a larger one means more outdated the visualized traffic 
is, but at the same time the resulting image is more farsightedly. 
In our tool the freshness-parameter can be specified by the 

honeypot-operator. The graphical representation used in our work 
is somehow similar to a Self Organizing Maps (SOM) [8] with the 
difference that no learning process and no training set is needed 
for the network traffic analysis and only serves as representation 
of fresh traffic.  

! 

" =# $ width $ height  

Equation 4: Freshness equation 

We use the similarities of our Aguri input obtained from the 
kernel function (defined in Equation 1) and map them to a colour 
space defined by the Red – Green – Blue model (RGB) [2]. 
Intuitively the colour ‘black’ represents the network traffic noise 
and relevant patterns by more intensive colours.  

We are particularly interested to detect whether a given host is 
scanning other systems or to track dominant and long lasting TCP 
sessions. A dominant TCP session is a high bandwidth consuming 
TCP session initiated by ssh brute-force attacks or IRC bouncing. 
Another interesting insight is the amount of traffic targeting a 

given host. By focusing on a window of observed kernels we can 
normalize the kernels between 0 and 1. Then we multiply each Ki-
value with 224 aiming to explore the RGB colour space 
(represented in Equation 5). Additionally, we added a brightness 
factor denoted B, considering a higher decimal precision of the 

kernel values. The more an intensity factor denoted I, was added 
to linearly shift kernel values in the RGB space. 
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Equation 5: Mapping to RGB format 

A simplified RGB colour is composed of 3 bytes. Each byte is 
used to represent the colours red, green and blue respectively and 
can be obtained by using a logical AND operation with respective 
bit masks. The lower bits of Ki' are represented by the colour 

‘blue’, the next bits are used for modeling the ‘green’ colour part 
and the higher bits are mapped to the colour ‘red’.  

This means when having high fluctuations, the similarity between 

two trees is quite low and all bits are low which ends in a black 
colour. Small similarities are displayed in bluish colours and high 
similarities in erythroid colours. When all the bits are high (very 
high similarities) the colour tends to ‘white’. 

3. IMPLEMENTATION 
PeekKernelFlow is the outcome of early prototyping. An 
overview of PeekKernelFlow is presented in Figure 2.   

The current network topology of the honeypot is recovered by the 
Aguri-tool [1, 7]. In the same time, all network traffic is captured 
with the tool tcpdump3. If no full-packet capture is available, we 

use nfdump4 with Netflow records as input for the 
NetflowToAguri module. The honeypot operator configures the 
Aguri-tool to periodically export Aguri trees, which are then 
processed with the AguriProcessor module. 

 

Figure 2: System Architecture 

 

The AguriProcessor computes the kernel value K of two 
successive trees. Then the AguriViz-module reads these kernels 
and presents them in a two-dimensional space and is responsible 
for the correct visualisation of the Aguri tree kernel functions. The 
network operator uses the PeekKernelFlows User Interface, called 

AguriUI. If an interesting pattern in the picture is observed, the 
partial network traffic can be extracted with tcpslice which output 
is piped to the tool tcpdump, which is this time used to transform 
the peeked network packets into a human readable form. 

                                                                    
3 tcpdump: http://www.tcpdump.org/ 
4 nfdump: http://nfdump.sourceforge.net 



3.1 Component Description 

3.1.1 Tcpdump3 
Tcpdump is a popular network forensic tool and is implemented 
by van Jacobson et al. It is able to put a network interface in 
promiscuous mode meaning that all packets are intercepted 
including the packets that are not dedicated for the machine 
operating tcpdump. Then these packets are buffered and can be 
summarized in text form or stored to a file. Tcpdump can also 
read prior captured traffic. The tool tcpdump is based on the 
library libpcap capable of receiving packets in a binary form.  

3.1.2 Nfdump4 
The tool nfdump by P. Haag et al. reads Netflow records captured 
by a Netflow collector and displays them in a human-readable 
form and can easily be parsed. 

3.1.3 Aguri 
The tool Aguri [1], also uses the library libpcap using the 
functionality to acquire network packets. From these packets TCP 

flows are inspected and then stored in Patricia trees taking into 
account their network prefixes.  

3.1.4 NetflowToAguri 
In this module, we have implemented an adapter that converts 

captured Netflows into Aguri format such that the Aguri tool can 
process them.  

3.1.5 AguriProcessor 
The script AguriProcessor is written by us and takes as input the 
output trees of Aguri, waits for at least two successive Aguri trees 
and computes the kernel-value K, defined in Equation 1 between 
these trees. The computed K-values are then used in AguriViz for 
further processing. 

3.1.6 AguriViz  
Our implemented module called AguriViz processes the kernel-
values for the visualisation purpose and maps them into RGB 
format by referring to the equations and algorithms presented in 
section 2.3. 

3.1.7 AguriUI 
The AguriUI module is our implemented visual user interface for 
the network operator. With this interface he can adjust the 
monitoring setting and the parameters (image height, width, 
rectangle size, freshness parameter, brightness, intensity) for the 

generated images. Figure 3 shows the visual interface of our tool. 
It shows on one hand the analysis of the source profile and on the 
other hand all information about the destination profile analysis. 
The more general information about the analyses can be obtained 
in the side box. 

3.1.8 Tcpslice5 
Tcpslice developed by V.Paxson is a program for extracting 
proportions of packet-trace files according to time stamps.  

 

                                                                    
5 tcpslice: ftp://ftp.ee.lbl.gov/tcpslice.taz.gz 

 

Figure 3: AguriUI module - User Interface 

4. EXPERIMENTAL RESULTS 

4.1 Statistical Information 
For the experimental part, we have evaluated our tool 
PeekKernelFlow on flows from honeypot traffic. A High 
interaction honeypot, exposing vulnerable ssh-server, was 
operated for 24 hours on one public IP-address. All traffic related 
to this host is by definition suspicious and recorded. The honeypot 
interacted with 47 523 different external addresses. We used the 
default time parameter of Aguri (& = 5 seconds) also called 
freshness parameter for the experiments and represented the 

visualisation in a 24-bit color space. Choosing a larger freshness 
parameter & leads to more outdated observations. Table 1 
summarizes statistical information about the used data sets. 

Table 1: Dataset information 

 Honeypot 

Operation time 24 hours 

Number of 

addresses 

47 523 

Used bandwidth 64Kbit/s 

Exchanged     

TCP packets 
1 183 419 

! (seconds) 5 

Colours (bit) 24 

4.2 Visualisation Results 
In this section we give interpretations for generated images by 
using PeekKernelFlows.  

In Figure 4 and Figure 5 we present generated pictures by 
applying PeekKernelFlows to a 24-hour honeypot traffic capture. 
Figure 4 presents the outcomes for the analysis of the source 
profile whereas Figure 5 presents the destination profiles. The 
figures have a resolution of 1 200 x 1 000 pixels. This means with 
a rectangle size of r = 20 and a freshness parameter & = 5 seconds, 
we have represented 3 000 Aguri trees in one picture, 
corresponding to approximately 4 hours of traffic.  



 

Figure 4: Visualisation of source profiles by PeekKernelFlows 

We manually investigated some interesting patterns and noticed a 
minor design problem in the Aguri tool. According to the user 
manual of Aguri, the s-switch is used to output a summary every & 
seconds. However, by analyzing the Aguri trees we recognized 
that the interval is not constant.  

After an investigation of the Aguri source code, we noticed that 
the starting and end time are taking from the captured packets. 
This has as consequence that moments of silence, where no 
packets are transmitted, are not been taken under consideration 
and so, we detected that the time intervals varied by &+(. 

An active honeypot is continuously under most varying attacks. 
Some attackers launch brute-force attacks against the honeypot, 

other attackers having already compromised the system scan or 
control other targets. Both kinds of attackers generate a lot of 
network traffic-noise that is hard to manually investigate.  

In both images the background network traffic noise is 
represented by the colour ‘black’, which means that Aguri trees 
are completely different. If the colour tends to ‘white’ following 
the RGB-model, the more similar the successive Aguri trees are.  

In Figure 4, four relevant patterns can be observed. Three 
successive lines in ‘green’ colour framed by the rectangles can be 
spotted. After a manual investigation of the recorded network 
traffic, we observed that these ‘ green’ lines (framed by the 
rectangles) represents ssh brute-force attacks, whereas the 
‘coloured’ line (framed by the dashed ellipse) in the right bottom 
of the image represents scanning activities of our honeypot 
towards other victims.  

In the observed scanning activities the attackers nearly used the 

entire bandwidth of the honeypot and continuously scanned entire 
sub-networks. This induces similar successive Aguri trees. The 
colours of scanning activities are more ‘light-coloured’ than 
dominant TCP sessions, which are mostly in ‘dark’ colours. This 
can be explained by the kernel function K, where the topological 
part s(ai,bj) is primary on the volume part v(ai,bj).  

In the source profile, we are not focused on the exact target the 
honeypot attacks. To achieve more fine-grained information about 
the targets, the destination profile can be used, represented in 
Figure 5. 

 

Figure 5: Visualisation of destination profiles 

In the destination profile analysis we can observe more patterns 
represented as segments due to the focus on destinations. We can 
observe how long attackers stayed at a dedicated target and how 
much traffic was exchanged.  

5. RELATED WORK 
Analyzing network traffic is a tedious and error prone task. In the 

field of network intrusion detection, visualisation is a popular 
complementary instrument. As an example, Foresti et al. [3] use 
visualisation for representing network alerts. Visualisation can 
also be used at lower levels. In article Goodall et al. [6] visualize 
network flows. As input the authors refer to a Netflow repository 
that is transformed and stored in a database. A network operator 
can then choose between different visualisation techniques, like 
various histograms or flows, which are represented as a graph in a 

circular manner. Goodall et al. [6] presents a tool called FlowViz 
that refers to a similar coloured rectangular representation for 
showing the usage of ports. However in our work, we map kernel 
values obtained by the computation of Aguri trees to coloured 
rectangles, where the colour is a function of the kernel value. 
Gonzalez-Arevalo et al. [5] propose ‘mice and elephants’ plots. A 
flow is modeled as set of packets and a segment in the image 
represents a single connection. They also use a two-dimensional 
space such that the x-axis is the time. In order to avoid collisions 

of parallel connections, different randomly chosen heights are 
used. We explicitly use line breaks with the aim to increase the 
time space and thus increment the y-axis in a linear fashion. 
Patole et al. [10] refer to Self-Organizing Maps (SOM) and 
Mansmann et al. [9] refer to TreeMaps for dynamic intrusion 
detection. The graphical representation of a SOM, first presented 
by Kohonen [8], looks quite similar to the visualisation of 
PeekKernelFlows, with the crucial difference that 

PeekKernelFlows takes into account the time and does not need 
learning with training/testing phase. Glanfield et al. [4] used 
concentric circles to display flow relationships by respecting 
network hierarchies. PeekKernelFlows also respects flow 
hierarchies due to Aguri but focuses more on differences between 
successive trees over time. Glanfield et al. [4] referred to a similar 
problem statement in the context of network administration. The 
authors assume that an administrator has previously determined 
the subset of data that should be visualized.  



The determination of such a subset is often challenging due to the 
noise generated by attackers. PeekKernelFlows provides a method 
to support honeypot administrators to quickly scan honeypot 
traffic with the purpose to determine interesting events in 
background noise. Hence, we are using a kernel function to line 

up similar events that we defined as anomalies. Kaizaki et al. [7] 
claim to detect Denial-of-Service attacks like flooding attacks 
only by studying the monitored profiles. An Aguri tree can be 
represented as a graph. One graph represents the monitored 
profiles in a given time interval. PeekKernelFlows can be 
configured such that Aguri trees can be exported into infinitesimal 
small intervals and tree differences are mapped into the RGB 
colour space.  

 

6. CONCLUSIONS AND FUTURE WORK 
We have described in this paper a visualisation tool for temporal 
and spatially aggregated flows. The main idea is to track changes 
in the topology and volume on a network between successive time 
intervals in order to detect anomalous behaviours. Flows are 
captured for a given time interval in a special tree like structure 
(Aguri tree). We have introduced a similarity metric that leverages 

kernel functions defined over such tree structures and assessed its 
efficiency a scenario of traffic originated from a high-interaction 
honeypot. A limitation of our approach is that an experienced 
attacker can poison our visualisation technique by generating 
additional noise, targeting the black colour and by this staying 
undetected. We plan to improve the tool by increasing the 
Human-Machine-Interaction, as for example adding zoom 
features to the user interface and integrated analysis and 

decisional components. Another future work feature is the 
implementation of ‘image-transparency’ for better tracking long-
term evolution. 
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