
 PeekKernelFlows: Peeking into IP flows

Cynthia Wagner

University of Luxembourg

FSTC, Campus Kirchberg

L-1359 Luxembourg, Luxembourg
+352 46 66 44 1

cynthia.wagner@uni.lu

Alexandre Dulaunoy
SES S.A.

Château de Betzdorf

L-6815 Betzdorf, Luxembourg
+352 71 07 25 1

a@foo.be

Gérard Wagener
University of Luxembourg - SNT

FSTC, Campus Kirchberg

L-1359 Luxembourg, Luxembourg
+352 46 66 44 1

gerard.wagener@uni.lu

Thomas Engel
University of Luxembourg

FSTC, Campus Kirchberg

L-1359 Luxembourg, Luxembourg
+352 46 66 44 1

thomas.engel@uni.lu

Radu State

University of Luxembourg

FSTC, Campus Kirchberg

L-1359 Luxembourg, Luxembourg
+352 46 66 44 1

radu.state@uni.lu

ABSTRACT

This paper introduces a new method for getting insights into IP
related data flows based on a simple visualization technique that
leverages kernel functions defined over spatial and temporal
aggregated IP flows. This approach was implemented in a
visualization tool called PeekKernelFlows. This tool simplifies the
identification of anomalous patterns over a time period. An
intuitive adapting image allows network operators to detect

attacks. We validated our method on a real use-case scenario,
where we inspected traffic of a high-interaction honeypot.

General Terms

[C.2.3] Network Monitoring and Management, [H.3.3]
Information search and retrieval, [D.4.6] Security and Protection,
[H.5.2] User interfaces.

Keywords

IP flow visualisation; Honeypot monitoring; Machine Learning
with kernel methods.

1. INTRODUCTION
Network monitoring is an essential activity for network operators
and not only consists by passively supervising activities of users,
but also to dig deeper into available monitored data to detect if
networks are in good health. Network monitoring per se is
confronted to many problems, as the different natures of incidents
or the storage of monitored data. Over the last years, network

monitoring itself has already been studied in extends in both,

academia and industrial domain.

The available data records on the network border in most cases
are Netflow1 records. This represents manageable quantity of data.

Most commercially available routers are capable of exporting this
information. Compared to full-packet captures, Netflow records
can be described as chronological IP traffic sequences
representing packet summaries sent between two entities.
Handling huge data volumes as ~60 000 flows/second is quite
common which requires prompt and immediate analysis because
long-lasting offline analysis is impractical. A solution to this
constraint is to store condensed forms or to perform near real-time
evaluations. These evaluations are mostly complex and require

strong interpretation skills of network operators.

Even more complex than normal traffic analysis, is the inspection
of high-interaction honeypot traffic [11], because these entities are
designed to be under attack and all traffic towards and originated
from a honeypot is by default considered suspicious. After having
compromised a honeypot, attackers often install customized and
protected tools without log information. Hence, network
monitoring and especially early pattern recognition in this kind of

traffic is crucial. State of the art technologies, like connection
throttling or bandwidth limiting, are difficult to set up because
real attacks can hardly be predicted. Intrusion detection, like
scanning activity detection has also some limits because zero day
attacks can be launched against honeypots. Comparing attack
patterns of two different honeypots is also difficult due to the
amount of noise in traffic. In such cases, early pattern recognition
and pattern comparison can be supported by visualisation

techniques.

In this paper, we describe a new approach for online and offline
processing of aggregated Netflow records and full-packet
captures. The objective is to detect attacks and anomalies by
referring to temporal and spatial aggregated IP flows, respecting

1 Netflow records RFC3954, http://tools.ietf.org/html/rfc3954

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.
VizSec ‘10, September 14, 2010, Ottawa, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0013-1/10/09…$10.00.

the CIDR2 concept. For this purpose we leverage a kernel method
evaluation. Our method represents flows in a simple and active
representation highlighting anomalies in networks like for
instance important network topology changes.

In this work, we use an aggregation-based traffic-profiling tool

called Aguri ([1, 7]) for the network-monitoring task. This tool
provides flow summaries over time and space and produces
different profiles pointing out flow correlations. A fine-tuned
configuration of Aguri influences the aggregation granularity.
Global aggregation provides an overview of the network
topology, however, neglects its evolution. The Aguri profiles are
used to perform a kernel calculus. We have designed a new kernel
method able to capture differences between the topological and

traffic volume changes between spatial and aggregated flow data
without referring to a manual profile comparison. The gained
differences are then graphically represented by our implemented
tool, which refers to adaptive colour gradients.

Our paper is structured as follows: in section 2 we describe the
theoretical part of our model. We first present the tool Aguri, then
we briefly give background information how our kernel function
for the processing and representation of flows works and we

describe our new visualisation mechanism. In section 3 we present
the implementation of our tool, by explaining its different
modules necessary for representing data. In section 4 we present
the experimental results. In section 5 we discuss research work
related to our topic and in section 6 we present our conclusions
with future work.

2. MODEL DESCRIPTION
In the following sections we describe the different parts for our
visualisation model, present the necessary tools we referred to for
the monitoring part and describe the metrics used for the
visualisation task.

2.1 Spatial and Temporal Flow Aggregation
We have leveraged a flow-monitoring tool supporting IPv4 and
IPv6 traffic, called Aguri. IP flows are monitored in near real time
and then get spatially aggregated. Aggregation is particular useful
to give an overview at subnet layer instead of considering each
individual flow. Spatial-aggregation is realized with a special
process where small flow entities are aggregated into larger prefix
based trees. An advantage of this tool is that when performing

aggregation, n nodes in a tree can be looked up in near real time
within !(log n) time complexity. From these temporal and spatial
aggregations of network traffic, the tool generates four different
profiles reflecting summaries for the observed network traffic.
The profiles reflect information on both host sides in a tree-like
structure. One profile reflects the source addresses, the second one
is responsible for the destination addresses, the third profile
captures the source protocols and finally one last profile is used

for the destination protocols. Temporal and spatial aggregations
have a different purpose. Temporal aggregation is more coarse-
grained and similar to a summary of profiles, whereas spatial
aggregation performs better for real-time monitoring. A traffic
profile generated by Aguri can be seen in Figure 1.

2 CIDR: “Classless-InterDomain Routing” standard scheme for
IP-address allocation and packet routing (see RFC1519,
http://www.faqs.org/rfcs/rfc1519.html)

Figure 1: Aguri profile representation

It shows an extract of an Aguri profile for a source traffic profile,
summarizing traffic of 5 seconds. The profile is composed of a
four-line header followed by the monitored network traffic in tree-
like structure that contains IP addresses, prefix lengths and the
accumulation of bytes transferred and the volume compared to its
sub tree expressed in percent. The structures of the other profiles
are similar.

We have defined a similarity metric that can compare two Aguri

profiles in order to detect traffic and structural driven similarities
between two profiles. Our metric takes into account the layout of
IP addresses as well as the aggregated traffic volume.

2.2 The Kernel Function
Evaluating high dimensional data, as in our case tree-like profiles
with IP-related data, can be simplified by referring to Machine
Learning techniques [12], like the application of kernel methods.
A kernel function K can be defined as a mapping K: X " X! [0,#]

from a high dimensional input space X to a similarity score K (x,

y) =$i !i(x)!i(y)=!(x)"!(y), with !i(x) being a feature function
over a data sample x. We define a new tree kernel function that we
apply on the profiles generated by Aguri, in order to detect
similarities between two profile trees.

!

K(T
1
,T
2
) = s(ai,b j) " v(ai,bj)

i#NT1
, j#NT2

$

Equation 1: Kernel function

The kernel function is composed of two different feature
functions. The first part is s(ai, bj) which is the similarity measure
for the topological changes in our network by comparing suffix
length of nodes, defined as

!

s(ai,b j) =

2
suffixlength j

2suffixlengthi
 if prefixi is prefix of prefix j

2suffixlengthi

2
suffixlength j

 if prefixi is prefix of prefix j

0 otherwise

"

$
$
$

%

$
$
$

Equation 2: Topology distance measure

The second part of our kernel function is the volume part v(ai, bj)
that deals with the volume changes at different time intervals by
looking at the percentage of traffic in a node, defined as Gaussian
kernel (with % being the width scaling parameter),

%!AGURI-1.0

%%StartTime: Tue Dec 01 13:54:12 (2009/12/01 13:54:12

%%EndTime: Tue Dec 01 13:54:44 (2009/12/01 13:54:44

%AvgRate: 323.40Kbps

[src address] 1293591 (100.00)%

0.0.0.0/5 7351 (0.58%/99.22%)

 10.0.0.0/9 13545 (1.05%/30.79%)

 10.4.0.13 237599 (18.37%)

 10.91.0.0/24 19625 (1.52%/10.09%)

 10.91.0.22 100920 (8.57%)

 10.91.1.4 16664 (1.29%)

 72.0.0.0/5 21618 (1.67%/37.09%)

 74.125.79.91 202791 (15.68%)

 74.125.79.93 214301 (16.57%)

 74.125.79.99 27396 (2.12%)

 74.125.79.104 13649 (1.06%)

 83.231.205.49 324379 (25.08%)

 83.231.205.50 73506 (5.68%)

::/0 10067 (0.78%/0.78%)

%LRU hits: 95.52% (1790/1874) reclaimed: 0

!

v(ai,b j) = exp("
vol%i"vol% j

2

2
)

Equation 3: Volume in percent measure

Our kernel function defined in Equation 1 takes as input two
Aguri trees and returns a numerical value and has the purpose to
identify similarities in the network traffic. The higher this value is,
the more similar are two Aguri trees. The lower the kernel value is
the more dissimilar the input is.

2.3 Visualizing Aguri Trees
In this section we describe the visualisation mechanism for
processed Aguri trees by our kernel method.

For this, we refer to the values of our kernel function for Aguri
trees, denoted K, which are put into a vector v that describes the

traffic evolution in a sliding window manner. This vector v is then
mapped to a rectangle that is sequentially put into an image. The
rectangle is then filled with a colour derived from the kernel value
K itself. The colour of the rectangle describes the intensity of the
evolution. We define an image as a two-dimensional space having
an x- and y-axis. The discrete time is defined by t = (t0, t1, t2, ...,
tn). The time step denoted &, corresponds to an interval of &
seconds where Aguri trees are exported such that from time ti to
ti+1, & seconds have elapsed.

The first rectangle on the top left in our image represents the
kernel value K for the first time period and is defined by the

coordinate (x0, y0). For representing the next received kernel value
at time step t1 we have the coordinates (xi + r, yj), with r being the
rectangle width. When reaching the end of a line, we set a line
break by resetting xi to 0 and incrementing yi by the rectangle
height r.

The freshness ' of a picture is defined in Equation 4. The size of
the data window has an impact on the freshness of the images. A
short window means a smaller image and so a fresher image,
whereas a larger one means more outdated the visualized traffic
is, but at the same time the resulting image is more farsightedly.
In our tool the freshness-parameter can be specified by the

honeypot-operator. The graphical representation used in our work
is somehow similar to a Self Organizing Maps (SOM) [8] with the
difference that no learning process and no training set is needed
for the network traffic analysis and only serves as representation
of fresh traffic.

!

" =# $ width $ height

Equation 4: Freshness equation

We use the similarities of our Aguri input obtained from the
kernel function (defined in Equation 1) and map them to a colour
space defined by the Red – Green – Blue model (RGB) [2].
Intuitively the colour ‘black’ represents the network traffic noise
and relevant patterns by more intensive colours.

We are particularly interested to detect whether a given host is
scanning other systems or to track dominant and long lasting TCP
sessions. A dominant TCP session is a high bandwidth consuming
TCP session initiated by ssh brute-force attacks or IRC bouncing.
Another interesting insight is the amount of traffic targeting a

given host. By focusing on a window of observed kernels we can
normalize the kernels between 0 and 1. Then we multiply each Ki-
value with 224 aiming to explore the RGB colour space
(represented in Equation 5). Additionally, we added a brightness
factor denoted B, considering a higher decimal precision of the

kernel values. The more an intensity factor denoted I, was added
to linearly shift kernel values in the RGB space.

!

k
i
'=

k
i
" B

(k
i# " B)

" 224 + I

Equation 5: Mapping to RGB format

A simplified RGB colour is composed of 3 bytes. Each byte is
used to represent the colours red, green and blue respectively and
can be obtained by using a logical AND operation with respective
bit masks. The lower bits of Ki' are represented by the colour

‘blue’, the next bits are used for modeling the ‘green’ colour part
and the higher bits are mapped to the colour ‘red’.

This means when having high fluctuations, the similarity between

two trees is quite low and all bits are low which ends in a black
colour. Small similarities are displayed in bluish colours and high
similarities in erythroid colours. When all the bits are high (very
high similarities) the colour tends to ‘white’.

3. IMPLEMENTATION
PeekKernelFlow is the outcome of early prototyping. An
overview of PeekKernelFlow is presented in Figure 2.

The current network topology of the honeypot is recovered by the
Aguri-tool [1, 7]. In the same time, all network traffic is captured
with the tool tcpdump3. If no full-packet capture is available, we

use nfdump4 with Netflow records as input for the
NetflowToAguri module. The honeypot operator configures the
Aguri-tool to periodically export Aguri trees, which are then
processed with the AguriProcessor module.

Figure 2: System Architecture

The AguriProcessor computes the kernel value K of two
successive trees. Then the AguriViz-module reads these kernels
and presents them in a two-dimensional space and is responsible
for the correct visualisation of the Aguri tree kernel functions. The
network operator uses the PeekKernelFlows User Interface, called

AguriUI. If an interesting pattern in the picture is observed, the
partial network traffic can be extracted with tcpslice which output
is piped to the tool tcpdump, which is this time used to transform
the peeked network packets into a human readable form.

3 tcpdump: http://www.tcpdump.org/
4 nfdump: http://nfdump.sourceforge.net

3.1 Component Description

3.1.1 Tcpdump3
Tcpdump is a popular network forensic tool and is implemented
by van Jacobson et al. It is able to put a network interface in
promiscuous mode meaning that all packets are intercepted
including the packets that are not dedicated for the machine
operating tcpdump. Then these packets are buffered and can be
summarized in text form or stored to a file. Tcpdump can also
read prior captured traffic. The tool tcpdump is based on the
library libpcap capable of receiving packets in a binary form.

3.1.2 Nfdump4
The tool nfdump by P. Haag et al. reads Netflow records captured
by a Netflow collector and displays them in a human-readable
form and can easily be parsed.

3.1.3 Aguri
The tool Aguri [1], also uses the library libpcap using the
functionality to acquire network packets. From these packets TCP

flows are inspected and then stored in Patricia trees taking into
account their network prefixes.

3.1.4 NetflowToAguri
In this module, we have implemented an adapter that converts

captured Netflows into Aguri format such that the Aguri tool can
process them.

3.1.5 AguriProcessor
The script AguriProcessor is written by us and takes as input the
output trees of Aguri, waits for at least two successive Aguri trees
and computes the kernel-value K, defined in Equation 1 between
these trees. The computed K-values are then used in AguriViz for
further processing.

3.1.6 AguriViz
Our implemented module called AguriViz processes the kernel-
values for the visualisation purpose and maps them into RGB
format by referring to the equations and algorithms presented in
section 2.3.

3.1.7 AguriUI
The AguriUI module is our implemented visual user interface for
the network operator. With this interface he can adjust the
monitoring setting and the parameters (image height, width,
rectangle size, freshness parameter, brightness, intensity) for the

generated images. Figure 3 shows the visual interface of our tool.
It shows on one hand the analysis of the source profile and on the
other hand all information about the destination profile analysis.
The more general information about the analyses can be obtained
in the side box.

3.1.8 Tcpslice5
Tcpslice developed by V.Paxson is a program for extracting
proportions of packet-trace files according to time stamps.

5 tcpslice: ftp://ftp.ee.lbl.gov/tcpslice.taz.gz

Figure 3: AguriUI module - User Interface

4. EXPERIMENTAL RESULTS

4.1 Statistical Information
For the experimental part, we have evaluated our tool
PeekKernelFlow on flows from honeypot traffic. A High
interaction honeypot, exposing vulnerable ssh-server, was
operated for 24 hours on one public IP-address. All traffic related
to this host is by definition suspicious and recorded. The honeypot
interacted with 47 523 different external addresses. We used the
default time parameter of Aguri (& = 5 seconds) also called
freshness parameter for the experiments and represented the

visualisation in a 24-bit color space. Choosing a larger freshness
parameter & leads to more outdated observations. Table 1
summarizes statistical information about the used data sets.

Table 1: Dataset information

 Honeypot

Operation time 24 hours

Number of

addresses

47 523

Used bandwidth 64Kbit/s

Exchanged

TCP packets
1 183 419

! (seconds) 5

Colours (bit) 24

4.2 Visualisation Results
In this section we give interpretations for generated images by
using PeekKernelFlows.

In Figure 4 and Figure 5 we present generated pictures by
applying PeekKernelFlows to a 24-hour honeypot traffic capture.
Figure 4 presents the outcomes for the analysis of the source
profile whereas Figure 5 presents the destination profiles. The
figures have a resolution of 1 200 x 1 000 pixels. This means with
a rectangle size of r = 20 and a freshness parameter & = 5 seconds,
we have represented 3 000 Aguri trees in one picture,
corresponding to approximately 4 hours of traffic.

Figure 4: Visualisation of source profiles by PeekKernelFlows

We manually investigated some interesting patterns and noticed a
minor design problem in the Aguri tool. According to the user
manual of Aguri, the s-switch is used to output a summary every &
seconds. However, by analyzing the Aguri trees we recognized
that the interval is not constant.

After an investigation of the Aguri source code, we noticed that
the starting and end time are taking from the captured packets.
This has as consequence that moments of silence, where no
packets are transmitted, are not been taken under consideration
and so, we detected that the time intervals varied by &+(.

An active honeypot is continuously under most varying attacks.
Some attackers launch brute-force attacks against the honeypot,

other attackers having already compromised the system scan or
control other targets. Both kinds of attackers generate a lot of
network traffic-noise that is hard to manually investigate.

In both images the background network traffic noise is
represented by the colour ‘black’, which means that Aguri trees
are completely different. If the colour tends to ‘white’ following
the RGB-model, the more similar the successive Aguri trees are.

In Figure 4, four relevant patterns can be observed. Three
successive lines in ‘green’ colour framed by the rectangles can be
spotted. After a manual investigation of the recorded network
traffic, we observed that these ‘ green’ lines (framed by the
rectangles) represents ssh brute-force attacks, whereas the
‘coloured’ line (framed by the dashed ellipse) in the right bottom
of the image represents scanning activities of our honeypot
towards other victims.

In the observed scanning activities the attackers nearly used the

entire bandwidth of the honeypot and continuously scanned entire
sub-networks. This induces similar successive Aguri trees. The
colours of scanning activities are more ‘light-coloured’ than
dominant TCP sessions, which are mostly in ‘dark’ colours. This
can be explained by the kernel function K, where the topological
part s(ai,bj) is primary on the volume part v(ai,bj).

In the source profile, we are not focused on the exact target the
honeypot attacks. To achieve more fine-grained information about
the targets, the destination profile can be used, represented in
Figure 5.

Figure 5: Visualisation of destination profiles

In the destination profile analysis we can observe more patterns
represented as segments due to the focus on destinations. We can
observe how long attackers stayed at a dedicated target and how
much traffic was exchanged.

5. RELATED WORK
Analyzing network traffic is a tedious and error prone task. In the

field of network intrusion detection, visualisation is a popular
complementary instrument. As an example, Foresti et al. [3] use
visualisation for representing network alerts. Visualisation can
also be used at lower levels. In article Goodall et al. [6] visualize
network flows. As input the authors refer to a Netflow repository
that is transformed and stored in a database. A network operator
can then choose between different visualisation techniques, like
various histograms or flows, which are represented as a graph in a

circular manner. Goodall et al. [6] presents a tool called FlowViz
that refers to a similar coloured rectangular representation for
showing the usage of ports. However in our work, we map kernel
values obtained by the computation of Aguri trees to coloured
rectangles, where the colour is a function of the kernel value.
Gonzalez-Arevalo et al. [5] propose ‘mice and elephants’ plots. A
flow is modeled as set of packets and a segment in the image
represents a single connection. They also use a two-dimensional
space such that the x-axis is the time. In order to avoid collisions

of parallel connections, different randomly chosen heights are
used. We explicitly use line breaks with the aim to increase the
time space and thus increment the y-axis in a linear fashion.
Patole et al. [10] refer to Self-Organizing Maps (SOM) and
Mansmann et al. [9] refer to TreeMaps for dynamic intrusion
detection. The graphical representation of a SOM, first presented
by Kohonen [8], looks quite similar to the visualisation of
PeekKernelFlows, with the crucial difference that

PeekKernelFlows takes into account the time and does not need
learning with training/testing phase. Glanfield et al. [4] used
concentric circles to display flow relationships by respecting
network hierarchies. PeekKernelFlows also respects flow
hierarchies due to Aguri but focuses more on differences between
successive trees over time. Glanfield et al. [4] referred to a similar
problem statement in the context of network administration. The
authors assume that an administrator has previously determined
the subset of data that should be visualized.

The determination of such a subset is often challenging due to the
noise generated by attackers. PeekKernelFlows provides a method
to support honeypot administrators to quickly scan honeypot
traffic with the purpose to determine interesting events in
background noise. Hence, we are using a kernel function to line

up similar events that we defined as anomalies. Kaizaki et al. [7]
claim to detect Denial-of-Service attacks like flooding attacks
only by studying the monitored profiles. An Aguri tree can be
represented as a graph. One graph represents the monitored
profiles in a given time interval. PeekKernelFlows can be
configured such that Aguri trees can be exported into infinitesimal
small intervals and tree differences are mapped into the RGB
colour space.

6. CONCLUSIONS AND FUTURE WORK
We have described in this paper a visualisation tool for temporal
and spatially aggregated flows. The main idea is to track changes
in the topology and volume on a network between successive time
intervals in order to detect anomalous behaviours. Flows are
captured for a given time interval in a special tree like structure
(Aguri tree). We have introduced a similarity metric that leverages

kernel functions defined over such tree structures and assessed its
efficiency a scenario of traffic originated from a high-interaction
honeypot. A limitation of our approach is that an experienced
attacker can poison our visualisation technique by generating
additional noise, targeting the black colour and by this staying
undetected. We plan to improve the tool by increasing the
Human-Machine-Interaction, as for example adding zoom
features to the user interface and integrated analysis and

decisional components. Another future work feature is the
implementation of ‘image-transparency’ for better tracking long-
term evolution.

7. ACKNOWLEDGMENTS
This project is partially supported by the EFIPSANS EU-Project,

CSC-SECAN-Lab and SNT. The more we want to acknowledge
the National Research Fund Luxembourg, S.E.S.-Astra and
RESTENA Luxembourg.

8. REFERENCES
[1] K. Cho, R. Kaizaki and A. Kato, Aguri: An aggregation-

based traffic profiler, QoflS2001, LNCS 2156, pp.222-242,
Springer Verlag, 2001.

[2] M.F.Cowlishaw, Fundamental Requirements for picture
presentation, In Proc. of the Society for picture presentation,
vol.26 no.2, pp.101-107, 1985.

[3] S. Foresti, J. Agutter, Y. Livnat, Yarden, S. Moon, R.
Erbacher, Visual Correlation of Network Alerts, IEEE
Comput. Graph. Appl., vol. 26 n. 2, pp. 48-59, IEEE
Computer Society Press, Los Alamitos, CA, USA, 2009.

[4] J. Glanfield, S. Brooks, T. Taylor, D. Paterson, C Smith, C.
Gates, J. McHugh, OverFlow: An Overview Visualization
for Network Analysis, 6th International Workshop on
Visualization for Cyber Security. Atlantic City, NJ., 2009

[5] B. Gonzalez-Arevalo, F. Hernandez-Campos, J.S. Marron, C.
Park, Visualization Challenges in Internet Traffic Research,

Graphics of Large Data Sets: Visualizing a Million, Ed. A.
Unwin, M. Theus, H. Hofmann, Springer, New York, pp.
203-226, 2006.

[6] J. R. Goodall and D. R. Tesone, Visual Analytics for
Network Flow Analysis, Conference For Homeland Security,
Cybersecurity Applications & Technology, pp.199-204,
IEEE Computer Society, Los Alamitos, CA, USA, 2009.

[7] R. Kaizaki, O. Nakamura and J. Maurai, Characteristics of
Denial of Service Attacks on Internet using Aguri, ICOIN
2003, LNCS 2662, pp.849-857, Springer Verlag, 2003.

[8] T. Kohonen, Self-Organizing Maps, 3rd Edition, Springer
Verlag, 2001.

[9] F.Mansmann, F. Fischer, D.A. Keim and S.C. North, Visual
support for analyzing network traffic and intrusion detection
events using TreeMap and graph representations,
CHiMiT'09: ACM Proceedings of the Symposium on
Computer Human Interaction for the Management of
Information Technology, pp.19-28, Baltimore, Maryland,
2009.

[10] V. A. Patole, V. K. Pachghare, P.Kulkarni, Self Organizing
Maps to build Intrusion Detection System, International
Journal of Computer Applications, 0975-8887, vol.1 n.8,
2010.

[11] L.Spitzner, Honeypots: Tracking Hackers, Addison-Wesley
Professional, 2002.

[12] V. Vapnik, Statistical Learning Theory, Wiley, 1998.

