
 This document is preliminary and is subject to change without prior notice.

Project EID - 1/16

Project EID
Subject Belgian Electronic Identity Card Middleware Programmers Guide
Version V1.4
Date 19/03/2003
From Zetes Johan Rommelaere
Nr of Pages 16

I Document Control

I.1 Issue/Review Cycle

Dit document wordt uitgegeven door Zetes, en bij fundamentele wijziging ter review voorgelegd aan
de betrokkenen.

I.2 Distribution List

Organisation Name
Zetes Johan Rommelaere
 Alex Driesen
 Bart Symons
 Patrick Andries
FedICT Bart Sijnave
RRN Daniel Pedoux
Steria Guy Kivits

I.3 Version Log

Version Date Prepared By Comments
1.00 13/12/2002 Zetes / P Andries Initiated the document
 Zetes/J Rommelaere Reviewed
 Zetes/B Symons Reviewed
1.10 14/1/2003 Zetes / P. Andries Updated the document
1.30 04/03/2003 Zetes/P.Andries Changed the documentation to the

latest state of the software
1.40 19/03/03 Zetes/P.Andries Added documentation for the

CryptExportKey function

 This document is preliminary and is subject to change without prior notice.

Project EID - 2/16

I.4 Changes since previous issues

I.4.1 Changes in

Documentation is provided for the CryptExportKey function. This function is available from version
1.30 of the CSP.

I.5 Changes Forecast

The addition of encryption capabilities will be added at a later date whenever the government
decides to allow the inclusion of key material allowing encryption/decryption.

I.5.1

II Purpose

The purpose of this document is to give any application programmer the necessary information to
develop applications in where the Belgian electronic identity card is used. This document is limited to
programmer’s information regarding the Belgian card middleware.

This document is preliminary and is subject to change without prior notice.

III Table of Contents

I Document Control ... 1

I.1 Issue/Review Cycle.. 1
I.2 Distribution List... 1
I.3 Version Log .. 1
I.4 Changes since previous issues.. 2

I.4.1 Changes in.. 2
I.5 Changes Forecast .. 2

I.5.1.. 2
II Purpose ... 2
III Table of Contents .. 2
IV Programmers Guide .. 4

IV.1 Introduction... 4
IV.2 Assumptions... 4
Interfaces .. 5
IV.3 The Crypto API interface.. 5

IV.3.1 CryptAcquireContext... 6
IV.3.2 CryptReleaseContext.. 6

 This document is preliminary and is subject to change without prior notice.

Project EID - 3/16

IV.3.3 CryptGenerateKey .. 6
IV.3.4 CryptDeriveKey... 7
IV.3.5 CryptDestroyKey... 7
IV.3.6 CryptSetKeyParam ... 7
IV.3.7 CryptGetKeyParam... 8
IV.3.8 CryptSetProvParam .. 8
IV.3.9 CryptGetProvParam.. 8
IV.3.10 CryptSetHashParam ... 9
IV.3.11 CryptGetHashParam ... 9
IV.3.12 CryptExportKey ... 9
IV.3.13 CryptImportKey ... 10
IV.3.14 CryptEncrypt.. 10
IV.3.15 CryptDecrypt ... 10
IV.3.16 CryptCreateHash... 11
IV.3.17 CryptHashData.. 11
IV.3.18 CryptHashSessionKey .. 11
IV.3.19 CryptSignHash .. 12
IV.3.20 CryptDestroyHash ... 12
IV.3.21 CryptVerifySignature ... 12
IV.3.22 CryptGenRandom ... 13
IV.3.23 CryptGetUserKey .. 13
IV.3.24 CryptDuplicateHash .. 13
IV.3.25 CryptDuplicateKey... 13

IV.4 The PKCS#11 interface ... 14
IV.4.1 API calls implemented .. 14
IV.4.2 Supported Signature mechanisms.. 15
IV.4.3 Slot and token information .. 15
IV.4.4 Behavior in case of a PIN pad reader... 15
IV.4.5 Behaviour with the non-repudiation key.. 16

 This document is preliminary and is subject to change without prior notice.

Project EID - 4/16

IV Programmers Guide

IV.1 Introduction

The Belgian identity card middleware is software that is placed between the application
implementing security features (digital signatures) and the device actually performing the
cryptographic operations (the smartcard).
The middleware itself consists out of two independent interface implementations (see figure below).
Although the implementations are independent, one makes use of the other. For the Microsoft®

standard applications (Office, Outlook…) a Cryptographic Service Provider (CSP) is created that
implements the cryptographic operations from the smartcard. An application will never call this
implementation directly but through a standard interface called Crypto API. The CSP implementation
makes use of the second implemented interface, PKCS#11. This interface is used by non-Microsoft
standard applications.
When a new application is created, it is up to the developer to decide which of the two interfaces will
be used to offer cryptographic functionality to the user.

This document outlines both programming interfaces and how an application builder can make use
of them.

IV.2 Assumptions

It is assumed that the user of this document has a working knowledge of cryptographic operations
like digital signatures, hashing operations, key material …

PKCS#11

CSP

Crypto
API

Microsoft applications

Custom
applications

Non-Microsoft
applications

 This document is preliminary and is subject to change without prior notice.

Project EID - 5/16

Interfaces

As described in the previous section, there are two interfaces implemented in the middleware
software: one interface that can be called directly (the PKCS#11 interface) and one interface that is
called indirectly (the CSP).
This document outlines the usage of the interface and when appropriate where the implementation
deviates from what is described in the standard documents. Although the parameters passed into
the API and possible return values may be extended in some cases, the interface description (i.e.
function prototypes) has not been modified in any way.

IV.3 The Crypto API interface

The Microsoft® Cryptographic API 2.0 (CryptoAPI) enables application developers to add
authentication, encoding, and encryption to their Win32®-based applications. Application developers
can use functions in the CryptoAPI without knowing anything about the underlying implementation,
in much the same way as they can use a graphics library without knowing anything about the
particular graphics hardware configuration.
The CSP part of the middleware establishes the link between the abstract CryptoAPI and the
underlying PKCS#11 interface. The developer will never call any of the functions of the CSP directly
but through the CryptoAPI. In the sections below a description will be given of the API calls that
CryptoAPI reverts to the CSP for further processing. This document does not provide any detailed
information on the operation of each API call. For this type of information please refer to the
Microsoft Developer Network.
The Belgian identity card only supports digital signature operations. All functions not related to this
cryptographic operation are not implemented. When at a later date the Belgian government would
decide to allow the user of the electronic identity card to add key material on the card that supports
encryption then the CSP will be extended to allow for this additional functionality. Furthermore the
Belgian identity card contains two key pairs that can be used for digital signatures (both
authentication and non-repudiation). Because of this issue some of the parameters passed to the
Crypto API functions have no meaning. For example in the call CryptGetUserKey a parameter called
dwKeySpec is passed. This parameter is used to define which type of key to get, an
AT_KEYEXCHANGE key or an AT_SIGNATURE key. However, in the case of the Belgium Identity
Card CSP this parameter does not suffice to determine which signature key to load. In this case the
container that contains the correct certificate must be passed to CryptAcquireContext a futher call to
CryptGetUserKey will then be completed successfully.
Although the CSP only supports digital signatures, it is still registered as a PROV_RSA_FULL type
of CSP. This is done in order to allow the usage of the CSP in standard Microsoft® applications.
Calling Crypto API functions that are not used in a digital signature context will result in a returned
error value indicating that the API function is not implemented.
The description in this document applies to version 1.20 of the CSP.

 This document is preliminary and is subject to change without prior notice.

Project EID - 6/16

IV.3.1 CryptAcquireContext

BOOL WINAPI CryptAcquireContext(HCRYPTPROV *phProv,

LPCTSTR pszContainer,
LPCTSTR pszProvider,
DWORD dwProvType,
DWORD dwFlags);

The parameter pszContainer contains the name of the key container that contains a specific key on
the identity card. The names of the containers on the identity card can be obtained through a call to
CryptGetProvParam.

The parameter dwFlags can be set to the following values (according MSDN):
 0 (equivalent to CRYPT_SCKEYSET)

CRYPT_VERIFYCONTEXT
CRYPT_NEWKEYSET
CRYPT_MACHINE_KEYSET
CRYPT_DELETEKEYSET

As the key material of the Belgian identity card are stored on a smartcard and the user has no
permissions to create new key sets on the card the parameter values CRYPT_NEWKEYSET,
CRYPT_MACHINE_KEYSET and CRYPT_DELETEKEYSET are not supported. Using these values
will generate the error NTE_BAD_FLAGS.
An extra value for this parameter is defined, CRYPT_SCKEYSET. With this value the developer
defines that a context for the key as defined in the pszContainer parameter is acquired.
For hashing operations only, a base CSP is used. If for some reason loading the base CSP would
fail, then following error code will be set through SetLastError():

ERR_CANNOT_LOAD_BASE_CSP (0x1000)

IV.3.2 CryptReleaseContext

BOOL WINAPI CryptReleaseContext(HCRYPTPROV hProv,

DWORD dwFlags);

This API call is implemented as defined by MSDN.

IV.3.3 CryptGenerateKey

BOOL WINAPI CryptGenKey(HCRYPTPROV hProv,

ALG_ID Algid,

DWORD dwFlags,

HCRYPTKEY *phKey);

 This document is preliminary and is subject to change without prior notice.

Project EID - 7/16

Since the key material on the Belgian identity card is pre-installed by the government and the user
does not have the permissions to create additional key pairs, this API call is not implemented.
Calling this function anyway, will generate the error E_NOTIMPL set through SetLastError ().

IV.3.4 CryptDeriveKey

BOOL WINAPI CryptDeriveKey(HCRYPTPROV hProv,

ALG_ID Algid,

HCRYPTHASH hBaseData,

DWORD dwFlags,

HCRYPTKEY *phKey);

Since the key material on the Belgian identity card is pre-installed by the government and the user
does not have the permissions to create additional key pairs, this API call is not implemented.
Calling this function anyway, will generate the error E_NOTIMPL set through SetLastError ().

IV.3.5 CryptDestroyKey

BOOL WINAPI CryptDestroyKey(HCRYPTKEY hKey);

Since the key material on the Belgian identity card is pre-installed by the government and the user
does not have the permissions to create additional key pairs, this API call is not implemented.
Calling this function anyway, will generate the error E_NOTIMPL set through SetLastError ().

IV.3.6 CryptSetKeyParam

BOOL WINAPI CryptSetKeyParam(HCRYPTKEY hKey,

DWORD dwParam,

BYTE *pbData,

DWORD dwFlags);

Since the key material on the Belgian identity card is pre-installed by the government and the user
does not have the permissions to create additional key pairs, this API call is not implemented.
Calling this function anyway, will generate the error E_NOTIMPL set through SetLastError ().

 This document is preliminary and is subject to change without prior notice.

Project EID - 8/16

IV.3.7 CryptGetKeyParam

BOOL WINAPI CryptGetKeyParam(HCRYPTKEY hKey,

DWORD dwParam,

BYTE *pbData,

DWORD *pcbData,

DWORD dwFlags);

Since the key material on the Belgian identity card is pre-installed by the government and the user
does not have the permissions to create additional key pairs, this API call is not implemented.
Calling this function anyway, will generate the error E_NOTIMPL set through SetLastError ().

IV.3.8 CryptSetProvParam

BOOL WINAPI CryptSetProvParam(HCRYPTPROV hProv,

DWORD dwParam,

BYTE *pbData,

DWORD dwFlags);

According to the MSDN documentation the dwParam parameter can be set to the following values:

PP_CLIENT_HWND
PP_KEYSET_SEC_DESCR

The latter parameter does not make any sense since the key material in case of the Belgian identity
card is stored in the smartcard instead of in the registry. Therefore this parameter will be ignored.

IV.3.9 CryptGetProvParam

BOOL WINAPI CryptGetProvParam(HCRYPTPROV hProv,

DWORD dwParam,

BYTE *pbData,

DWORD *pcbData,

DWORD dwFlags);

This API call is implemented as described in the MSDN documentation with the exception of the
PP_KEYSET_SEC_DESCR parameter which is ignored.
For the PP_IMPTYPE parameter the value CRYPT_IMPL_MIXED is returned because the signing
operation is handled by hardware (i.e. the smartcard) while the hashing operation is handled by the
base cryptographic provider.

 This document is preliminary and is subject to change without prior notice.

Project EID - 9/16

IV.3.10 CryptSetHashParam

BOOL WINAPI CryptSetHashParam(HCRYPTHASH hHash,

DWORD dwParam,

BYTE *pbData,

DWORD dwFlags);

This API call is implemented as described in the MSDN documentation.
The parameter dwParam = HP_HASHVAL is implemented but should be used with caution. This
parameter was defined to give applications the ability to sign hash values, without having access to
the base data. Because the application (much less the user) can have no idea what is being signed,
this operation is intrinsically risky.

IV.3.11 CryptGetHashParam

BOOL WINAPI CryptGetHashParam(HCRYPTHASH hHash,

DWORD dwParam,

BYTE *pbData,

DWORD *pcbData,

DWORD dwFlags);

This API call is implemented as described in the MSDN documentation.

IV.3.12 CryptExportKey

BOOL WINAPI CryptExportKey(HCRYPTKEY hKey,

HCRYPTKEY hExpKey,

DWORD dwBlobType,

DWORD dwFlags,

BYTE *pbData,

DWORD *pcbDataLen);

This function can be used to export the public key associated with the hKey parameter. A handle to
a public key can be obtained through a call to CryptGetUserKey. Since the private keys are stored
on a smartcard and exporting of private keys is not permitted only PUBLICKEYBLOB can be defined
as dwBlobType. Because only public keys can be exported, the parameter hExpKey is not used and
should therefore be set to NULL. The public key is returned pbData parameter. To obtain the length
of the data to will be returned the parameter pbData can be set to NULL. The length of the data that
will be returned is then placed in pcbDataLen. If the buffer passed to this function is not large
enough, the error ERROR_MORE_DATA will be returned and the correct buffer length is put in the
pcbDataLen parameter.

 This document is preliminary and is subject to change without prior notice.

Project EID - 10/16

IV.3.13 CryptImportKey

BOOL WINAPI CryptImportKey(HCRYPTPROV hProv,

BYTE *pbData,

DWORD dwDataLen,

HCRYPTKEY hPubKey,

DWORD dwFlags,

HCRYPTKEY *phKey);

Since the key material on the Belgian identity card is pre-installed by the government and the user
does not have the permissions to create additional key pairs, this API call is not implemented.
Calling this function anyway, will generate the error E_NOTIMPL set through SetLastError ().

IV.3.14 CryptEncrypt

BOOL WINAPI CryptEncrypt(HCRYPTKEY hKey,

HCRYPTHASH hHash,

BOOL Final,

DWORD dwFlags,

BYTE *pbData,

DWORD *pcbData,

DWORD cbBuffer);

Currently the key usages as they are defined by the Belgian government do not support encryption.
Therefore this API call is not implemented. Calling this function anyway, will generate the error
E_NOTIMPL set through SetLastError ().
If at some future date key material supporting encryption can be added to the electronic ID card then
this function will be implemented as well.

IV.3.15 CryptDecrypt

BOOL WINAPI CryptDecrypt(HCRYPTKEY hKey,

HCRYPTHASH hHash,

BOOL Final,

DWORD dwFlags,

BYTE *pbData,

DWORD *pcbData);

Currently the key usages as they are defined by the Belgian government do not support encryption.
Therefore this API call is not implemented. Calling this function anyway, will generate the error
E_NOTIMPL set through SetLastError ().

 This document is preliminary and is subject to change without prior notice.

Project EID - 11/16

If at some future date key material supporting encryption can be added to the electronic ID card then
this function will be implemented as well.

IV.3.16 CryptCreateHash

BOOL WINAPI CryptCreateHash(HCRYPTPROV hProv,

ALG_ID Algid,

HCRYPTKEY hKey,

DWORD dwFlags,

HCRYPTHASH *phHash);

This API call is implemented as it is described in the MSDN documentation. One additional error can
be returned through SetLastError ():

ERR_INVALID_PROVIDER_HANDLE (0x1001)
This error indicates that the handle as it is specified by hProv could not be found (i.e. it was not
created using CryptAcquireContext ())
The actual processing of this call is delegated to a base CSP.

IV.3.17 CryptHashData

BOOL WINAPI CryptHashData(HCRYPTHASH hHash,

BYTE *pbData,

DWORD cbData,

DWORD dwFlags);

This API call is implemented as it is described in the MSDN documentation. In the parameter
dwFlags one value (apart from 0) can be specified: CRYPT_USERDATA. Depending on which base
CSP is chosen it may or may not be implemented. For instance the Microsoft Base CSP does not
implement this parameter.
The actual processing of this call is delegated to a base CSP.

IV.3.18 CryptHashSessionKey

BOOL WINAPI CryptHashSessionKey(HCRYPTHASH hHash,

HCRYPTKEY hKey,

DWORD dwFlags);

Since some of the underlying calls necessary to use this function are currently not implemented by
this CSP also this call is not available. Calling this function anyway, will generate the error
E_NOTIMPL set through SetLastError ().

 This document is preliminary and is subject to change without prior notice.

Project EID - 12/16

IV.3.19 CryptSignHash

BOOL WINAPI CryptSignHash(HCRYPTHASH hHash,

DWORD dwKeySpec,

LPCTSTR sDescription,

DWORD dwFlags,

BYTE *pbSignature,

DWORD *pdwSigLen);

This API call is implemented as it is defined in the MSDN documentation. When this function is
called, an attempt is made to connect and log on to the Belgian identity card (smartcard). If any of
these operations fail, following error can be generated through SetLastError ():

ERR_CANNOT_LOGON_TO_TOKEN (0x1004)
In order to sign the given hash data, some information (e.g. key length) needs to be read from the
smartcard. If an error occurs during this operation, following error will be generated through
SetLastError ():
ERR_CANNOT_GET_TOKEN_SLOT_INFO (0x1003)
The signing mechanism used to produce digital signatures is CKM_RSA_PKCS. Please refer to the
PKCS#11 documentation for more detailed information on this mechanism.
Currently following hashing algorithms can be used to sign data : MD2, MD4, MD5, SHA-1 and
SSL3 SHAMD5. Although the MDx hashing algorithms are still available for backward compatibility it
is suggested that new applications use SHA-1.

IV.3.20 CryptDestroyHash

BOOL WINAPI CryptDestroyHash(HCRYPTHASH hHash);

This API call is implemented as it is defined in the MSDN documentation.

IV.3.21 CryptVerifySignature

BOOL WINAPI CryptVerifySignature(HCRYPTHASH hHash,

BYTE *pbSignature,

DWORD dwSigLen,

HCRYPTKEY hPubKey,

LPCTSTR sDescription,

DWORD dwFlags);

This function is implemented for convenience reasons. This call is delegated to the base CSP.

 This document is preliminary and is subject to change without prior notice.

Project EID - 13/16

IV.3.22 CryptGenRandom

BOOL WINAPI CryptGenRandom(HCRYPTPROV hProv,

DWORD dwLen,

BYTE *pbBuffer);

This API call is implemented as it is defined in the MSDN documentation. The data entered through
pbBuffer will be used as seed for the random generation.

IV.3.23 CryptGetUserKey

BOOL CryptGetUserKey(HCRYPTPROV hProv,

DWORD dwKeySpec,

HCRYPTKEY *phUserKey);

This call returns a handle to the public key of the key container that was defined through
CryptAcquireContext. Specifying AT_SIGNATURE for the parameter dwKeySpec is not enough
because with that information the CSP can still not determine which signature key to return.
Therefore the key to load must first be specified through CryptAcquireContext.

IV.3.24 CryptDuplicateHash

BOOL WINAPI CryptDuplicateHash(HCRYPTHASH hHash,

DWORD *pdwReserved,

DWORD dwFlags,

HCRYPTHASH phHash);

This API call is implemented as it is defined in the MSDN documentation.

IV.3.25 CryptDuplicateKey

BOOL WINAPI CryptDuplicateKey(HCRYPTKEY hKey,

DWORD *pdwReserved,

DWORD dwFlags,

HCRYPTKEY* phKey);

Since the key material is stored on a smartcard and cannot be retrieved this function does not make
sense. Therefore, this API call is not implemented. Calling this function anyway, will generate the
error E_NOTIMPL set through SetLastError ().

 This document is preliminary and is subject to change without prior notice.

Project EID - 14/16

IV.4 The PKCS#11 interface

The PKCS#11 (v2.11) interface is used by non-Microsoft applications like for instance Netscape.
Also custom application can make use of this interface instead of the CryptoAPI interface. The
PKCS#11 interface is sometimes also called Cryptoki.
A detailed description of this interface can be found on the website of RSA Laboratories
(http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11/).

IV.4.1 API calls implemented

IV.4.1.1 General Purpose functions

C_Initialize,
C_Finalize
C_GetInfo
C_GetFunctionList

IV.4.1.2 Slot and token management functions
C_GetSlotList
C_GetSlotInfo
C_GetTokenInfo
C_GetMechanismList
C_GetMechanismInfo
C_WaitForSlotEvent
C_SetPin

IV.4.1.3 Session management functions

C_OpenSession
C_CloseSession
C_CloseAllSessions
C_GetSessionInfo
C_Login
C_Logout

IV.4.1.4 Object Management functions

C_FindObjectsInit
C_FindObjects
C_FindObjectsFinal
C_GetAttributeValue

IV.4.1.5 Signing Functions

C_SignInit

 This document is preliminary and is subject to change without prior notice.

Project EID - 15/16

C_Sign
C_SignUpdate
C_SignFinal

IV.4.1.6 Digest Functions
C_DigestInit
C_Digest
C_DigestUpdate
C_DigestFinal

IV.4.1.7 Random Generation Functions (to be confirmed soon)
C_SeedRandom
C_GenerateRandom

IV.4.2 Supported Signature mechanisms

For signatures:
- CKM_RSA_X_509

- CKM_RSA_PKCS: both ASN.1-wrapped and pure hashes (MD5, SHA1, SHA1+MD5, RIPEMD160,
in the case 20 bytes are given, a SHA-1 hash is assumed)

- CKM_RIPEMD160_RSA_PKCS, CKM_SHA1_RSA_PKCS, CKM_MD5_RSA_PKCS

- When supported by the electronic ID card following signature mechanisms will also b supported by
the middleware: CKM_RSA_PKCS_PSS, CKM_SHA1_RSA_PKCS_PSS

For digests:
CKM_SHA_1, CKM_RIPEMD160, CKM_MD5

IV.4.3 Slot and token information

There will be a virtual slot/token for each PIN (so in the case of the Belgian electronic identity card
this means 1 slot/token).
The public keys, private keys and certificates that belong together will have the
same CKA_ID object attribute.

IV.4.4 Behavior in case of a PIN pad reader

In this case, CK_TOKEN_INFO will have the CKF_PROTECTED_AUTHENTICATION_PATH flag
set and the application should give a NULL PIN with C_Login. When a C_Login is called, the
PKCS#11 library will present the user a dialog asking to enter the PIN on the PIN pad for placing a
signature or identification.

 This document is preliminary and is subject to change without prior notice.

Project EID - 16/16

IV.4.5 Behaviour with the non-repudiation key

If a signature is requested with this key, the PKCS#11 library itself will show a GUI to either ask the
user to enter her PIN, or to ask the user to supply her PIN at the PIN pad reader.

	Document Control
	Issue/Review Cycle
	Distribution List
	Version Log
	Changes since previous issues
	Changes in

	Changes Forecast

	Purpose
	Table of Contents
	Programmers Guide
	Introduction
	Assumptions
	Interfaces
	The Crypto API interface
	CryptAcquireContext
	CryptReleaseContext
	CryptGenerateKey
	CryptDeriveKey
	CryptDestroyKey
	CryptSetKeyParam
	CryptGetKeyParam
	CryptSetProvParam
	CryptGetProvParam
	CryptSetHashParam
	CryptGetHashParam
	CryptExportKey
	CryptImportKey
	CryptEncrypt
	CryptDecrypt
	CryptCreateHash
	CryptHashData
	CryptHashSessionKey
	CryptSignHash
	CryptDestroyHash
	CryptVerifySignature
	CryptGenRandom
	CryptGetUserKey
	CryptDuplicateHash
	CryptDuplicateKey

	The PKCS#11 interface
	API calls implemented
	General Purpose functions
	Slot and token management functions
	Session management functions
	Object Management functions
	Signing Functions
	Digest Functions
	Random Generation Functions (to be confirmed soon)

	Supported Signature mechanisms
	Slot and token information
	Behavior in case of a PIN pad reader
	Behaviour with the non-repudiation key

