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Abstract Several malware analysis techniques suppose that
the disassembled code of a piece of malware is available,
which is however not always possible. This paper proposes
a flexible and automated approach to extract malware beha-
viour by observing all the system function calls performed
in a virtualized execution environment. Similarities and dis-
tances between malware behaviours are computed which
allows to classify malware behaviours. The main features of
our approach reside in coupling a sequence alignment method
to compute similarities and leverage the Hellinger distance to
compute associated distances. We also show how the accu-
racy of the classification process can be improved using a
phylogenetic tree. Such a tree shows common functionalities
and evolution of malware. This is relevant when dealing with
obfuscated malware variants that have often similar beha-
viour. The phylogenetic trees were assessed using known
antivirus results and only a few malware behaviours were
wrongly classified.

1 Introduction

This paper proposes an approach to address known anti-
reverse engineering techniques in order to determine
behaviours of an unknown piece of malware. Our work was
motivated by a complex task of analysing a huge amount of
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malware captured with a medium interaction type of honeypot.
All our captured data is known to be malicious and therefore
we did not address issues like false positives, or to diffe-
rentiate between legitimate software and presumed malware.
Our main objective is to automatically classify malware based
on its behavior. Malware is software that has various mali-
cious goals and often uses anti-reverse engineering tech-
niques to escape from security checks or antivirus programs.
In most cases, malware uses anti-reverse engineering tech-
niques in order to make analysis difficult. A huge amount
of effort is currently spent to detour anti-reverse enginee-
ring techniques [19,21]. The idea behind our approach is not
to use traditional reverse engineering techniques like disas-
sembling or debugging but execute a piece of malware in a
sandboxed environment and control various parameters, like
for instance the execution time, the file-system content, the
network, or the windows registry. The execution is done in
a virtual operating system that allows to modify execution
parameters in an efficient way. During the execution of a
piece of malware, the interaction of the latter with the virtual
operating system is observed. We will cover these issues in
depth in our paper, which is structured as follows: Sect. 2 des-
cribes the execution of malware in a secured environment.
In Sect. 3 we propose a model for malware behaviour to be
a sequence of virtual operating system function calls. These
sequences are used to determine similarities and distances
between malware behaviours. Section 4 reports experimen-
tal results done with malware captured in the wild. Section 5
summarises the related work. Section 6 concludes and des-
cribes the future work.

2 Virtual execution of malware

A piece of malware that runs in a Microsoft Windows (W32)
environment can be examined and its behaviour can be
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Fig. 1 Virtual execution of malware

extracted by executing it on a plain isolated W32 machine
and comparing the initial state of the machine with the final
one. This approach leads however to missing useful interme-
diate pieces of information. Another secondary requirement
is to quickly recover from malware infection. Therefore, a
virtual operating system is better suited.

The framework for executing malware is described in
Fig. 1. A User Mode Linux UML [10] is used with restric-
ted network and file system capabilities as a virtual machine.
We assume that privileged instructions and direct hardware
access are correctly handled by the virtual machine. The vir-
tual machine has a network address and is accessed via SSH
[28]. Inside the virtual machine wine [11] is used as a virtual
operating system to execute W32 malware. A plain debugger
is not used because such a tool can be easily detected by a
piece of malware. We store the execution messages of wine
that were generated during execution. The controller uses a
heuristic to stop the execution, because a lot of malware does
not terminate. In a second stage the execution messages are
automatically analyzed and the functions that were called
by a piece of malware are extracted. A piece of malware is
executed as follows:

1. A new execution environment is created by reusing an
execution profile, consisting in a directory and in an
emulated network. An execution environment includes
file-system with common windows system files, a given
windows registry and an emulated network infrastruc-
ture. An emulated network infrastructure is a set of
commonly used network servers, like for instance DNS1

servers, web servers or mail servers that can interact with
the piece of malware.

2. A piece of malware is copied inside the execution envi-
ronment via SSH.

1 Domain Name System – RFC 1035.

3. An execution controller is started which includes a heu-
ristics to stop the execution. In fact it is stopped after 10
seconds of execution.

4. This piece of malware is executed and monitored.
5. Raw execution messages are retrieved via SSH.
6. The environment is cleaned up.
7. The raw messages are processed in order to find the func-

tion calls executed by the piece of malware. The memory
layout used during the execution is reconstructed in order
to decide which function calls are related to the piece of
malware and which ones to the virtual operating system.

3 Analysing malware behaviour

In order to extract a behaviour from a piece of malware and
to overcome anti-reverse engineering techniques, a piece of
malware is executed in a virtual operating system and some
execution parameters are controlled. In a next step, quantita-
tive measures are computed and used to analyse the malware.

3.1 Malware behaviour

Let A be the set of actions that a piece of malware M can
perform. An action a ∈ A is considered as a virtual opera-
ting system function call that is done by M . Each function
call a ∈ A is mapped to a code c ∈ C such that C ⊂ N.
A piece of malware can have multiple behaviours. One can
imagine a piece of malware that runs on Saturdays a different
sequence of actions than on Mondays, such that two different
behaviours for the same piece of malware are observed. One
such behaviour corresponds to a word a1a2a3 . . . an ∈ A∗.

Table 1 shows two sequences of actions executed by a
piece of malware M1 and a piece of malware M2. The actions
done by M1 can be seen as the sequence of actions
BM1 = LoadLibraryA GetProcAddress GetProcAddress Get-
ProcAddress WSAStartup CopyFileA CreateProcessA ∈ A∗.
The sequence of action codes of M1 is in this example
SM1 = 1 2 2 2 10 30 40 ∈ C∗.

When we observe the first four rows, we see that the two
pieces of malware M1 and M2 acquire information about the
functions of the operating system. In the fifth row however,
the piece of malware M1 intents to do some networking and
the piece of malware M2 reads a value from the registry. The
sixth action done by the two pieces of malware is to copy
themselves somewhere in the system. The last row shows
that both pieces of malware create a new process.

3.2 Determination of malware actions

Execution messages include virtual operating system func-
tions that are started during execution. One important issue
that we must address is to differentiate between functions
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Table 1 Malware behaviour example

# M1 M2

Function call Code Function call Code

1 LoadLibraryA 1 LoadLibraryA 1

2 GetProcAddress 2 GetProcAddress 2

3 GetProcAddress 2 GetProcAddress 2

4 GetProcAddress 2 GetProcAddress 2

5 WSAStartup 10 RegQueryValueA 20

6 CopyFileA 30 CopyFileA 30

7 CreateProcessA 40 CreateProcessA 40

that are called by the operating system and the ones caused
by the piece of malware.

Let F be the set of executed functions which includes
the functions called by a piece of malware and those called
by the virtual operating system itself. A ⊂ F . A function
normally has attached a return address. Let D be the set of
memory addresses used during an execution D ⊂ N. We have
a relation (F,R, D) R ⊂ F × D that characterizes correctly
executed functions. The functions that do not participate in R
indicate anomalies, like for instance program abortion. The
execution messages also provide information how the func-
tions are loaded into memory during execution. A function is
contained somewhere in memory which induces the relation
(F, I, D) I ⊂ F × D. We assume that every function, that
has a return address and that was not started by another virtual
operating system function, is initiated by a piece malware as
it is defined in definition 1.

∀( f, m) ∈ R, f ∈ A ⇔ ∀ f ′ ∈ F , ( f ′, m) /∈ I (1)

3.3 Malware behaviour similarities

To illustrate the goal of this section, we will take an example
illustrated in Table 1. We note that both pieces of malware M1

and M2 are doing the same actions, with one notable excep-
tion – the fifth action. M1 is doing some networking and M2 is
manipulating the windows registry. In order to deal with such
an issue, two malware behaviours are compared with each
other and a similarity function σ is evaluated. This function
compares pair-wise all the action codes and attaches scores
for matching, respectively for non-matching sequences. Let
SM1 = a1a2a3 . . . am ∈ C∗, m ∈ N be the behaviour of the
piece of malware M1 and SM2 = b1b2b3 . . . bn ∈ C∗, n ∈ N

be the behaviour of the piece of malware M2. The two mal-
ware behaviours SM1 and SM2 are mapped on a matrix R like
it is shown in Fig. 2. The matrix R is conceptually an edit dis-
tance matrix [27]. In case that two action codes are equal, a
score of one is affected in a first step. In the other case, where
the two actions are different the score is set to zero (Eq. 2).

Fig. 2 Matrix-headings

Fig. 3 SM1 and SM2 scores

In a second step the best previous alignment is added. In case
no previous alignment exists, the score 1 is used for matches
and 0 for mismatches R1 j = M1 j , Ri1 = Mi1. In the other
case, Eq. 3 is used. The resulting table is shown in Fig. 3.

Mi j =
{

1 if ai = b j

0 otherwise
(2)

Ri j = Mi j + max

(
max

1≤k≤i−1
Rk, j−1, max

1≤k≤ j−1
Ri−1,k

)
(3)

The similarity function σ (Eq. 4) uses the highest score in
the matrix R divided by the mean sequence length.

σ(SM1 , SM2) = 2 · max Ri j

m + n
(4)

We note that if the two sequences SM1 and SM2 have no
common characters then σ = 0. If S1 and S2 are identical
then we obtain σ = 1. In Fig. 3, σ = 0.85 and this means
that the behaviour of the piece of malware M1 and that of the
piece of malware M2 are 85% similar.

The formula 5 shows how many function calls of two
malware behaviours are different. In the example 3 σ ′ = 1

7 .

One of the seven function calls is different.

σ ′(SM1 , SM2) = 1 − σ(SM1 , SM2) (5)

Equation 4 can be used for computing the pairwise simi-
larities of pieces of malware. In a set of malware behaviours
P , pairs are created and the average similarity of a given
piece of malware is computed with respect to all the other
pairs. A malware behaviour with a low average similarity to
all the other malware behaviours can be seen as unknown
behaviour, that was never seen before. On the other hand,
a malware behaviour with a high average similarity can be
seen as known malware behaviour.
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Let N be the number of malware behaviours N =
card(P). Analyzing Eq. 4 we notice that σ(SMi , SM j ) =
σ(SM j , SMi ). We do not have to compute every possible
couple of malware behaviours and the number of needed
couples is thus N (N−1)

2 .
An average similarity σ̄i of a malware behaviour compared

with the other ones is defined in Eq. 7. Equation 6 avoids to
compute the distance of a malware behaviour with itself.

δ(i, j) =
{

0 if i = j
1 otherwise

(6)

σ̄i =
∑N

j=1 σ j · δ(i, j)

N − 1
(7)

3.4 Distance between malware behaviours

The similarity approach presented in the previous section has
various drawbacks. Notably, the function call order influences
the similarity (Eqs. 4 and 5). This is not suitable in cases
like the following. Given two pieces of malware M1 and
M2, where M1 listens on a backdoor for commands and then
observes a user’s processes, while M2 does it the other way
round. In such a case the similarity function (Eq. 4) returns a
low similarity. An even more realistic case is that a piece of
malware does the two activities concurrently. In that case the
similarity function (Eq. 4) is influenced by the decisions of
the operating system scheduler. The main idea to improve the
model is to rely also on the frequencies of function calls. We
considered for this purpose the use of the Hellinger distance
[1].

As it was previously defined, P is the set of observed
malware behaviours from different pieces of malware. Let
Â be set of all observed function calls done by the analyzed
malware (defined in Eq. 8). Let Ac be the set of functions
executed by a malware behaviour c.

∀c ∈ P, Â =
⋃

Ac (8)

Using the set of called functions Â and a set of malware
behaviours, a contingency matrix H ′ (see Table 2) is built.
A row contains the frequencies of function calls for a given
malware behaviour. Let x be a malware behaviour, let a be a
function call done by a piece of malware. The notation |x |a is
used for designating the number of occurrences of a function
a in a malware behaviour x . The function call frequencies
contained the matrix H ′ are H ′

i j = |ci |a j . In a next step the
relative frequencies of function calls are computed and a new
matrix H ′′, that has the same structure than the matrix H ′, is
created like it is shown in Eq. 9, where NÂ = card(Â).

H ′′
i j = H ′

i j∑NÂ
k=1 Hik

(9)

Table 2 Contingency matrix of malware behaviours

a1 a2 a3 . . . a j . . . aNÂ

c1

c2

c3

.

.

.

ci

.

.

.

cN

∀ci ∈ P,∀a j ∈ Â

Fig. 4 Smooth contingency table

Since it is quite unusual that a piece of malware calls
every available virtual operating system function. For every
malware behaviour there is a set of functions that were never
called (defined in Eq. 10).

∀ci ∈ P, Vi = {a j ∈ Â | |ci |a j = 0} (10)

A frequent observation is that a piece of malware did
not call some functions. This fact does not mean that this
piece of malware never calls these functions. It might be that
this behaviour was not observed yet. In order to tackle this
problem the technique of statistical smoothing is applied.
A matrix H , that has the same structure as the matrix H ′′ is
created. The values are smoothed as given by Eq. 11.

Hi j =

⎧⎪⎨
⎪⎩

H ′′
i j if Vi = ø

ε
p if ∃x ∈ Vi p = card(Vi )

H ′′
i j (1 − ε) otherwise

(11)

An example of a smoothed contingency table is given in
Fig. 4. In that table the malware behaviour c1 starts the func-
tion GetProcAddress 10 times. This number is divided by 17
in order to create relative frequencies. Finally that number
is smoothed, i.e. multiplied by (1 − ε) because the function
GetProcAddress was called at least once during execution.
For the malware behaviour c1 the function CreateFile was
never started and for the malware behaviour c1 only one
function was never started, so p is 1 and ε is divided by 1
according the Eq. 11.

Using a smoothed contingency matrix H , the Hellinger
distance (defined in Eq. 12), can be applied for the two mal-
ware behaviours. The Hellinger distance shows how many
information is contained in a malware behaviour and this
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measure is invariant to the order of the execution of functions
or to the concurrency of the function calls.

h : P × P → R+
(cu, cv) 
→

√∑NÂ
j=1(

√
Hu j − √

Hv j )2
(12)

3.5 Phylogenetic tree for malware

The analysis of large datasets of malware can be improved by
tracking the evolutionary changes in the exposed behavioral
profiles.

A phylogenetic tree [13] visualizes the common history
of species. It illustrates how species evolved into various
families that have specific properties. Usually it is a binary
tree where leaves are species. In our case the leaves of the tree
are pieces of malware and the parents represent the similarity
σ ′ or distance between these behaviours. A sub tree describes
a malware family.

At first, every malware behaviour is added to the phy-
logenetic tree as a leaf. In the similarity matrix Z (shown
in Fig. 10), the largest similarity and respectively the smal-
lest distance are retrieved and the corresponding nodes are
looked up. Next the two nodes are grouped. This group is
injected in the matrix Z and the entries belonging to the chil-
dren of the new group are removed. Finally, the new group
is added to the phylogenetic tree. This process is continued
until the matrix Z is empty. The pseudo code is described in
Figs. 5, 6, 7, 8 and 9. The keyword global is used in case a
variable is shared between procedures. The procedures use
hash tables, which are sets of couples (key,values), as dis-
tance matrix representation. The notation x → y shows that
from the hash table x the value of the key y is accessed. The
function keys returns an array of the keys from a hash table.
The notation x[i] is used to access the i th element of a table
x . The notation x .length is used for accessing the number
of elements of a table x .

An example of a phylogenetic tree is shown in Figs. 11, 12,
and 13. The characters A,B,C and D are malware behaviours
represented by the pieces of malware that performed that
actions. The matrix in Fig. 11 is the initial similarity matrix
Z . The smallest value in that matrix is 1 which fulfills the
condition src �= dst . The nodes B and C are grouped and
form the sub-tree in Fig. 11. In Fig. 12, the group BC is put
in the matrix. The cells of the row or column of the group
BC correspond to the smallest value of the row B and C
with respect to the current cell. The cell (1,0) has the value 3
because 3 < 5. The merging process is continued (Figs. 12
and 13).

4 Experimental validation

The Table 3 shows general information about our examined
malware set. We have used quite recent malware. The pieces

Fig. 5 Find two nodes for mergeing

Fig. 6 Create group

of malware were captured by Nepenthes [18] – Nepenthes
emulates known exploitable services and catches thus mal-
ware. Furthermore, collected pieces of malware are scanned
by the following antiviruses (Fprot, BitDefender, Free-Av
and Clamav). About a quarter of the malware (22%) is not
detected. The average antivirus detection rate is 51%. Finally,
roughly 34% of the malware are worms.

In order to examine similarities between malware beha-
viours, all pieces of malware are analyzed and the sequences
associated to their behaviour are generated. An additional
check is done to verify that the virtual operating system
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Fig. 7 Remove rows

Fig. 8 Adjust columns

Fig. 9 Build the tree

is resistant to common anti-reverse engineering techniques
Unfortunately, static analysis was not possible on 18% of
the malware. We checked this by observing the exit code of
a disassembler objdump [20]. Furthermore, according to the

Fig. 10 Similarity matrix Z

Fig. 11 Groups B and C

Fig. 12 Groups A and D

Fig. 13 Groups AD and BC

Table 3 The malware data set

Number of malware 104

Observation period 2005–2007

Malware from 2005 10

Malware from 2006 91

Malware from 2007 3

Average file size 135 KB

Smallest file 8 KB

Biggest file 665 KB

Worms 34%

Not detected by antivirus 22%

Norman sandbox [19], 15% of the existing malware use anti-
emulation code. Anti-emulation code can be used to detect
or confuse debuggers and monitoring tools. Our results are
represented in Table 4. We have created some binaries that
contain anti-reverse engineering code and we have included
a behaviour that should be observed. Next we have used ana-
lysis tools and tried to find the defined behaviour. At first we
detected a debugger using the processor flags and the code
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Table 4 Anti-reverse engineering techniques used with various reverse
engineering tools

Technique Debugger Disassembler Monitor Virtual OS

anti-debugger × √ √ √
OP code

√ × √ √
generation

obfuscated
√ × √ √

assembler code

integrity × √ √ √
check

sleep
√ √ × ×

exceptions × × √ √
anti

√ √ × √
monitor

anti
√ √ √ ×

virtual OS

changes its behaviour in case a debugger is running. Next we
generated machine instructions during execution and execu-
ted them. Next we created obfuscated assembler code which
cannot be examined by objdump. We have also tested the code
integrity check. The sleep action is commonly used to escape
from sandboxes due to the fact that an execution cannot run
for an infinity of time. As an exception handling technique
we used a division by zero. We used the CreateFile func-
tion to communicate directly with the monitoring tools and
thus detected them. Furthermore we observed special envi-
ronment parameters and identified that we are running in a
virtual operating system. Finally we injected Linux system
calls in a windows binary in order to escape from the virtual
operating system and we noticed that the damage is restricted
inside the UML. Although, the success rates of a monitoring
tool and a virtual operating system are the same, a virtual
operating system provides more execution information than
monitoring tools.

Using the above mentioned sequences compute pairwise
distances among all pieces of malware. A top 10 list of the
most common malware behaviours was generated. Similarly,
a list of the top 10 most exotic/rare malware behaviours was
obtained. In order to get a finer classification we built a phy-
logenetic tree of malware behaviours.

For the sake of clarity, Table 5 lists an incomplete set of
malware behaviours that have a high similarity σ – in other
words these are completely similar. In the first row we see
that this malware was transformed to escape from signatures
and a new signature was the antivirus reply. We can also
observe that the piece of malware Sdbot1234944.1 and the
the piece of malware Backdoor-Server/agent.aew start the
same sequence of functions during execution.

Table 6 gives an overview about the average similarity
σ̄ . The left part of the table shows the malware behaviours

Table 5 Most similar observed malware

WORM/Rbot.193536.29 WORM/Rbot.177664.5

Worm/Sdbot.1234944.1 Backdoor-Server/Agent.aew

Worm/Sdbot.1234944.1 Unknown

Worm/IRCBot.AZ.393 Worm/Rbot.140288.8

Backdoor-Server/Agent.N.1 Worm/Win32.Doomber

Trojan.Gobot-4 Trojan.Gobot.R

Trojan/Dldr.Agent.CY.3 W32/Virus.A virus

Trojan.Gobot-4 Trojan.Downloader.Delf-35

Trojan.Mybot-5011 Trojan.IRCBot-121

Trojan.Mybot-5079 Trojan.EggDrop-5

Table 6 Similarity classification

Lowest average similarity Highest average similarity

Malware name σ̄ Malware name σ̄

Win32.Virtob.E 0.010 Worm/IRCBot.AZ.393 0.440

Win32.Virtob.C 0.021 Worm/Rbot.140288.8 0.440

Backdoor.EggDrop.V 0.039 Worm/Rbot.94208.37 0.439

Unknown malware 0.064 W32/Ircbot1.gen 0.439

Unknown malware 0.070 W32/Ircbot1.gen 0.438

RBot.D3186764 0.075 W32/Spybot.NOZ 0.437

SDBot.AMA 0.105 Generic.Sdbot.68B7CEC5 0.437

Backdoor.Oscarbot.A 0.126 RBot.668E20D5 0.436

Unknown virus 0.128 RBot.DD0FC8A7 0.436

RBot.227328 0.131 RBot.C64D5E67 0.436

with a low average similarity. The associated behaviours are
not similar to other behaviours of the analyzed malware set.
Some of those pieces of malware did only a few function
calls. The right side indicates the malware behaviours that
were often observed. These behaviours have a high similarity
σ . From antivirus software, we observed that 34% of the
malware are worms which explains this high similarity. A
worm often exploits a service and needs to inject shellcode
using the functions LoadLibrary and GetProcAddress.

The set of malware was analyzed and a similarity matrix
captures the relationships among the pieces of malware. We
have constructed a phylogenetic tree using this matrix. We
can not include in this paper the complete trees due to space
constraints, but the complete trees are on-line.2 We will illus-
trate though in the following some sub-trees.

In Fig. 14, we can highlight three malware families. One
family can be called the malware kernel family and the other
one the malware W32 API3 family. Malware of the first family
uses direct kernel functions in order to escape from API

2 http://nepenthes.csrrt.org:10080/malware_behaviour.
3 Application Programming Interface.
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Fig. 14 Phylogenetic tree root

Fig. 15 Phylogenetic tree – pinfi family

hooking, a technique for monitoring function calls, while the
members of the W32 API family use W32 API functions. The
third family clusters malware for which an initial condition
was not fulfilled during execution. The three families are not
very similar, σ ′ is close to 1, which can be explained since
each family uses a different set of system functions. Malware
labelled unknown was not detected by antiviruses.

In Fig. 15 we show a malware family called pinfi by the
Norman sandbox. This family is a sub-tree of the API family.
This piece of malware has various behaviours but is classi-
fied in a same family due to the fact that that malware starts
similar functions. The pinfi malware creates various files on
the hard disk, creates different registry keys, monitors which
functions are started by the user, does some IRC,4 observes
the user’s clipboard and checks some processor flags. The
latter operations are done in order to know whether it runs in
an debugger or on a real machine. We observe different simi-
larities σ ′ due to the fact that the pieces of malware behaves
differently in the virtual operating system.

We have built two trees: for one tree we used the the
Hellinger distance matrix, while the other one used a

4 Internet Relay Chat RFC 2810.

Table 7 Information about phylogenetic trees

Total leaves 104
Unknown leaves 38

Number of incoherence 5

similarity matrix. The names of the Norman sandbox were
chosen. These names are composed of three parts. The first
part indicates the platform on which the piece of malware is
running (in our case W32). The next part is a specific name
for the piece of malware. The last part identifies a variant of
the piece of malware. In the two trees we counted the leaves
where the first and the second part did not match. We ignored
the nodes where one leaf was not detected by an antivirus.
Results are presented in Table 7. Seven percent of the tested
pieces of malware mismatched with Norman’s names. These
pieces of malware were analyzed manually and we noticed
that some of them executed a similar function sequence but
with different parameters. We ignored these parameters in
our model (presented in Sect. 3) due to the fact that mul-
tiple parameters are execution specific. Another interesting
observation is that some of these pieces of malware behave
similarly at the beginning. This could be explained by a mal-
ware author that has copied parts from existing malware into
a newer offspring.

5 Related work

Most antivirus software frequently use signature matching
techniques for detecting malware, but as it was revealed in
[4,22], this approach can be easily detoured. The authors of
[4] propose a mean to undo obfuscated malware code in order
to improve the detection rate of antivirus scanners. Another
idea is presented in [2], where a method for detecting poly-
morphic malware based on sub graph isomorphism problem,
is introduced. Model checking based solution were also tried
out and a first report is given in [3]. The relevant previous
works on API/system call level based analysis of malware are
described in [8,14,17,22–24]. Some previous papers addres-
sed the accessing of the function calls from a malware, using
static binary analysis [15,22], while other authors conside-
red the emulation of malware [17,19,25]. The CWSandbox
[26] uses the technique of API hooking for monitoring the
activities of a piece of malware. The authors of [14] use a
hybrid technique, since static binary analysis can be easily
fooled [16] and on the other hand malware can be emula-
ted [17,25]. The authors of [7,5] argue that the emulation
technique has also its drawbacks, because no guarantees are
given on whether the initial conditions are fulfilled and if
the complete binary gets executed. A groundbreaking result
[6] shows that it is not possible to build a perfect control-
ler that always knows if a piece of malware terminate or
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not. This is also the reason why we had to use heuristics to
control the malware execution. Two major papers [9,12] have
addressed the construction of phylogenies for malware. The
first of them [9] addressed the computational complexity of
such a task and proposed greedy algorithms for this purpose.
The paper [12] addressed the tracking of malware evolution
based on opcode/instruction level permutations and reorde-
ring. Our work is complementary to these previous works,
since we leverage tree constructions approaches for data that
is directly related to the behavior of a malware.

6 Conclusion and future works

In this paper we addressed the automated classification of
malware based on behavioral analysis. We define a malware
behavior to be a sequence of executed functions. We intro-
duced a mean to compute similarities and distances between
malware behaviors based on sequence alignment respecti-
vely the Hellinger distance. We propose to detect unknown
(0 day) malware based on the low average similarity with
existing known one. This paper also introduces a phyloge-
netic tree based approach for malware behavior which can
track the evolution of malware features an implementations.
We validated our approach with real data coming from a
large malware capturing infrastructure. We plan to extend
our future research work with better heuristics, an impro-
ved sequence alignment procedure and a differentiated (per
called function) analysis.
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