PostgreSQL

Introduction

and
Concepts

PostgreSQL

Introduction

and
Concepts

Bruce Momjian

A
A\ A4

ADDISON-WESLEY

Boston e San Francisco e New York e Toronto e Montreal e London ¢ Munich
Paris e Madrid e Cape Town e SidneyeTokyo eSingapore e Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and we were aware of a trademark claim, the designations have
been printed in initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information,
please contact:

Pearson Education Corporate Sales Division
One Lake Street

Upper Saddle River, NJ 07458

(800) 382-3419
corpsales@pearsontechgroup.com

Visit AW on the Web: www.awl.com/cseng/

Copyright © 2001 by Addison-Wesley.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
consent of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Library of Congress Cataloging-in-Publication Data

Momyjian, Bruce.

PostgreSQL : introduction and concepts / Momjian,

Bruce.

p. cm.

ISBN 0-201-70331-9

1. Database management. 2. PostgreSQL. L. Title.

QA76.9.D3 M647 2000

005.75'85-dc21 00-045367
CIP

This book was prepared with LyX and ETgX and reproduced by Addison-Wesley from files supplied by the author.

Text printed on recycled and acid-free paper
123456 789-MA-0403020100

First Printing, November 2000

To my wonderful wife, Christine,

and my fine boys, Matthew, Luke, and Peter

Contents

List of Figures XV
List of Tables xxi
Foreword XXiii
Preface XXV
Acknowledgments XXVil
1 History of POSTGRESQL 1
1.1 Introduction o i i i i i e e e e e e e e 1
1.2 University of California at Berkeley 1
1.3 Development Leaves Berkeley 2
1.4 POSTGRESQL Global Development Team 2
1.5 OpenSource Software v i i v v i i e e e e e e e 4
1.6 Summary e e e e e e e e e e e e e e 4
2 Issuing Database Commands 5
2.1 Startinga Database Session e e e e e e 5
2.2 Controlling a SESSION v v v v v i e e e e e e e e e e e e 6
23 GettingHelp. e 9
24 EXItINgaSesSION . . . v vt it i e e e e e e e e e e e e e e e e e e 9
25 SUMMAryo e e e e e e e e e e e e e e e e e 9
3 Basic SQL Commands 11
3.1 Relational Databases i v v i i i ittt e e e e e 11
3.2 Creating Tables i i e e e e e 13
3.3 Adding Data with INSERT ittt e i e et e 14
3.4 Viewing Data with SELECT i i it it i e e e e et 15
3.5 Selecting Specific Rows with WHERE 17

vil

Vil CONTENTS
3.6 Removing Datawith DELETE 19
3.7 Modifying Datawith UPDATE, 19
3.8 Sorting Datawith ORDERBY 19
3.9 DestroyingTables e e e 19
310 SUMMATY . . o v vt e 22

4 Customizing Queries 23
41 DataTypes. o i e e e e 23
4.2 QuotesInside TeXt . . . v v v v v i e e e e e e e e e e e e e e 25
43 UsingNULL Values it ittt it i e ettt 25
44 Controlling DEFAULT Values ittt iie e 26
45 ColumnLabels i e e e e e e 26
46 ComMmENtS . . v v v v it e 30
47 AND/ORUSAZE . . . v v v v e e e e e e e e e e e e e e e e e 30
48 RangeofValues e 33
49 LIKE CompariSON . . . v v v v v e e i e e e e e e e e e e e e e e e e e e 35
4.10 Regular EXpressions i it i it e e e e e e e e 36
411 CASECIAUSE . & v v v v v e 37
412 DistinCct ROWS . . . v v v e e e e e e e e e e e e 40
4.13 Functions and Operators o v v i it it e e e e e e e e 43
414 SET,SHOW,andRESET o v v ittt e it e s it e e e e 43
415 SUMMATY . . o v v e o e 47

5 SQL Aggregates 49
51 Aggregates. e e e e e e e e e e e e e e e 49
52 UsingGROUPBY e e 51
53 Using HAVING o it e e e e e e e e e e e e 51
54 Query TIPS . . . v v e e e e e e e e e e e e 51
5.5 SUumMmary e e e e e e e e e e e e e e e e 55

6 Joining Tables 57
6.1 Tableand Column References. 57
6.2 JoinedTables e e e e e e 57
6.3 Creating Joined Tables i 60
6.4 PerformingJoins. e e 62
6.5 Three-and Four-Table Joins 65
6.6 Additional Join Possibilities e e 68
6.7 ChoosingaJoinKey 70
6.8 One-to-ManyJoins ittt 71
6.9 UnjoinedTables i i i e e e e e e 73
6.10 Table Aliasesand Self-joins 73

CONTENTS
6.11 NON-EQUIJOINS « & v v v v v v e
6.12 Ordering Multiple Parts
6.13 Primaryand ForeignKeys. oo oo
6.14 SUMMATY . . ¢ v v v e

7 Numbering Rows
7.1 Object Identification Numbers (OIDS) v v v v v v v v it e et e e e e n
7.2 Object Identification Number Limitations
7.3 SEQUENCES . « v v v v e i e
7.4 Creating SEQUENCES .« « v v v v v v e et e e e e e e e e e e e e e e e e
7.5 Using Sequencesto Number Rows
7.6 Serial ColumnType e
7.7 Manually NumberingRows
7.8 SUMMATY e e e e e e e e e e e e e e e e

8 Combining SELECTSs

8.1 UNION, EXCEPT, and INTERSECT Clauses v v v v i v i v i e e e
8.2 Subqueries e e e e e e e e e
8.3 Outer Joins . . . v v i i i e e e e e e e e e e e e e e
8.4 Subqueries in Non-SELECT QUETIIES + . + v v v v v v v v e e e e e e e e e e e e
85 UPDATEwWith FROM i e i e et
8.6 Imserting Data Using SELECT o i v v v v v i ittt e e e
8.7 Creating Tables USINg SELECT . . « « v v v v v v v v e e et e e e e e e e e e
8.8 Summary e e e e e e e e e e e
9 Data Types
9.1 PurposeofDataTypes i i i i i e e e e e
9.2 InmstalledTypes i i i i i e e e e e e e e
9.3 Type Conversion Using CAST o v i i v v v ittt e e e e e e e
9.4 SupportFunctions e e e e e e e
9.5 Support Operators v v i i e e e e e e e e e e e e e e e e e
9.6 Support Variables e e e e e e
9.7 AITaYS . . . o e e e e e e e e e e e e e e e e e e
9.8 Large ObjectsS (BLOBS) « v v v v v v o e
9.9 SUMMATY . . . o v it e e e e e e e e e e e e e e e e e e
10 Transactions and Locks
10.1 Transactions . . v v v v v v v e
10.2 Multistatement Transactions o v i i e e
10.3 Visibility of Committed Transactions,

10.4 Read Committed and Serializable Isolation Levels

X

74
75
77
77

79
79
81
81
82
82
85
85
86

87
87
91
101
101
101
103
103
105

107
107
108
111
111
111
115
116
116
119

X CONTENTS

10.5 Locking i i i e e e e e e e e e e e 128
10.6 Deadlocks v v v i e e e e e e e e e e e e e e 128
10.7 Summary e e e e e e e e e e e e e e e e e 130
11 Performance 131
11.1 Indexes . . v v v v i e 131
11.2 Uniquelndexes i i i i i i i e e e e e e e e e 132
11.3 CLUSTER . . o o o e 133
114 VACUUM . . v v o e e e e e e e e e e e e e e e e e e e s e e e 133
11.5 VACUUM ANALYZE i i e 134
11.6 EXPLAIN o e e e e e e e e e e e e e e 134
117 Summary o e e e e e e e e e e e e e e e e e e 136
12 Controlling Results 137
12.1 LIMIT . . o ot e 137
12.2 CULSOIS v v v o e 137
123 Summary e e e e e e e e e e e e e e e 138
13 Table Management 141
13.1 Temporary Tables i i i e e e e e e e e e e 141
13.2 ALTERTABLE i it i e 143
13.3 GRANTand REVOKE i i it it e e e e e e e e e e 143
13.4 Inheritance i i i e e e e e e e e e 145
13,5 VIeWS . v ot e e e e e e e e e e e e e e e e 148
13.6 Rules o i i e e e e e e e e e e e e e e e 149
13.7 LISTENand NOTIFY ot v i e 154
13.8 Summary e e e e e e e e e e e e 154
14 Constraints 155
141 NOTNULL . . . ot i e 155
14.2 UNIQUE . . v ot e 155
14.3 PRIMARY KEY o s e e e e e e e 158
14.4 Foreign Key/REFERENCES . & & v v v v v v v e e e e e v e e e e e e e e e e e 158
145 CHECK & v v v e i e e e e e e e e e e e e e e e e e e e s e e e e 166
146 SUMMATY . . v v o v e 166
15 Importing and Exporting Data 169
15.1 Using COPY i i i i et e e e e e e e e e e e e e e e e e e e 169
15.2 CopYFile Format @ i i i i i e e e e e e 169
15.3 DELIMITERS . . v v v v v e 171

15.4 CopyWithout Files o i i i e 173

CONTENTS

15.5
15.6
15.7

Backslashesand NULL Values o v i v v i i i e e e e e e e e
COPY TIPS & v v o o e e e e e e e e e s e e e e e e e e e
SUMMAry e e e e e e e e e e e e e e e e e e e

16 Database Query Tools

16.1
16.2
16.3

PSSl . e
0 = o of =13
SUMMATY e e e e e e e e e e e e e e e e e e e

17 Programming Interfaces

17.1
17.2
17.3
174
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12
17.13
17.14
17.15

C Language Interface (LIBPQ)« v v v i i i e e e e e e e e e e e e e e a
Pgeasy (LIBPGEASY) . . v v v v i e
Embedded C(ECPG) . .« v v v v v e
CH+ (LIBPQH4) . v v v e e e e e e e e e e e e e e e e e e
Compiling Programs i i e e e e e
Assignment to Program Variables o
ODBC . & o o o e e e e e e e e
Java (JDBC) . . . o i e e e e e e e e e e e e e e e e
Scripting Languages e e e
Perl . . o e e e e
TCL/TK (PGTCLSH/PGTKSH) '+ v v v v v v e
Python e
PHP . . . e e e e e e e e e
Installing Scripting Languages
SUMMAary e e e e e e e e e e e e e e e

18 Functions and Triggers

18.1
18.2
18.3
18.4
18.5

Functions @ i i i i e e e e e e e e e e e e
SQLEFUNCLIONS v v o e e e e e e e e e e e e
PL/PGSQL Functions v v v v i i e e e e e e e e e e e e e e e e e
Triggers o i e e e e e e e e e e e e
SUMMArY e e e e e e e e e e e e e e e e e

19 Extending POSTGRESQL Using C

19.1
19.2
19.3
194
19.5

Writethe CCode v v i i e e e e e e
Compilethe CCode o i i i e e e e e e e e e e
Register the New Functions
Create Operators, Types, and Aggregates o v v v v v v v ..
SUMMArY e e e e e e e e e e e e e e e e e

X1

173
175
175

177
177
184
184

187
189
191
191
191
191
195
196
196
196
198
199
199
200
200
201

203
203
204
208
210
216

xil CONTENTS
20 Administration 223
20.1 Files o i e e e e e e e e e 223
20.2 Creating Users i i i i e e e e e e e e e e 223
20.3 Creating Databases i i e e e 225
204 Access Configuration oo ittt e e e e e e e e e 225
20.5 BackupandRestore e e e 227
20.6 Server Start-upand Shutdown, 228
20.7 MONItOrING + & v v v v e 229
20.8 Performance i i e e e e e e e e e e e e e e e e e e 230
209 SystemTables e e e e e e e e 231
20.10 Internationalization v v v v v i e e e e e e e e e e e e e e e 232
20.11 Upgrading o v e e i e 232
20.12 SUMMATY . . v v ot o i e 232
A Additional Resources 233
Al Mailing List Support o o e e e e e e e e e e 233
A.2 Supplied Documentation i e e e 233
A3 Commercial SUPPOrt o o e e e e e e e e e e e 233
A4 Modifying the Source Code i i i i i e e e e e 233
A5 Frequently Asked Questions (FAQS) . .« « « v v v v v i v e e e e e e e e 234
B Installation 255
C PostgreSQL Nonstandard Features by Chapter 257
D Reference Manual 259
D.1 ABORT . . e e e e e e e e e e e 259
D.2 ALTERGROUP i e e e e e e e e e e e e e e e e 260
D.3 ALTERTABLE e e s e e e e e e e e e e e e 261
D4 ALTERUSER e e e e e e e e e e e e e e e e 264
D.5 BEGIN o e e e e e e e e e e e 265
D6 CLOSE. . . . e e e e e e e e 267
D.7 CLUSTER oo e e e e e e e e e e e e e e e e e e 268
D.8 COMMENT e e e e e e e e e e e 270
D.9 COMMIT . . . e e e e e e e e e e e e 271
D10 COPY . . e e e e e e e e e e 272
D.11 CREATE AGGREGATE e e e e e e e e e 276
D.12 CREATE CONSTRAINT TRIGGER 278
D.13 CREATE DATABASE e e e e e e e e e e e e e 279
D.14 CREATE FUNCTION e e e e e e e e e e e e e 281
D.15 CREATEGROUP e e e e e e e e e e e e e 285

CONTENTS Xiil

D.16 CREATEINDEX e e e e e e et e e e 286
D.17 CREATE LANGUAGE e e e e e e e 289
D.18 CREATE OPERATOR e e e e e e e e e 292
D.19 CREATERULE e e e e e e e e e e 296
D.20 CREATE SEQUENCE e et e et e e e e 300
D.21 CREATETABLE e e e e e e e e e 302
D.22 CREATE TABLE AS e e e e e e e e e e e 319
D.23 CREATETRIGGER. e e e e e e e e 320
D.24 CREATETYPE e e e e e e e e e e 322
D.25 CREATEUSER e e e e e e e e e e e e e e 325
D.26 CREATE VIEW o i e e s e e e e e e e e e e e e e 327
D.27 createdb e e e e e e e e e e e e 329
D.28 createlang e e e e e e e e e e e 331
D.29 createuser e e e e e e e e e e e e e e e e e 332
D.30 DECLARE o e e e e e e e e e e e 333
D31 DELETE. e e e e e e e e e e e e e 336
D.32 DROPAGGREGATE e e e e e e e e e e e 337
D.33 DROPDATABASE e e e e e 338
D.34 DROPFUNCTION e e e e e e e e e e e e 339
D.35 DROPGROUP e e e e e e e e e e e 340
D.36 DROPINDEX e e e e e e e e e e e e e 341
D.37 DROPLANGUAGE e e e e e e e e e e e 342
D.38 DROP OPERATOR e e e e e e e e e e 343
D.39 DROPRULE e e e e e e e e e e e 345
D.40 DROPSEQUENCE e e e e e e e et e 346
D.41 DROPTABLE e e e e e e e 347
D.42 DROPTRIGGER e e e e e e e e 348
D.43 DROPTYPE o e e e e e 349
D.44 DROPUSER e e e e e e e 350
D.45 DROPVIEW e e e e e e e e e 351
D.46 dropdb e e e e e e e e e e e e e 352
D.47 droplang e e e e e e e e e e e e e e e e e e 353
D48 dropuser i . i e 355
D49 ecpg . . o . e e e e e e e e e e e e e e e e 356
D50 END . . . e e e e e e e e e e e e e 360
D.51 EXPLAIN . . . ot e e e e e e e e e e e e e e e e 360
D.52 FETCH . . . o e e e e e e e e s e e e e e e e e e 362
D.53 GRANT . . o e e e e e e e e e e 365
D54 initdb e e e e e e e e e e e e e e 368

D55 Initlocation . . . v v v o e 369

X1V

D.56 INSERT
D.57 ipcclean
D.58 LISTEN
D.59 LOAD
D.60 LOCK
D.61 MOVE
D.62 NOTIFY
D.63 pg ctl
D.64 pg dump
D.65 pg dumpall
D.66 pg passwd
D.67 pg upgrade
D.68 pgaccess
D.69 pgtclsh
D.70 pgtksh
D.71 postgres
D.72 postmaster
D.73 psdl
D.74 REINDEX
D.75 RESET
D.76 REVOKE
D.77 ROLLBACK
D.78 SELECT
D.79 SELECT INTO
D.80 SET
D.81 SHOW
D.82 TRUNCATE
D.83 UNLISTEN
D.84 UPDATE
D.85 VACUUM
D.86 vacuumdb

Bibliography

Index

CONTENTS

List of Figures

2.1 psql SESSION STATt-UD . & v v v v v e e e e e e e e e e e e e e e e e e e 6
2.2 My first SQL qQUETY . . v v v v o e 7
2.3 Multiline qUETY v o i i e e e e e e e e e e e e e e e e e e e 7
2.4 Backslash-pdemo e e e e e e e e e 8
3.1 Databases i e e e e e e e e e e e e e 12
3.2 Createtablefriend o e e e e e 13
3.3 Example of backslash-d e e e e 14
3.4 INSERTINtO friend« o o v v i i i e e e e e e e e e e e e e e e 15
3.5 Additional friend INSERT commands v v v v v v v v v v e e e e e 16
3.6 My first SELECT ¢ i i i it e e e e e e e e e e e e e 16
3.7 My first WHERE ¢ i i it ittt e e e e e e e e e e e e e e 17
3.8 More complex WHERE ClaUSE v v v v v i e e e e e e e e e et 17
3.9 Asinglecell e e e e 18
3.10 Ablockofcells i e e e e e e e e e e e 18
3.11 Comparing stringfields e e 18
3.12 DELETEexample i i i it e e e e e e e e e e 20
313 MYfIrStUPDATE &« v v v o e e e e e e e e e e e e e 21
314 USeOof ORDERBY . v v v v v v e 21
3.15 Reverse ORDERBY . & v v v v v v v e 21
3.16 Useof ORDERBYand WHERE v v v v v v v e e e e e e e e e e oo e e o 22
4.1 Example of common datatypes v i it e e e e 24
4.2 Insertionof specificcolumns o . i it e e 25
43 NULLhandling e e 27
44 Comparison of NULLfields unneenn.. 28
45 NULLvalues and blank strings 28
46 USINGDEFAULT VAlUES . . + + v v v o o e 29
4.7 Controlling columnlabels 29
4.8 Computation usingacolumnlabel 30
4.9 Commentstyles o i i i i e e e e e e e e e e e e e 30

XV

Xvi

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24

5.1
5.2
5.3
54
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19

LIST OF FIGURES
Newfriends o v i i i i it e e e e e e e e e e e e e e e 31
WHERE test for Sandy Gleason, 32
Friends in New Jersey and Pennsylvania 32
Incorrectly mixing AND and ORclauses v v v i v i v v v v v v 33
Correctly mixing ANDand ORclauses v v v v v v v v v i et e e n 33
Selectingarangeof values e 34
Firstname begins with D 0 e e e e 35
Regular expression sample QUETIES . . .+« v v v v v v v v e e e e e e e e 38
Complex regular €Xpression qUETIES . . v« v v v v v v v v b e e e e e e e 39
CASEexample v v v i i e e e e e e e e e e e e e e e e e e 40
Complex CASE €Xample o v v v i i e e e e e e e e e e e e e e e e 41
DISTINCT prevents duplicates v v v v i i e et e e e e e e 42
Function examples i . e e e e e e e e 44
Operator examples i i i e e e e e e e e e 45
SHOW and RESET €Xamples v v v v v i e e i e e e e e e e e e e et e a s 46
Examples of Aggregates Lo 50
Aggregatesand NULL valueso v vt i i it i it i 52
Aggregate with GROUPBY i i 53
GROUPBY withtwocolumns v i it ittt e e e e et e u 54
HAVING . . . o o e e s e 54
Qualified column names v v v v v v i e e e e e e e e e e e e e 58
Joining tables L e e e 59
Creation of company tables it 61
Insertion into company tables oL e 63
Finding a customer name using tWo qUETIES v v v v v v v v v v ww ... 64
Finding a customer name using one qUEry v v v v v v v v v v uw . . 64
Finding an order number for a customername 65
Three-tablejoin o i i e e e e e e 66
Four-tablejoin L. 66
Employees who have taken orders for customers 67
Joining customer and employee e e e 68
Joining part and employee e e e e e e e 69
The statename table e e e e e e 69
Usingacustomer COde . . . v v v v v v it e e e e e e e e e e e e 71
AoNe-to-many JoIN . . v v v v v v e 72
Unjoinedtables . . . v v v v v s e e e e e e e e e e e e e e e e e 73
Usingtable aliases . . . v v v v v v v e e e e e e e e e e e e e e e e 73
Examples of self-joins using table aliases, 74

NON-EQUIJOINS + v v v v v v v v e e e e et e e e e e e e e e e e e e 75

LIST OF FIGURES Xvil

6.20
6.21
6.22

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18

9.1
9.2
9.3
9.4
9.5
9.6

10.1
10.2
10.3
10.4
10.5

New salesorder table for multiple partsperorder 76
The orderparttable @ e e e e e e e 76
Queries involving the orderparttable 78
()1] 80
Columns With OIDS o v i s it s e e e e e e e e e e e e e e 81
Examples of sequence functionuse e 83
Numbering customer rows USING A SEQUENCE . + « v v v v v v v v v e e v v e e a 84
The customer table uUSIng SERIAL v v v v v v v i et e e et e 85
Combining two columns With UNION i i v i e .. 88
Combining twotables With UNION v i i i it i .. 89
UNION with duplicates i i e e e e e e e e e e e e 89
UNION ALL with duplicates i i i i e e e e e e e et e o 90
EXCEPT restricts output from the first SELECT 90
INTERSECT returns only duplicatedrows 91
Friends not in Dick Gleason’sstate 93
Subqueries can replace SOME JOINS & .+« v v v v v v v e e e e e e e e e 94
Correlated subquery v v i i i e e e e e e e e e e e e 95
Employees who took orders 97
Customers whohavenoorders i i it i i it i e 97
IN query rewritten using ANY and EXISTS .+ .« v v v v v v e v v v e e e e e e e 99
NOT IN query rewritten using ALLand EXISTS v v v v v v v v v v o 100
Simulating outer joinso o e e e e e e e e 101
Subqueries with UPDATE and DELETE v v v v v v v v e e e e e e e e e e e 102
UPDATE the order date i ittt 102
Using SELECT With INSERT & ¢t v v it e e e e e e e e e e e e e e e 103
Table creation With SELECT v v i v vt e e e e e e e e e e e e e e e e e 104
Example ofafunctioncall, 112
Error generated by undefined function/type combination. 112
Error generated by undefined operator/type combination 115
Creation of array columns v vt i it e e e e e 116
USINGAITAYS .+« ¢ v v o v e 117
Using large images v v v v v v it e e e e e e e e e e e e e e e 118
INSERT with no explicit transaction v v v v v v v e vt e e 122
INSERT using an explicit transaction v v v v v v v v e e 122
Two INSERTs in a single transaction v v v v v v v v v e oo 123
Multistatement transaction v v v v vt e e e e e e e e 123
Transactionrollback L e e 124

Xviii

10.6
10.7
10.8
10.9

11.1
11.2
11.3
11.4
11.5

12.1
12.2

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12

LIST OF FIGURES

Read-committed isolationlevel 126
Serializable isolationlevel e 127
SELECTwithnolocking oo i ittt i 129
SELECT...FORUPDATE . . . v v v v e e et e e e e e e e e e e e e e e e e 130
Example of CREATEINDEX . . & v v v v v i v e e e e e e e e e e e e e e e e e e 132
Example of auniqueindex i i ittt e e e e 133
USINGEXPLAIN . & & v o v v et e e e e e e e e e e e e e e e e e e e 134
More complex EXPLAIN eXamples v v v v v v v e e e e e e e e e 135
EXPLAIN example USing JOINS+« v v v v v vt et e e e e e e e e e e 136
Examples of LIMIT and LIMIT/OFFSET v v v v v v v e v e e e v e e e e o 138
CUISOT USAZE & v v v o e 139
Temporary table auto-destruction. i it e 142
Example of temporary tableuse e 143
ALTER TABLE €Xamples v v v i i et e e e e e e e e e e e e e e e 144
Examples of the GRANT command v v v v v v v v e e vt e e e 145
Creation of inherited tables e 146
Accessing inheritedtables e e 146
Inheritance Inlayers. o o i i i e e e e e e e e e e e 147
Examples of VIEWS i e e e e e e e e 148
Ruletoprevent an INSERT o i i v v i et e e e e e e e e e e 149
Rulestologtablechanges 150
Use of rulesto logtablechanges 151
Views ignore table modifications 152
Rules to handle view modifications o e 152
Example of rules that handle view modifications 153
NOTNULL constraint v v v v v e e e e e e e e e e e e e e e e et e o 156
NOT NULL with DEFAULT constrainto v v v v v v v oo 156
UNIQUE column constraint v v v v v v vt e e e e e e e e e e e e e 157
Multicolumn UNIQUE CONStraint . . . v v v v v v v v v v e v e e e e e e e e e e o 157
Creation of a PRIMARY KEY COlUMN v v it et e e e e e e e e e 158
Example of a multicolumn PRIMARY KEY . . v v v v v v v v v e e e e e e e e a 159
Foreignkey creation i e e e e e e 160
Foreign key constraints o v i i i i i i e e e e e e e e e 160
Creation of company tables using primary and foreignkeys 161
Customer table with foreign key actions 162
Foreign key actions i i i i i i it e e e e e 163

Example of a multicolumn foreignkey 164

LIST OF FIGURES XixX

14.13
14.14
14.15

15.1
15.2
15.3
15.4
15.5
15.6

16.1
16.2
16.3
16.4

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10
17.11
17.12
17.13

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9
18.10
18.11

MATCH FULLforeignkey o i i ittt i 165
DEFERRABLE foreign key constraint 167
CHECK CONStIaINtS « v v v v v v v e 168
Example of COPY...TOand COPY...FROM v v v v v v v vt e e e e e 170
Example of COPY...FROM ¢ i v i i it e e e e e e e e e e e e e e e 171
Example of COPY...TO...USING DELIMITERS « v v v v v v v v vt e e v e a s 172
Example of COPY...FROM...USING DELIMITERS v v v v v v v v v e v uu s 172
Copy using stdin and stdout i i e e e e e e e e e e 173
CoPY backslash handling 174
Example of \pset e e e e e 179
psql variables e e e e e e e e e e e e e e e e e e 181
Pgaccess’s opening Window o it e e i e e e e e e e e e e 186
Pgaccess’stable window ot i e e e e e e e e e 186
Sample applicationbeing run 0. e e e e 187
Statename table L e e e e e e e e e e e 188
LBPQdataflow i e e e e e e e 189
LIBPQ sample program v v v i e e e e e e e e e e e e e e e e 190
LIBPGEASY Sample Program v v v v v v v v e e e e e e e e e e e e e 192
ECPGsample program i i i e e e e e e e e e e e e 193
LIBPQ++ sample program i i i i e e e e e e e e e e e e 194
Javasample program e e e e e e e e e e e e 197
Perl sample program e e e e e e e e e 198
TCL sample program i i i i e e e e e e e e e e e e e e 199
Python sample program e e 200
PHP sample program—input e e e e e 201
PHP sample program—output e e e 202
SQLftocfunction e e e e e e 204
SQLfaxfunction o . . i i e e e e e e e e e e e 205
Recreation of the parttable e 206
SQL shipping function e e e e e e e e e e 207
SQL getstatename function L. e e e e 208
Getting state name using ajoinand afunction 209
PL/PGSQL version of getstatename 209
PL/PGSQL spread function 0 e e e e e 211
PL/PGSQL getstatecode function e 212
Calls to getstatecode function e e e 213

PL/PGSQL change_statename function L0 214

XX

LIST OF FIGURES

18.12 Examples using change statename() oo i .. 215
18.13 Triggercreation v v v v i i i e e e e e e e e e e e e e e e e e 217
19.1 Coclof function it e e e e e e e e e e e e 220
19.2 Createfunctioncfof« o i i i e e e e e e e 221
19.3 Calling functioncfof o o i i e e e e e e e e e 221
20.1 Examples of user administration i ittt e 224
20.2 Examples of database creationandremoval 225
20.3 Making a new copy of databasefest 228
20.4 Postmaster and poStgres PrOCESSES . v v v v v v v v e e e e e e e e e e e e e 229

List of Tables

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

7.1

9.1
9.2
9.3
9.4
9.5

10.1
10.2
10.3
10.4

13.1

15.1

16.1
16.2

Table friend e e e e e e e e e e e e e e 12
Commondatatypes v v v v i i i e e e e e e e 23
CompariSOn OPETratorS . v v v v v v v v e 34
LIKE COMPAriSONS . . v v v v v v e 35
Regular expression operators v v v i i i e e e e e e e e e e e 36
Regular expression special characters, 36
Examples of regular eXpressions v v v v vt e e e e e e e e e e e e 37
SETOPLIONS & v v v v v v e 43
DATESTYLEOULDPUL .+ v & v v v e 46
Aggregates L e e e e e e e e e e e e e e e e e 49
Sequence number access functions oo e e 82
POSTGRESQL datatypes i i i i i it it e e it e e e e 108
GEeOmEtriCtYPES . « & v v v i i e e e e e e e e e e e e e e e e 110
Common functions v v v i i i e e e e e e e e e e e e e 113
Common OPETatorS . . v v v v v v e 114
Common variables v v v i i e e e e e e e e e e e e e e e 115
Visibility of single-query transactions v v v vt e 124
Visibility of multiquery transactionso e .. 125
Waiting foralock o o i i e e e e e e e e 128
Deadlock v o v v e e e e e e e e e e e e e e e e e 129
Temporary table isolation e 141
Backslashes understood by COPY i i i i i i i e 174
psql’s query buffer commands L. e e e 178
psql’s general commands e e e e e e e e e e e e e e 178

XX1

xXxil

16.3
16.4
16.5
16.6
16.7
16.8

17.1

20.1

LIST OF TABLES

PSGUS \PSeLt OPLIONS . . v & v v v e 179
psql’s output format shortcuts e 180
psql’s predefined variables e e 182
psqlslistingcommands e e e e e e e e e 183
psql’s large objectcommandso L. Lo 184
psql’s command-line arguments i e e e e e e e 185
Interface summary L e e e 188

Commonly used systemtables 231

Foreword

Most research projects never leave the academic environment. Occasionally, exceptional ones
survive the transition from the university to the real world and go on to become a phenomenon.
POSTGRESQL is one of those projects. Its popularity and success are a testament to the dedication
and hard work of the POSTGRESQL global development team. Although developing an advanced
database system is no small feat, maintaining and enhancing an inherited code base are even more
challenging. The POSTGRESQL team has managed to not only improve the quality and usability of
the system, but also expand its use among the Internet user community. This book marks a major
milestone in the history of the project.

Postgres95, later renamed POSTGRESQL, started as a small project to overhaul Postgres.
Postgres was a novel and feature-rich database system created by the students and staff at the
University of California at Berkeley. Our goal with Postgres95 was to keep the powerful and
useful features of this system while trimming down the bloat caused by much experimentation
and research. We had a lot of fun reworking the internals. At the time, we had no idea where
we were going with the project. The Postgres95 exercise was not research, but simply a bit of
engineering housecleaning. By the spring of 1995 however, it had occurred to us that the Internet
user community really needed an open source, SQL-based multiuser database. Happily, our first
release was met with great enthusiasm, and we are very pleased to see the project continuing.

Obtaining information about a complex system like POSTGRESQL is a great barrier to its
adoption. This book fills a critical gap in the documentation of the project and provides an excellent
overview of the system. It covers a wide range of topics, from the basics to the more advanced
and unique features of POSTGRESQL.

In writing this book, Bruce Momjian has drawn on his experience in helping beginners with
POSTGRESQL. The text is easy to understand and full of practical tips. Momjian captures database
concepts using simple and easy-to-understand language. He also presents numerous real-life
examples throughout the book. In addition, he does an outstanding job of covering many advanced
POSTGRESQL topics. Enjoy reading the book and have fun exploring POSTGRESQL! It is our hope
this book will not only teach you about using POSTGRESQL, but also inspire you to delve into its
innards and contribute to the ongoing POSTGRESQL development effort.

Chen and Andrew Yu, co-authors of Postgres95

xXxiil

Preface

This book is about POSTGRESQL, the most advanced open source database. From its origins in
academia, POSTGRESQL has moved to the Internet with explosive growth. It is hard to believe the
advances during the past four years under the guidance of a team of worldwide Internet developers.
This book is a testament to their vision, and to the success that POSTGRESQL has become.

The book is designed to lead the reader from their first database query through the complex
queries needed to solve real-world problems. No knowledge of database theory or practice is
required. However, basic knowledge of operating system capabilities is expected, such as the
ability to type at an operating system prompt.

Beginning with a short history of POSTGRESQL, the book moves from simple queries to the
most important database commands. Common problems are covered early, which should prevent
users from getting stuck with queries that fail. The author has seen many bug reports in the past
few years and consequently has attempted to warn readers about the common pitfalls.

With a firm foundation established, additional commands are introduced. The later chapters
outline complex topics like transactions and performance.

At each step, the purpose of each command is clearly illustrated. The goal is to have readers
understand more than query syntax. They should know why each command is valuable, so they
can use the proper commands in their real-world database applications.

A database novice should read the entire book, while skimming over the later chapters. The
complex nature of database systems should not prevent readers from getting started. Test
databases offer a safe way to try queries. As readers gain experience, later chapters will be-
gin to make more sense. Experienced database users can skip the early chapters on basic SQL
functionality. The cross-referencing of sections allows you to quickly move from general to more
specific information.

Much information has been moved out of the main body of the book into appendices. Appendix A
lists sources of additional information about POSTGRESQL. Appendix B provides information about
installing POSTGRESQL. Appendix C lists the features of POSTGRESQL not found in other database
systems. Appendix D contains a copy of the POSTGRESQL manual pages which should be consulted
anytime you have trouble with query syntax. Also, do not overlook the excellent documentation
that is part of POSTGRESQL. This documentation covers many complex topics, including much
POSTGRESQL-specific functionality that cannot be covered in a book of this length. Sections of the

XXV

XXV1 PREFACE

documentation are referenced in this book where appropriate.
This book uses ifalics for identifiers, SMALLCAPS for SQL keywords, and a monospaced font for
SQL queries. The Web site for this book is located at http: //www.postgresql.org/docs/awbook.html.

http://www.postgresql.org/docs/awbook.html

Acknowledgments

POSTGRESQL and this book would not be possible without the talented and hard-working members
of the POSTGRESQL Global Development Team. They took source code that could have become
just another abandoned project and transformed it into the open source alternative to commercial
database systems. POSTGRESQL is a shining example of Internet software development.

Steering

Fournier, Marc G., in Wolfville, Nova Scotia, Canada, coordinates the entire effort, provides
the server, and administers the primary Web site, mailing lists, ftp site, and source code
repository.

Lane, Tom, in Pittsburgh, Pennsylvania, United States, is often seen working on the plan-
ner/optimizer, but has left his fingerprints in many places. He specializes in bug fixes and
performance improvements.

Lockhart, Thomas G., in Pasadena, California, United States, works on documentation, data
types (particularly date/time and geometric objects), and SQL standards compatibility.

Mikheev, Vadim B., in San Francisco, California, United States, does large projects, like
vacuum, subselects, triggers, and multi-version concurrency control (MVCC).

Momyjian, Bruce, in Philadelphia, Pennsylvania, United States, maintains FAQ and TODO lists,
code cleanup, patch application, training materials, and some coding.

Wieck, Jan, near Hamburg, Germany, overhauled the query rewrite rule system, wrote our
procedural languages PL/PGSQL and PL/TCL, and added the NUMERIC type.

Major Developers

Cain, D’Arcy, J. M., in Toronto, Ontario, Canada, worked on the TCL interface, PyGreSQL,
and the INET type.

Dal Zotto, Massimo, near Trento, Italy, created locking code and other improvements.

XXVil

XXViil ACKNOWLEDGMENTS
* Eisentraut, Peter, in Uppsala, Sweden, has added many features, including an overhaul of
psql.

* Elphick, Oliver, in Newport, Isle of Wight, United Kingdom, maintains the POSTGRESQL
package for Debian Linux.

* Horak, Daniel, near Pilzen, Czech Republic, did the WinNT port of POSTGRESQL (using the
Cygwin environment).

* Inoue, Hiroshi, in Fukui, Japan, improved btree index access.

* Ishii, Tatsuo, in Zushi, Kanagawa, Japan, handles multibyte foreign language support and
porting issues.

* Martin, Dr. Andrew C. R., in London, United Kingdom, created the ECPG interface and helped
in the Linux and Irix FAQs including some patches to the POSTGRESQL code.

* Mergl, Edmund, in Stuttgart, Germany, created and maintains pgsql perl5. He also created
DBD-Pg, which is available via CPAN.

* Meskes, Michael, in Dusseldorf, Germany, handles multibyte foreign language support and
maintains ECPG.

* Mount, Peter, in Maidstone, Kent, United Kingdom, created the Java JDBC interface.

* Nikolaidis, Byron, in Baltimore, Maryland, United States, rewrote and maintains the ODBC
interface for Windows.

* Owen, Lamar, in Pisgah Forest, North Carolina, United States, maintains the RPM package.
¢ Teodorescu, Constantin, in Braila, Romania, created the PGACCESS interface.

* Thyni, Goran, in Kiruna, Sweden, has worked on the Unix socket code.

Non-code Contributors
* Bartunov, Oleg, in Moscow, Russia, introduced the locale support.

* Vielhaber, Vince, near Detroit, Michigan, United States, maintains our Web site.

All developers are listed in alphabetical order.

Chapter 1

History of POSTGRESQL

1.1 Introduction

POSTGRESQL is the most advanced open source database server. In this chapter, you will learn
about databases, open source software, and the history of POSTGRESQL.

Three basic office productivity applications exist: word processors, spreadsheets, and databases.
Word processors produce text documents critical to any business. Spreadsheets are used for financial
calculations and analysis. Databases are used primarily for data storage and retrieval. You can use a
word processor or spreadsheet to store small amounts of data. However, with large volumes of data
or data that must be retrieved and updated frequently, databases are the best choice. Databases
allow orderly data storage, rapid data retrieval, and complex data analysis.

1.2 University of California at Berkeley

POSTGRESQLS ancestor was Ingres, developed at the University of California at Berkeley (1977-
1985). The Ingres code was later enhanced by Relational Technologies/Ingres Corporation, ' which
produced one of the first commercially successful relational database servers. Also at Berkeley,
Michael Stonebraker led a team to develop an object-relational database server called Postgres
(1986-1994). Illustra® took the Postgres code and developed it into a commercial product. Two
Berkeley graduate students, Jolly Chen and Andrew Yu, subsequently added SQL capabilities to
Postgres. The resulting project was called Postgres95 (1994-1995). The two later left Berkeley,
but Chen continued maintaining Postgres95, which had an active mailing list.

lngres Corporation was later purchased by Computer Associates.
2Tllustra was later purchased by Informix and integrated into Informix’s Universal Server.

2 CHAPTER 1. HISTORY OF POSTGRESQL

1.3 Development Leaves Berkeley

In the summer of 1996, it became clear there was great demand for an open source SQL database
server, and a team formed to continue development. Marc G. Fournier of Toronto, Canada, offered
to host the mailing list and provide a server to host the source tree. One thousand mailing list
subscribers were moved to the new list. A server was configured, giving a few people login
accounts to apply patches to the source code using cvs.*

Jolly Chen has stated, "This project needs a few people with lots of time, not many people with
a little time." Given the 250,000 lines of C* code, we understood what he meant. In the early
days, four people were heavily involved: Marc Fournier in Canada; Thomas Lockhart in Pasadena,
California; Vadim Mikheev in Krasnoyarsk, Russia; and me in Philadelphia, Pennsylvania. We all
had full-time jobs, so we participated in the effort in our spare time. It certainly was a challenge.

Our first goal was to scour the old mailing list, evaluating patches that had been posted to fix
various problems. The system was quite fragile then, and not easily understood. During the first
six months of development, we feared that a single patch might break the system and we would
be unable to correct the problem. Many bug reports left us scratching our heads, trying to figure
out not only what was wrong, but how the system even performed many functions.

We had inherited a huge installed base. A typical bug report came in the following form: "When
I do this, it crashes the database." We had a long list of such reports. It soon became clear that
some organization was needed. Most bug reports required significant research to fix, and many
reports were duplicates, so our TODO list included every buggy SQL query. This approach helped
us identify our bugs, and made users aware of them as well, thereby cutting down on duplicate bug
reports.

Although we had many eager developers, the learning curve in understanding how the database
worked was significant. Many developers became involved in the edges of the source code, like
language interfaces or database tools, where things were easier to understand. Other developers
focused on specific problem queries, trying to locate the source of the bug. It was amazing to
see that many bugs were fixed with just one line of C code. Because Postgres had evolved in an
academic environment, it had not been exposed to the full spectrum of real-world queries. During
that period, there was talk of adding features, but the instability of the system made bug fixing our
major focus.

1.4 POSTGRESQL Global Development Team

In late 1996, we changed the name of the database server from Postgres95 to POSTGRESQL. It is a
mouthful, but honors both the Berkeley name and its SQL capabilities. We started distributing the
source code using remote cvs, which allowed people to keep up-to-date copies of the development
tree without downloading an entire set of files every day.

3cvs sychronizes access by developers to shared program files.

4C is a popular computer language first developed in the 1970s.

1.4. POSTGRESQL GLOBAL DEVELOPMENT TEAM 3

Releases occurred every three to five months. Each period consisted of two to three months
of development, one month of beta testing, a major release, and a few weeks to issue sub-releases
to correct serious bugs. We were never tempted to follow a more aggressive schedule with more
releases. A database server is not like a word processor or game, where you can easily restart it if
a problem arises. Instead databases are multiuser, and lock user data inside the database, so they
must be as reliable as possible.

Development of source code of this scale and complexity is not for the novice. We initially had
trouble interesting developers in a project with such a steep learning curve. However, over time,
our civilized atmosphere and improved reliability and performance helped attract the experienced
talent we needed.

Getting our developers the knowledge they needed to assist with POSTGRESQL was clearly a
priority. We had a TODO list that outlined what needed to be done, but with 250,000 lines of code,
taking on any item was a major project. We realized developer education would pay major benefits
in helping people get started. We wrote a detailed flowchart of the database modules.” We also
wrote a developers’ FAQ,® answering the most common questions of POSTGRESQL developers.
With this information, developers became more productive at fixing bugs and adding features.

Although the source code we inherited from Berkeley was very modular, most Berkeley coders
used POSTGRESQL as a test bed for research projects. As a result, improving existing code was
not a priority. Their coding styles were also quite varied.

We wrote a tool to reformat the entire source tree in a consistent manner. We wrote a script to
find functions that could be marked as static” or unused functions that could be removed completely.
These scripts are run just before each release. A release checklist reminds us of the items to be
changed for each release.

As we gained knowledge of the code, we were able to perform more complicated fixes and
feature additions. We redesigned poorly structured code. We moved into a mode where each
release had major new features, instead of just bug fixes. We improved SQL conformance, added
sub-selects, improved locking, and added missing SQL functionality. A company was formed to
offer telephone support.

The Usenet discussion group archives started touting us. At one time, we had searched for
POSTGRESQL and found that many people were recommending other databases, even though
we were addressing user concerns as rapidly as possible. One year later, many people were
recommending us to users who needed transaction support, complex queries, commercial-grade
SQL support, complex data types, and reliability—clearly our strengths. Other databases were
recommended when speed was the overriding concern. Red Hat’s shipment of POSTGRESQL as
part of its Linux® distribution quickly expanded our user base.

Today, every release of POSTGRESQL is a major improvement over the last. Our global

5All the files mentioned in this chapter are available as part of the POSTGRESQL distribution, or at
http://www.postgresql.org/docs.

5Frequently Asked Questions

7A static function is used by only one program file.

8Linux is a popular UNIX-like, open source operating system.

http://www.postgresql.org/docs

4 CHAPTER 1. HISTORY OF POSTGRESQL

development team has mastery of the source code we inherited from Berkeley. In addition, every
module is understood by at least one development team member. We are now easily adding major
features, thanks to the increasing size and experience of our worldwide development team.

1.5 Open Source Software

POSTGRESQL 1is open source software. The term “open source software” often confuses people.
With commercial software, a company hires programmers, develops a product, and sells it to
users. With Internet communication, however, new possibilities exist. Open source software has
no company. Instead, capable programmers with interest and some free time get together via
the Internet and exchange ideas. Someone writes a program and puts it in a place everyone can
access. Other programmers join and make changes. When the program is sufficiently functional,
the developers advertise the program’s availability to other Internet users. Users find bugs and
missing features and report them back to the developers, who, in turn, enhance the program.
It sounds like an unworkable cycle, but in fact it has several advantages:

* A company structure is not required, so there is no overhead and no economic restrictions.

* Program development is not limited to a hired programming staff, but taps the capabilities
and experience of a large pool of Internet programmers.

» User feedback is facilitated, allowing program testing by a large number of users in a short
period of time.

* Program enhancements can be rapidly distributed to users.

1.6 Summary

This chapter has explored the long history of POSTGRESQL, starting with its roots in university
research. POSTGRESQL would not have achieved its success without the Internet. The ability
to communicate with people around the world has allowed a community of unpaid developers to
enhance and support software that rivals commercial database offerings. By allowing everyone
to see the source code and contribute to its ongoing development, POSTGRESQL continues to
improve every day. The remainder of this book shows how to use this amazing piece of software.

Chapter 2

Issuing Database Commands

In this chapter, you will learn how to connect to the database server and issue simple commands
to the POSTGRESQL server.
At this point, the book makes the following assumptions:

* You have installed POSTGRESQL.
* You have a running POSTGRESQL server.
* You are configured as a POSTGRESQL user.

* You have a database called fest.

If not, see Appendix B.

2.1 Starting a Database Session

POSTGRESQL uses a client/server model of communication. A POSTGRESQL server is continually
running, waiting for client requests. The server processes the request and returns the result to
the client.

Choosing an Interface

Because the POSTGRESQL server runs as an independent process on the computer, a user cannot
interact with it directly. Instead, client applications have been designed specifically for user
interaction. This chapter describes how to interact with POSTGRESQL using the psql client
application. Additional interfaces are covered in Chapters 16 and 17.

6 CHAPTER 2. ISSUING DATABASE COMMANDS

$ psql test
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

test=>

Figure 2.1: psql session start-up

Choosing a Database

Each POSTGRESQL server controls access to a number of databases. Databases are storage areas
used by the server to partition information. For example, a typical installation may have a production
database, used to keep all information about a company. It may also have a training database, used
for training and testing purposes. They may have private databases, used by individuals to store
personal information. For this exercise, we will assume that you have created an empty database
called test. If not, see Appendix B.

Starting a Session

To start a psql session and connect to the fest database, type psql test at the command prompt.
Your output should look similar to Figure 2.1. Remember, the operating system command prompt
is case-sensitive, so you must type this in all lowercase.!

2.2 Controlling a Session

Congratulations. You have successfully connected to the POSTGRESQL server. You can now issue
commands and receive replies from the server. Let’s try one. Type SELECT CURRENT USER; and
press Enter (see Figure 2.2). If you make a mistake, just press Backspace and retype the command.
It should show your login name underneath the dashed line. This example shows the login name of
postgres. The word getpgusername is a column label. The server also reports that it has returned
one row of data. The line test=> tells you that the server has finished its current task and is waiting
for the next database query.

1A few operating systems are case-insensitive.

2.2. CONTROLLING A SESSION 7

test=> SELECT CURRENT USER;
getpgusername

postgres

(1 row)

test=>

Figure 2.2: My first SQL query

test=> SELECT
test-> 1 + 3
test-> ;
?column?

Figure 2.3: Multiline query

Let’s try another one. At the test=> prompt, type SELECT CURRENT TIMESTAMP; and press Enter.
You should see the current date and time. Each time you execute the query, the server will report
the current time to you.

Typing in the Query Buffer

Typing in the query buffer is similar to typing at an operating system command prompt. However,
at an operating system command prompt, Enter completes each command. In psql, commands are
completed only when you enter a semicolon (;) or backslash-g (\g).

As an example, let’s do SELECT 1 + 3; but in a different way. See Figure 2.3.” Notice that the
query is spread over three lines. The prompt changed from => on the first line to -> on the second
line to indicate that the query was continued. The semicolon told psql to send the query to the
server. We could have easily replaced the semicolon with backslash-g. 1 do not recommend that
you type queries as ugly as this one, but longer queries will benefit by being spread over multiple

2Don’t be concerned about ?column?. We will cover that in Section 4.7.

8 CHAPTER 2. ISSUING DATABASE COMMANDS

test=> SELECT
test-> 2 * 10 + 1
test-> \p

SELECT

2*10+1
test-> \g
?column?

(1 row)

test=>

Figure 2.4: Backslash-p demo

lines. You might notice that the query is in uppercase. Unless you are typing a string in quotes,
the POSTGRESQL server does not care whether words are uppercase or lowercase. For clarity, I
recommend you enter words special to POSTGRESQL in uppercase.

Try some queries on your own involving arithmetic. Each computation must start with the
word SELECT, then your computation, and finally a semicolon or backslash-g. For example, SELECT
4 * 10; would return 40. Addition is performed using a plus symbol (+), subtraction using a minus
symbol (-), multiplication using an asterisk (*), and division using a forward slash (/).

If you have readline® installed, psq1 will even allow you to use your arrow keys. Your left and
right arrow Keys allow you to move around, and the up and down arrows retrieve previously typed
queries.

Displaying the Query Buffer

You can continue typing indefinitely, until you use a semicolon or backslash-g. Everything you type
will be buffered by psql until you are ready to send the query. If you use backslash-p (\p), you will
see everything accumulated in the query buffer. In Figure 2.4, three lines of text are accumulated
and displayed by the user using backslash-p. After display, we use backslash-g to execute the query,
which returns the value 21. This ability comes in handy with long queries.

Erasing the Query Buffer

If you do not like what you have typed, use backslash-r (\r) to reset or erase the buffer.

3Readline is an open source library that allows powerful command-line editing.

2.3. GETTING HELP 9

2.3 Getting Help

You might ask, “Are these backslash commands documented anywhere?” If you look at Figure 2.1,
you will see that the answer is printed every time psql starts. Backslash-? (\?) prints all valid
backslash commands. Backslash-h displays help for SQL commands. SQL commands are covered
in the next chapter.

2.4 Exiting a Session

This chapter would not be complete without showing you how to exit psql. Use backslash-q (\q)
to quit the session and exit psql. Backslash g (go), p (print), 7 (reset), and g (quit) should be all you
need for now.

2.5 Summary

This chapter has introduced the most important features of psql. This knowledge will allow you
to try all the examples in this book. In addition, psql has many other features to assist you.
Section 16.1 covers psql in detail. You may want to consult that chapter while reading through the
book.

Chapter 3

Basic SQL Commands

SQL stands for Structured Query Language. It is the most common way to communicate with
database servers, and is supported by almost all database systems. In this chapter, you will learn
about relational database systems and how to issue the most important SQL commands.

3.1 Relational Databases

As mentioned in Section 1.1, the purpose of a database is rapid data storage and retrieval. Today,
most database systems are relational databases. While the term “relational database” has a mathe-
matical foundation, in practice it means that all data stored in the database is arranged in a uniform
structure.

Figure 3.1 shows a database server with access to three databases: demo, finance, and test.
You could issue the command psql finance and be connected to the finance database. You have
already dealt with this issue in Chapter 2. Using psql, you chose to connect to database fest with
the command psql test. To see a list of databases available at your site, type psql -1. The first
column lists the database names. However, you may not have permission to connect to all of them.

You might ask, “What are those black rectangles in the databases?” They are fables. Tables are
the foundation of a relational database management system (RDBMS). They hold the data stored in a
database. Each table has a name defined by the person who created it.

Let’s look at a single table called friend shown in Table 3.1. You can readily see how tables
are used to store data. Each friend is listed as a separate row in the table. The table records five
pieces of information about each friend: firstname, lastname, city, state, and age."

Each friend appears on a separate row; each column contains the same type of information.
This is the type of structure that makes relational databases successful. It allows you to select
certain rows of data, certain columns of data, or certain cells. You could select the entire row for
Mike, the entire column for City, or a specific cell like Denver.

n a real-world database, the person’s birth date would be stored and not the person’s age. The age must be updated each
time the person has a birthday. A person’s age can be computed when needed from a birth date field.

11

12 CHAPTER 3. BASIC SQL COMMANDS

Database Server

-~/ \
O %
G

Figure 3.1: Databases

FirstName ‘ LastName ‘ City ‘ State ‘ Age

Mike Nichols Tampa FL 19
Cindy Anderson | Denver CO 23
Sam Jackson Allentown | PA 22

Table 3.1: Table friend

3.2. CREATING TABLES 13

test=> CREATE TABLE friend (

test(> firstname CHAR(15),
test(> lastname CHAR(20),
test(> city CHAR(15),
test(> state CHAR(2),
test(> age INTEGER
test(>);

CREATE

Figure 3.2: Create table friend

Some synonyms exist for the terms “table,” “row,” and “column.” “Table” is more formally
referred to as a relation or class, “row” as record or tuple, and “column” as field or attribute.

3.2 Creating Tables

Let’s create our own table and call it friend. Figure 3.2 shows the psql statement to create this
table. You do not have to type the command exactly this way. You can use all lowercase, or you
can write it in one long line, and it would work just the same.

Let’s look at the statement from the top down. The words CREATE TABLE have special meaning
to the database server. They indicate that the next request from the user is to create a table. You
will find most SQL requests can be quickly identified by the first few words. The rest of the request
has a specific format that is understood by the database server. While capitalization and spacing
are optional, the format for a query must be followed exactly. Otherwise, the database server
will issue an error such as parser: parse error at or near "pencil", meaning that the database
server became confused near the word pencil. In such a case, the manual page for the command
should be consulted and the query reissued in the proper format. A copy of the POSTGRESQL
manual pages appears in Appendix D.

The CREATE TABLE command follows a specific format: first, the two words CREATE TABLE; then
the table name; then an opening parenthesis; then a list of column names and their types; followed
by a closing parenthesis. The important part of this query appears between the parentheses. You
will notice five lines there in Figure 3.2. The first line, firstname CHAR(15), represents the first
column of the table to create. This column is named firstname, and the text CHAR(15) indicates
the column type and length. The CHAR(15) means the column holds a maximum of 15 characters.
The second column is called lastname and holds a maximum of 20 characters. Columns of type
CHAR() hold characters of a specified length. User-supplied character strings® that do not fill the

2A character string is a group of characters strung together.

14 CHAPTER 3. BASIC SQL COMMANDS

test=> \d friend
Table "friend"
Attribute | Type | Modifier
___________ Y S
firstname | char(15) |

Tastname | char(20) |
city | char(15) |
state | char(2) |
age | integer

Figure 3.3: Example of backslash-d

entire length of the field are right-padded with blanks. The columns city and sfate are similar. The
final column, age, is different, however. It is not a CHAR() column, but rather an INTEGER column.
It holds whole numbers, not characters. Even if the table contained 5,000 friends, you could be
certain that no names appeared in the age column, only whole numbers. This consistent structure
helps databases to be fast and reliable.

POSTGRESQL supports more column types than just CHAR() and INTEGER. However, in this
chapter we will use only these two. Sections 4.1 and 9.2 cover column types in more detail.

Create some tables yourself now. Use only letters for your table and column names. Do not
use any numbers, punctuation, or spaces at this time.

The \d command allows you to see information about a specific table or to list all table names
in the current database. To see information about a specific table, type \d followed by the name
of the table. For example, to see the column names and types of your new friend table in psql,
type \d friend (Figure 3.3). If you use \d with no table name after it, you will see a list of all table
names in the database.

3.3 Adding Data with INSERT

Let’s continue toward the goal of making a table exactly like the friend table shown in Table 3.1.
So far, we have created the table, but it does not contain any friends. You add rows into a table with
the INSERT statement. Just as CREATE TABLE has a specific format that must be followed, INSERT
also has a specific format. Figure 3.4 shows this format.

You must use single quotes around the character strings. Double quotes will not work. Spacing
and capitalization are optional, except inside the single quotes. Inside them, the text is taken
literally, so any capitalization will be stored in the database exactly as you specify. If you type too
many quotes, you might reach a point where your backslash commands do not work anymore, and
your prompt will appear as test'>. Notice the single quote before the greater than symbol. Just

3.4. VIEWING DATA WITH SELECT 15

test=> INSERT INTO friend VALUES (

test(> '"Mike',
test(> 'Nichols',
test(> 'Tampa',
test(> "FL',
test(> 19

test(>);

INSERT 19053 1

Figure 3.4: INSERT into friend

type another single quote to get out of this mode, use \r to clear the query buffer, and start again.
Notice that the 19 does not have quotes. It does not need them because the column is a numeric
column, not a character column. When you do your INSERT operations, be sure to match each piece
of data to the receiving column. Figure 3.5 shows the additional INSERT commands needed to make
the friend table match the three friends shown in Table 3.1.

3.4 Viewing Data with SELECT

You have just seen how to store data in the database. Now, let’s retrieve that data. Surprisingly,
only one command is provided to get data out of the database—SELECT. You have already used
SELECT in your first database query (see Figure 2.2 on page 7). We will now use it to show the
rows in the table friend. As shown in Figure 3.6, the entire query appears on one line. As queries
become longer, breaking them into multiple lines helps make things clearer.

Let’s look at this example in detail. First, we have the word SELECT, followed by an asterisk (*),
the word FROM, our table name friend, and a semicolon to execute the query. The SELECT starts
our command, telling the database server what is coming next. The * tells the server we want all
the columns from the table. The FROM friend indicates which table we want to see. Thus, we have
said we want all (*) columns from our table friend. Indeed, that is what is displayed—the same
data as shown in Table 3.1 on page 12.

SELECT has a large number of variations, and we will look at a few of them now. Suppose you
want to retrieve only one of the columns from the friend table. You might already suspect that the
asterisk (*) must be changed in the query. If you replace it with one of the column names, you
will see only that column. Try SELECT city FROM friend. You can choose any of the columns. You
can even choose multiple columns, by separating the names with a comma. For example, to see
first and last names only, use SELECT firstname, lastname FROM friend. Try a few more SELECT
commands until you become comfortable.

If you specify a name that is not a valid column name, you will get an error message like ERROR:

CHAPTER 3. BASIC SQL COMMANDS

test=> INSERT INTO friend VALUES (

test(> 'Cindy',
test(> '"Anderson’,
test(> 'Denver',
test(> ‘co',
test(> 23

test(>);

INSERT 19054 1
test=> INSERT INTO friend VALUES (

test(> 'Sam',
test(> 'Jackson',
test(> '"Allentown',
test(> "PA',

test(> 22

test(>);

INSERT 19055 1

Figure 3.5: Additional friend INSERT commands

test=> SELECT * FROM friend;

firstname | Tastname | city | state | age
----------------- e
Mike | Nichols | Tampa | FL | 19
Cindy | Anderson | Denver | Co | 23
Sam | Jackson | Allentown | PA | 22
(3 rows)

Figure 3.6: My first SELECT

3.5. SELECTING SPECIFIC ROWS WITH WHERE 17

test=> SELECT * FROM friend WHERE age = 23;

firstname | Tastname | city | state | age
----------------- e
Cindy | Anderson | Denver | cO | 23
(1 row)

Figure 3.7: My first WHERE

test=> SELECT * FROM friend WHERE age <= 22;

firstname | Tastname | city | state | age
----------------- e
Mike | Nichols | Tampa | FL | 19
Sam | Jackson | Allentown | PA | 22
(2 rows)

Figure 3.8: More complex WHERE clause

attribute 'mycolname' not found. If you try selecting from a table that does not exist, you will
get an error message like ERROR: Relation 'mytablename' does not exist. POSTGRESQL uses the
formal relational database terms relation and attribute in these error messages.

3.5 Selecting Specific Rows with WHERE

Let’s take the next step in controlling the output of SELECT. In the previous section, we showed
how to select only certain columns from the table. Now, we will show how to select only certain
rows. This operation requires a WHERE clause. Without a WHERE clause, every row is returned.

The WHERE clause goes immediately after the FROM clause. In the WHERE clause, you specify
the rows you want returned, as shown in Figure 3.7. The query returns the rows that have an age
column equal to 23. Figure 3.8 shows a more complex example that returns two rows.

You can combine the column and row restrictions in a single query, allowing you to select any
single cell, or a block of cells. See Figures 3.9 and 3.10.

Up to this point, we have made comparisons only on the age column. The age column is an
INTEGER. The tricky part about the other columns is that they are CHAR() columns, so you must
put the comparison value in single quotes. You also have to match the capitalization exactly. See
Figure 3.11. If you had compared the firstname column to ‘SAM’ or ‘sam’, it would have returned
no rows. Try a few more comparisons until you are comfortable with this operation.

18 CHAPTER 3. BASIC SQL COMMANDS

test=> SELECT Tastname FROM friend WHERE age = 22;
lastname

Figure 3.9: A single cell

test=> SELECT city, state FROM friend WHERE age >= 21;

city | state
_________________ Fommm e
Denver | CO
Allentown | PA
(2 rows)

Figure 3.10: A block of cells

test=> SELECT * FROM friend WHERE firstname = 'Sam';
firstname | Tastname | city | state | age
----------------- B e e T R e it

Sam | Jackson | Allentown | PA | 22

Figure 3.11: Comparing string fields

3.6. REMOVING DATA WITH DELETE 19

3.6 Removing Data with DELETE

We know how to add data to the database; now we will learn how to remove it. Removal is quite
simple. The DELETE command can quickly eliminate any or all rows from a table. The command
DELETE FROM friend will delete all rows from the table friend. The query DELETE FROM friend WHERE
age = 19 will remove only those rows that have an age column equal to 19.

Here is a good exercise. Use INSERT to insert a row into the friend table, use SELECT to verify
that the row has been properly added, then use DELETE to remove the row. This exercise combines
the ideas you learned in the previous sections. Figure 3.12 shows an example.

3.7 Modifying Data with UPDATE

How do you modify data already in the database? You could use DELETE to remove a row and then
use INSERT to insert a new row, but that is quite inefficient. The UPDATE command allows you to
update data already in the database. It follows a format similar to the previous commands.

Continuing with our friend table, suppose Mike had a birthday, so we want to update his age in
the table. The example in Figure 3.13 shows the word UPDATE, the table name friend, followed by
SET, then the column name, the equals sign (=), and the new value. The WHERE clause controls
which rows are affected by the UPDATE, just as in a DELETE operation. Without a WHERE clause, all
rows are updated.

Notice that the Mike row has moved to the end of the list. The next section will explain how
to control the order of the display.

3.8 Sorting Data with ORDER BY

In a SELECT query, rows are displayed in an undetermined order. To guarantee that the rows will
be returned from SELECT in a specific order, you must add the ORDER BY clause to the end of the
SELECT. Figure 3.14 shows the use of ORDER BY. You can reverse the order by adding DESC, as
shown in Figure 3.15. If the query also used a WHERE clause, the ORDER BY would appear after the
WHERE clause, as in Figure 3.16.

You can ORDER BY more than one column by specifying multiple column names or labels,
separated by commas. The command would then sort by the first column specified. For rows with
equal values in the first column, it would sort based on the second column specified. Of course,
this approach is not useful in the friend example because all column values are unique.

3.9 Destroying Tables

This chapter would not be complete without showing you how to remove tables. This task is
accomplished using the DROP TABLE command. For example, the command DROP TABLE friend will

CHAPTER 3. BASIC SQL COMMANDS

test=> SELECT * FROM friend;

firstname | Tastname | city | state | age
----------------- e
Mike | Nichols | Tampa | FL | 19
Cindy | Anderson | Denver | co | 23
Sam | Jackson | Allentown | PA | 22
(3 rows)

test=> INSERT INTO friend VALUES ('Jim', 'Barnes', 'Ocean City','NJ', 25);
INSERT 19056 1
test=> SELECT * FROM friend;

firstname | Tastname | city | state | age
----------------- B et e s P
Mike | Nichols | Tampa | FL | 19
Cindy | Anderson | Denver | Co | 23
Sam | Jackson | Allentown | PA | 22
Jim | Barnes | Ocean City | NJ | 25
(4 rows)

test=> DELETE FROM friend WHERE Tastname = 'Barnes';

DELETE 1
test=> SELECT * FROM friend;

firstname | Tastname | city | state | age
----------------- e
Mike | Nichols | Tampa | FL | 19
Cindy | Anderson | Denver | cO | 23
Sam | Jackson | Allentown | PA | 22
(3 rows)

Figure 3.12: DELETE example

3.9. DESTROYING TABLES

test=> UPDATE friend SET age = 20 WHERE firstname =
UPDATE 1
test=> SELECT * FROM friend;

firstname | Tastname | city
_________________ e e et ————————————
Cindy | Anderson | Denver
Sam | Jackson | Allentown
Mike | Nichols | Tampa
(3 rows)

Figure 3.13: My first UPDATE

test=> SELECT * FROM friend ORDER BY state;

firstname | Tastname | city
_________________ S SR
Cindy | Anderson | Denver
Mike | Nichols | Tampa
Sam | Jackson | Allentown
(3 rows)

Figure 3.14: Use of ORDER BY

test=> SELECT * FROM friend ORDER BY age DESC;

firstname | Tastname | city
_________________ e e et — ———————————
Cindy | Anderson | Denver
Sam | Jackson | Allentown
Mike | Nichols | Tampa
(3 rows)

Figure 3.15: Reverse ORDER BY

'Mike';

state | age

_______ oo
Co | 23
PA | 22
FL | 20
state | age

_______ oo
Co | 23
FL | 20
PA | 22

state | age

_______ Fommmm
co | 23
PA | 22
FL | 20

22 CHAPTER 3. BASIC SQL COMMANDS

test=> SELECT * FROM friend WHERE age >= 21 ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- e
Cindy | Anderson | Denver | co | 23
Sam | Jackson | Allentown | PA | 22
(2 rows)

Figure 3.16: Use of ORDER BY and WHERE

remove the friend table. Both the table structure and the data contained in the table will be erased.
We will use the friend table in the next chapter, so you should not remove the table at this time.
Remember—to remove only the data in the table without removing the table structure itself, use
DELETE.

3.10 Summary

This chapter has shown the basic operations of any database:
¢ Table creation (CREATE TABLE)
e Table destruction (DROP TABLE)

* Displaying (SELECT)

Adding (INSERT)
* Replacing (UPDATE)

* Removing (DELETE)

This chapter has shown these commands in their simplest forms; real-world queries are much
more complex. The next chapters will show how these simple commands can be used to handle
some very complicated tasks.

Chapter 4

Customizing Queries

This chapter will illustrate additional capabilities of the basic SQL commands.

4.1 Data Types

Table 4.1 lists the most common column data types. Figure 4.1 shows queries using these types.
Notice that numbers do not require quotes, but character strings, dates, and times do require them.

The final SELECT uses psql’s \x display mode.! Without \x, the SELECT would have displayed
too much information to fit on one line. The fields would have wrapped around the edge of the
display, making it difficult to read. The columns would still line up, but there would be other data
in the way. Of course, another solution to field wrapping is to select fewer columns. Remember,
you can select any columns from the table in any order.

Section 9.2 covers column types in more detail.

1See Section 16.1 for a full list of the psql backslash commands.

Category Type Description

character string | CHAR(length) blank-padded string, fixed storage length
VARCHAR(length) variable storage length

number INTEGER integer, +/-2 billion range
FLOAT floating point number, 15-digit precision
NUMERIC(precision, decimal) | number with user-defined precision and decimal

location

date/time DATE date
TIME time
TIMESTAMP date and time

Table 4.1: Common data types

23

24

CHAPTER 4. CUSTOMIZING QUERIES

test=> CREATE TABLE alltypes (

test (>
test (>
test (>
test(>
test (>
test (>
test(>
test (>
test(>);
CREATE

state CHAR(2),

name CHAR(30),
children INTEGER,
distance FLOAT,
budget NUMERIC(16,2),
born DATE,

checkin TIME,

started TIMESTAMP

test=> INSERT INTO alltypes
test-> VALUES (

test(>
test (>
test (>
test (>
test (>
test (>
test (>
test (>

IPAI,

'Hilda Blairwood',

3,
10.7,

4308.20,
'9/8/1974",

'9:00',

'07/03/1996 10:30:00');

INSERT 19073 1
test=> SELECT state, name, children, distance, budget FROM alltypes;

state | name | children | distance | budget
------- L S USRS S P
PA | Hilda Blairwood | 3| 10.7 | 4308.20
(1 row)

test=> SELECT born, checkin, started FROM alltypes;

born

| checkin

| started

____________ e S,
1974-09-08 | 09:00:00 | 1996-07-03 10:30:00-04

(1 row)

test=> \x

Expanded display is on.

test=> SELECT * FROM alltypes;

-[RECORD 1]---------

state | PA

name | Hilda Blairwood
children | 3

distance | 10.7

budget | 4308.20

born | 1974-09-08

checkin | 09:00:00

started | 1996-07-03 10:30:00-04

Figure 4.1: Example of common data types

4.2. QUOTES INSIDE TEXT 25

test=> INSERT INTO friend (firstname, lastname, city, state)
test-> VALUES ('Mark', 'Middleton', 'Indianapolis', 'IN');
INSERT 19074 1

Figure 4.2: Insertion of specific columns

4.2 Quotes Inside Text

Suppose you want to insert the name O’Donnell. You might be tempted to enter it in psql as
'0'Donnel1', but this approach will not work. The presence of a single quote inside a single-quoted
string generates a parser error. One way to place a single quote inside a single-quoted string is to
use two quotes together—for example, '0' 'Donnel1'.? Two single quotes inside a single-quoted
string causes one single quote to be generated. Another option is to use a backslash—for example,
'0\'Donnel1'. The backslash escapes the single quote character.

4.3 Using NULL Values

Let’s return to the INSERT statement described in Section 3.3 on page 14. We will continue to
use the friend table from the previous chapter. In Figure 3.4, we specified a value for each friend
column. Suppose now that we want to insert a new row, but do not want to supply data for all
columns. That is, we want to insert information about Mark, but we do not know Mark’s age.

Figure 4.2 shows this scenario. After the table name, column names appear in parentheses.
These columns will be assigned, in order, to the supplied data values. If we were supplying data
for all columns, we would not need to name them. In this example, however, we must name the
columns. The table has five columns, but we are supplying only four data values.

The column we did not assign was age. The interesting question is, “What is in the age cell for
Mark?” The answer is that the age cell contains a NULL value.

NULL is a special value that is valid in any column. You use it when a valid entry for a field is
not known or not applicable. In the previous example, we wanted to add Mark to the database but
did not know his age. It is difficult to imagine what numeric value could be used for Mark’s age
column. Zero or -1 would be strange age values. Thus, NULL is the appropriate value for his age
column.

Suppose we have a spouse column. What value should be used if someone is not married?
A NULL value would be the proper value. For a wedding anniversary column, unmarried people
would have a NULL value in that field. NULL values are very useful. Before databases supported
NULL values, users would put special values in columns, such as -1 for unknown numbers and
1/1/1900 for unknown dates. NULL values offer a more consistent way to mark such values.

2That is not a double qoute between the O and D, but rather two single quotes.

26 CHAPTER 4. CUSTOMIZING QUERIES

NULL values exhibit special behavior in comparisons. Look at Figure 4.3. First, notice that
the age column for Mark is empty. It is really a NULL. In the next query, because NULL values are
unknown, the NULL row does not appear in the output. The third query often confuses people.®
Why doesn’t the Mark row appear? The age is NULL or unknown, meaning that the database does
not know if it equals 99—and does not guess. It refuses to print it. In fact, no comparison exists
that will produce the NULL row, except the last query shown.

The tests IS NULL and IS NOT NULL are designed specifically to test for the existence of NULL
values. If you are making comparisons on columns that might contain NULL values, you must test
for them specifically.

Figure 4.4 shows an example of such a comparison. We have inserted Jack, but the city and
state were not known, so they are set to NULL. The next query’s WHERE comparison is contrived,
but illustrative. Because city and stafe are both NULL, you might suspect that the Jack row would
be returned. However, because NULL means unknown, we have no way to know whether the two
NULL values are equal. Again, POSTGRESQL does not guess and does not print the result.

One other issue with NULLs needs clarification. In character columns, a NULL is not the same
as a zero-length value. The empty string '' and NULL are different. Figure 4.5 shows an example
highlighting this difference. There are no valid numeric and date blank values, but a character
string can be blank. When viewed in psq1, any blank numeric field must contain a NULL because
no blank number exists. However, there are blank strings, so blank strings and NULL values are
displayed in the same way in psql. Of course, they are not the same, so be careful not to confuse
the meaning of NULL values in character fields.

4.4 Controlling DEFAULT Values

As we learned in the previous section, columns not specified in an INSERT statement are given
NULL values. You can change this assignment by using the DEFAULT keyword. When creating a
table, the keyword DEFAULT and a value can be used next to each column type. The value will
then be used anytime the column value is not supplied in an INSERT. If no DEFAULT is defined, a
NULL is used for the column. Figure 4.6 shows a typical use of default values. The default for the
timestamp column is actually a call to an internal POSTGRESQL variable that returns the current
date and time.

4.5 Column Labels

You might have noticed the text that appears at the top of each column in the SELECT output—the
column label. The label usually is the name of the selected column. However, you can control
the text that appears at the top of each column by using the AS keyword. For example, Figure 4.7
replaces the default column label firstname with the column label buddy. You might have noticed

3The <> means not equal.

4.5. COLUMN LABELS

test=> SELECT * FROM friend ORDER BY age DESC;

firstname | Tastname | city | state | age
----------------- e
Cindy | Anderson | Denver | co | 23
Sam | Jackson | Allentown | PA | 22
Mike | Nichols | Tampa | FL | 20
Mark | Middleton | Indianapolis | IN
(4 rows)
test=> SELECT * FROM friend WHERE age > O ORDER BY age DESC;

firstname | Tastname | city | state | age
----------------- Fomm e e - -
Cindy | Anderson | Denver | Co | 23
Sam | Jackson | Allentown | PA | 22
Mike | Nichols | Tampa | FL | 20
(3 rows)
test=> SELECT * FROM friend WHERE age <> 99 ORDER BY age DESC;

firstname | Tastname | city | state | age
----------------- B e e e T
Cindy | Anderson | Denver | Co | 23
Sam | Jackson | Allentown | PA | 22
Mike | Nichols | Tampa | FL | 20
(3 rows)

test=> SELECT * FROM friend WHERE age IS NULL ORDER BY age DESC;

firstname | Tastname | city | state | age
----------------- e
Mark | Middleton | Indianapolis | IN
(1 row)

Figure 4.3: NULL handling

27

28

CHAPTER 4. CUSTOMIZING QUERIES

test=> INSERT INTO friend

test-> VALUES ('Jack', 'Burger', NULL, NULL, 27);
INSERT 19075 1

test=> SELECT * FROM friend WHERE city = state;
firstname | Tastname | city | state | age
----------- e it itttk etttk

(0 rows)

Figure 4.4: Comparison of NULL fields

test=> CREATE TABLE nulltest (name CHAR(20), spouse CHAR(20));
CREATE
test=> INSERT INTO nulltest VALUES ('Andy', '');
INSERT 19086 1
test=> INSERT INTO nulltest VALUES ('Tom', NULL);
INSERT 19087 1
test=> SELECT * FROM nulltest ORDER BY name;
name | spouse

(2 rows)

test=> SELECT * FROM nulltest WHERE spouse = '';
name | spouse

test=> SELECT * FROM nulltest WHERE spouse IS NULL;
name | spouse

Figure 4.5: NULL values and blank strings

4.5. COLUMN LABELS

test=> CREATE TABLE account (

test(> name CHAR(20),

test(> balance NUMERIC(16,2) DEFAULT 0,

test(> active CHAR(1) DEFAULT 'Y',

test(> created TIMESTAMP DEFAULT CURRENT TIMESTAMP
test(>);

CREATE

test=> INSERT INTO account (name)
test-> VALUES ('Federated Builders');
INSERT 19103 1
test=> SELECT * FROM account;
name | balance | active | created
---------------------- Fommmmm et mmm e e e e

Federated Builders | 0.00 | Y | 1998-05-30 21:37:48-04
(1 row)

Figure 4.6: Using DEFAULT values

test=> SELECT firstname AS buddy FROM friend ORDER BY buddy;
buddy

Figure 4.7: Controlling column labels

30 CHAPTER 4. CUSTOMIZING QUERIES

test=> SELECT 1 + 3 AS total;
total

Figure 4.8: Computation using a column label

test=> -- a single Tine comment
test=> /* a multiline
test*> comment */

Figure 4.9: Comment styles

that the query in Figure 2.3 on page 7 has the column label ?2column?. The database server returns
this label when there is no suitable label. In that case, the result of an addition does not have an
appropriate label. Figure 4.8 shows the same query with an appropriate label added using AS.

4.6 Comments

POSTGRESQL allows you to place any text into psql for use as a comment. Two comment styles
are possible. The presence of two dashes (- -) marks all text to the end of the line as a comment.
POSTGRESQL also understands C-style comments, where the comment begins with slash-asterisk
(/*) and ends with asterisk-slash (*/). Figure 4.9 shows both comment styles. Notice how the
multiline comment is marked by a psql command prompt of *>. It is a reminder that you are in
a multiline comment, just as -> is a reminder that you are in a multiline statement, and '> is a
reminder that you are in a multiline quoted string.

4.7 AND/OR Usage

Until now, we have used only simple WHERE clause tests. In the following sections, we will
demonstrate how to perform more complex WHERE clause testing.

Complex WHERE clause tests are done by connecting simple tests using the words AND and
OR. For illustration, new people have been inserted into the friend table, as shown in Figure 4.10.
Selecting certain rows from the table will require more complex WHERE conditions. For example,
if we wanted to select Sandy Gleason by name, it would be impossible using only one comparison

4.7. AND/OR USAGE

test=> DELETE FROM friend;

DELETE 6

test=> INSERT INTO friend

test-> VALUES ('Dean', 'Yeager', 'Plymouth', 'MA', 24);
INSERT 19744 1

test=> INSERT INTO friend

test-> VALUES ('Dick', 'Gleason', 'Ocean City', 'NJ', 19);
INSERT 19745 1

test=> INSERT INTO friend

test-> VALUES ('Ned', 'Millstone', 'Cedar Creek', 'MD', 27);
INSERT 19746 1

test=> INSERT INTO friend

test-> VALUES ('Sandy', 'Gleason', 'Ocean City', 'NJ', 25);
INSERT 19747 1

test=> INSERT INTO friend

test-> VALUES ('Sandy', 'Weber', 'Boston', 'MA', 33);
INSERT 19748 1

test=> INSERT INTO friend

test-> VALUES ('Victor', 'Tabor', 'Williamsport', 'PA', 22);
INSERT 19749 1

test=> SELECT * FROM friend ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- B s e it T S
Dean | Yeager | Plymouth | MA | 24
Dick | Gleason | Ocean City | NJ | 19
Ned | Millstone | Cedar Creek | MD | 27
Sandy | Gleason | Ocean City | NJ | 25
Sandy | Weber | Boston | MA | 33
Victor | Tabor | Williamsport | PA | 22
(6 rows)

Figure 4.10: New friends

31

32 CHAPTER 4. CUSTOMIZING QUERIES

test=> SELECT * FROM friend
test-> WHERE firstname = 'Sandy' AND Tastname = 'Gleason';

firstname | Tastname | city | state | age
----------------- e
Sandy | Gleason | Ocean City | NJ | 25
(1 row)

Figure 4.11: WHERE test for Sandy Gleason

test=> SELECT * FROM friend
test-> WHERE state = 'NJ' OR state = 'PA'
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- e
Dick | Gleason | Ocean City | NJ | 19
Sandy | Gleason | Ocean City | NJ | 25
Victor | Tabor | Williamsport | PA | 22
(3 rows)

Figure 4.12: Friends in New Jersey and Pennsylvania

in the WHERE clause. If we tested for firstname = 'Sandy', we would select both Sandy Gleason
and Sandy Weber. If we tested for Tastname = 'Gleason', we would get both Sandy Gleason and her
brother Dick Gleason. The proper approach is to use AND to test both firstname and lastname. This
query is shown in Figure 4.11. The AND combines the two needed comparisons.

A similar comparison could be used to select friends living in Cedar Creek, Maryland. Other
friends could live in Cedar Creek, Ohio, so the comparison city = 'Cedar Creek' is not enough.
The proper testis city = 'Cedar Creek' AND state = 'MD'.

Another complex test would be to select people who live in the state of New Jersey (NJ) or
Pennsylvania (PA). Such a comparison requires the use of OR. The test state = 'NJ' OR state =
'PA' would return the desired rows, as shown in Figure 4.12.

An unlimited number of AND and OR clauses can be linked together to perform complex
comparisons. When ANDs are linked with other ANDs, there is no possibility for confusion. The
same is true of ORs. On the other hand, when ANDs and ORs are both used in the same query, the
results can be confusing. Figure 4.13 shows such a case. You might suspect that it would return
rows with firstname equal to Victor and state equal to PA or NJ. In fact, the query returns rows
with firstname equal to Victor and stafe equal to PA, or state equal to NJ. In this case, the AND is

4.8. RANGE OF VALUES 33

test=> SELECT * FROM friend
test-> WHERE firstname = 'Victor' AND state = 'PA' OR state = 'NJ'
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- e
Dick | Gleason | Ocean City | NJ | 19
Sandy | Gleason | Ocean City | NJ | 25
Victor | Tabor | Williamsport | PA | 22
(3 rows)

Figure 4.13: Incorrectly mixing AND and OR clauses

test=> SELECT * FROM friend
test-> WHERE firstname = 'Victor' AND (state = 'PA' OR state = 'NJ')
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- e
Victor | Tabor | Williamsport | PA | 22
(1 row)

Figure 4.14: Correctly mixing AND and OR clauses

evaluated first, then the OR. When mixing ANDs and ORs, it is best to collect the ANDs and ORs
into common groups using parentheses. Figure 4.14 shows the proper way to enter this query.
Without parentheses, it is very difficult to understand a query with mixed ANDs and ORs.

4.8 Range of Values

Suppose we want to see all friends with ages between 22 and 25. Figure 4.15 shows two queries
that produce this result. The first query uses AND to perform two comparisons that both must be
true. We used <= and >= so the age comparisons included the limiting ages of 22 and 25. If we used
< and >, the ages 22 and 25 would not have been included in the output. The second query uses
BETWEEN to generate the same comparison. BETWEEN comparisons include the limiting values in
the result.

34

test=> SELECT *
test-> FROM friend

CHAPTER 4. CUSTOMIZING QUERIES

Comparison Operator
less than <
less than or equal <=
equal =
greater than or equal >=
greater than >
not equal <>or!=

Table 4.2: Comparison operators

test-> WHERE age >= 22 AND age <= 25
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- e
Dean | Yeager | Plymouth | MA | 24
Sandy | Gleason | Ocean City | NJ | 25
Victor | Tabor | Williamsport | PA | 22
(3 rows)
test=> SELECT *
test-> FROM friend
test-> WHERE age BETWEEN 22 AND 25
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- B e e it T
Dean | Yeager | Plymouth | MA | 24
Sandy | Gleason | Ocean City | NJ | 25
Victor | Tabor | Williamsport | PA | 22
(3 rows)

Figure 4.15: Selecting a range of values

4.9. LIKE COMPARISON 35

test=> SELECT * FROM friend
test-> WHERE firstname LIKE 'D%'
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- O
Dean | Yeager | Plymouth | MA | 24
Dick | Gleason | Ocean City | NJ | 19
(2 rows)

Figure 4.16: Firstname begins with D

Comparison Operation
begins with D LIKE 'D%'
contains a D LIKE '%D%'
has D in second position LIKE ' D%'
begins with D and contains e LIKE 'D%e%'
begins with D, contains e, then f | LIKE 'D%e%f%'
begins with non-D NOT LIKE 'D%'

Table 4.3: LIKE comparisons

4.9 LIKE Comparison

Greater than and less than comparisons are possible using the operators shown in Table 4.2. Even
more complex comparisons can be made. For instance, users often need to compare character
strings to see if they match a certain pattern. Sometimes they want only fields that begin with
a certain letter or that contain a certain word. The LIKE keyword allows such comparisons. The
query in Figure 4.16 returns rows where the firstname begins with D. The percent symbol (%) means
that any characters can follow the D. Thus the query performs the test firstname LIKE 'D%'.

The test firstname LIKE '%D%' returns those rows where firstname contains D anywhere in the
field, not just at the beginning. The effect of having a % before and after a character is that the
character can appear anywhere in the string.

More complex tests can be performed with LIKE, as shown in Table 4.3. While the percent
symbol (%) matches an unlimited number of characters, the underscore () matches only a single
character. The underscore allows any single character to appear in that position. To test whether
a field does not match a pattern, use NOT LIKE. To test for an actual percent symbol (%), use
backslash-percent (\%). To test for an actual underscore (_), use backslash-underscore (\).

36 CHAPTER 4. CUSTOMIZING QUERIES

Comparison ‘ Operator
regular expression -
regular expression, case-insensitive o
not equal to regular expression 1"
not equal to regular expression, case-insensitive 17*

Table 4.4: Regular expression operators

Test ‘ Special Characters
start "
end $
any single character .
set of characters [cec]
set of characters not equal ["cec]
range of characters [c-c]
range of characters not equal ["c-c]
zero or one of previous character ?
zero or multiple of previous characters *
one or multiple of previous characters +
OR operator |

Table 4.5: Regular expression special characters

Attempting to find all character fields that end with a certain character can be difficult. For
CHAR() columns, like firstname, trailing spaces make trailing comparisons difficult with LIKE. Other
character column types do not use trailing spaces. Those can, for example, use the test colname
LIKE '%g' to find all rows that end with g. See Section 9.2 for complete coverage of character data

types.

4.10 Regular Expressions

Regular expressions allow more powerful comparisons than LIKE and NOT LIKE. Regular expression
comparisons are a unique feature of POSTGRESQL. They are very common in Unix, such as in the
Unix grep command.*

Table 4.4 lists the regular expression operators, and Table 4.5 lists the regular expression
special characters. Note that the caret () has a different meaning outside and inside square
brackets ([1).

4Actually, in POSTGRESQL, regular expressions are like egrep extended regular expressions.

4.11. CASE CLAUSE

37
Test Operation
begins with D T pe
contains D “'p!
D in second position el
begins with D and contains e T 17D.xe!
begins with D, contains e, and then f "D re *f!

contains A, B, C, or D
contains A or a

does not contain D
does not begin with D

~ '[A-D] "' or " '[ABCD]"'
“* 'a'or ~ '[Aa]"
17 'p!
1“'“D'or ~'"["D]"'

begins with D, with one optional leading space R
begins with D, with optional leading spaces Tr !
begins with D, with at least one leading space Tt 4!
ends with G, with optional trailing spaces I S

Table 4.6: Examples of regular expressions

Although regular expressions are powerful, they can be complex to create. Table 4.6 shows
some examples, and Figure 4.17 shows selected queries using regular expressions. For a descrip-
tion of each query, see the comment above it.

Figure 4.18 shows two more complex regular expressions. The first query demonstrates how
to properly test for a trailing n. Because CHAR() columns contain trailing spaces to fill the column,
you must test for possible trailing spaces. (See Section 9.2 for complete coverage on character
data types.) The second query might seem surprising. Some might think that it returns rows
that do not contain an S. Actually, it returns all rows that have any character that is not an S. For
example, Sandy contains characters that are not S, such as g, #, d, and y, so that row is returned.
The test would prevent rows containing only S’s from being printed.

You can also test for the literal characters listed in Table 4.5. Use of a backslash removes any
special meaning from the character that follows it. For example, to test for a dollar sign, use \$.
To test for an asterisk, use *. To test for a literal backslash, use two backslashes (\\).

Because regular expressions are so powerful, creating them can be challenging. Try some
queries on the friend table until you are comfortable with regular expression comparisons.

4.11 CASE Clause

Many programming languages have conditional statements, stating if condition is true then do
something, else do something else. This kind of structure allows execution of statements based on
some condition. Although SQL is not a procedural programming language, it does allow conditional

test=> SELECT * FROM friend
test-> ORDER BY firstname;

firstname

(6 rows)

lastname

Yeager
Gleason
Millstone
Gleason
Weber
Tabor

test=> -- firstname begins with 'S’
test=> SELECT * FROM friend

test-> WHERE firstname ~

Y

test-> ORDER BY firstname;

firstname

_________________ .

Sandy
(2 rows)

Tastname

Gleason
Weber

Plymouth
Ocean City
Cedar Creek
Ocean City
Boston
Williamsport

Boston

test=> -- firstname has an e in the second position
test=> SELECT * FROM friend

test-> WHERE firstname ~

.e

test-> ORDER BY firstname;

firstname

Ned
(2 rows)

lastname

Yeager
Millstone

PTymouth
Cedar Creek

test=> -- firstname contains b, B, c, or C
test=> SELECT * FROM friend
test-> WHERE firstname ~* '[bc]'
test-> ORDER BY firstname;

firstname

Victor
(2 rows)

lastname

Gleason
Tabor

Ocean City
Williamsport

test=> -- firstname does not contain s or S
test=> SELECT * FROM friend
test-> WHERE firstname ! ™* 's'
test-> ORDER BY firstname;

firstname

Victor
(4 rows)

Tastname

Yeager
Gleason
Millstone
Tabor

Plymouth
Ocean City
Cedar Creek
Williamsport

CHAPTER 4. CUSTOMIZING QUERIES

| state | age
Fommm - o
| MA | 24
[N | 19
| M | 27
| N | 25
| MA | 33
| PA | 22
| state | age
oo - o
N | 25
| MA | 33
| state | age
S S
| MA | 24
| M | 27
| state | age
Fommm - o
N | 19
| PA | 22
| state | age
S S
| MA | 24
[N | 19
| M | 27
| PA | 22

Figure 4.17: Regular expression sample queries

4.11. CASE CLAUSE

test=> -- firstname ends with n
test=> SELECT * FROM friend
test-> WHERE firstname ~ 'n *$§'
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- e
Dean | Yeager | Plymouth | MA | 24
(1 row)
test=> -- firstname contains a non-S character
test=> SELECT * FROM friend
test-> WHERE firstname ~ '["S]'
test-> ORDER BY firstname;

firstname | Tastname | city | state | age
----------------- B e e
Dean | Yeager | Plymouth | MA | 24
Dick | Gleason | Ocean City | NJ | 19
Ned | Millstone | Cedar Creek | MD | 27
Sandy | Gleason | Ocean City | NJ | 25
Sandy | Weber | Boston | MA | 33
Victor | Tabor | Williamsport | PA | 22
(6 rows)

Figure 4.18: Complex regular expression queries

40 CHAPTER 4. CUSTOMIZING QUERIES

test=> SELECT firstname,

test-> age,

test-> CASE

test-> WHEN age >= 21 THEN 'adult'
test-> ELSE 'minor'

test-> END

test-> FROM friend
test-> ORDER BY firstname;

firstname | age | case

_________________ O H
Dean | 24 | adult
Dick | 19 | minor
Ned | 27 | adult
Sandy | 25 | adult
Sandy | 33 | adult
Victor | 22 | adult
(6 rows)

Figure 4.19: CASE example

control over the data returned from a query. The WHERE clause uses comparisons to control row
selection. The CASE statement allows comparisons in column output. Figure 4.19 shows a query
using CASE to create a new output column containing adult or minor as appropriate, based on the
age field. Of course, the values adult and minor do not appear in the table friend. The CASE clause
allows the creation of those conditional strings.

Figure 4.20 shows a more complex example. It shows a query with multiple WHEN clauses.
The AS clause is used to label the column with the word distance. Although only SELECT examples
are shown, CASE can be used in UPDATE and other complicated situations. CASE allows the creation
of conditional values, which can be used for output or for further processing in the same query.

4.12 Distinct Rows

It is often desirable to return the results of a query with no duplicates. The keyword DISTINCT
prevents duplicates from being returned. Figure 4.21 shows the use of DISTINCT to prevent
duplicate states and duplicate city and state combinations. Notice that DISTINCT operates only on
the columns selected in the query. It does not compare nonselected columns when determining
uniqueness. Section 5.2 explains how counts can be generated for each of the distinct values.

4.12. DISTINCT ROWS

test=> SELECT firstname,

test-> state,

test-> CASE

test-> WHEN state = 'PA' THEN 'close'

test-> WHEN state = 'NJ' OR state = 'MD' THEN 'far'
test-> ELSE 'very far'

test-> END AS distance

test-> FROM friend
test-> ORDER BY firstname;

firstname | state | distance
_________________ I S
Dean | MA | very far
Dick | NJ | far
Ned | MD | far
Sandy | NJ | far
Sandy | MA | very far
Victor | PA | close
(6 rows)

Figure 4.20: Complex CASE example

42

CHAPTER 4. CUSTOMIZING QUERIES

test=> SELECT state FROM friend ORDER BY state;

state

PA
(6 rows)

test=> SELECT DISTINCT state FROM friend ORDER BY state;

state

PA
(4 rows)

test=> SELECT DISTINCT city, state FROM friend ORDER BY state, city;

city

Boston
PTymouth
Cedar Creek
Ocean City
Williamsport
(5 rows)

state

Figure 4.21: DISTINCT prevents duplicates

4.13. FUNCTIONS AND OPERATORS 43

Function ‘ SET option

DATESTYLE | DATESTYLE TO 'ISO’|’POSTGRES’ |’SQL | 'US’|
"NONEUROPEAN’ |"EUROPEAN’ |’ GERMAN’

TIMEZONE | TIMEZONE TO 'value’

Table 4.7: SET options

4.13 Functions and Operators

Many functions and operators are available in POSTGRESQL. Function calls can take zero, one, or
more arguments and return a single value. You can list all functions and their arguments using
psql’s \df command. You can use psql’s \dd command to display comments about any specific
function or group of functions, as shown in Figure 4.22.

Operators differ from functions in the following ways:

* Operators are symbols, not names.
* Operators usually take two arguments.

* Arguments appear to the left and right of the operator symbol.

For example, + is an operator that takes one argument on the left and one on the right, and returns
the sum of the arguments. Psql’s \do command lists all POSTGRESQL operators and their argu-
ments. Figure 4.23 shows a listing of operators and examples of their use. The standard arithmetic
operators—addition (+), subtraction (-), multiplication (*), division (/), modulo/remainder (%), and
exponentiation (*)—honor the standard precedence rules. That is, exponentiation is performed
first; multiplication, division, and modulo second; and addition and subtraction last. You can use
parentheses to alter this precedence. Other operators are evaluated in a left-to-right manner,
unless parentheses are present.

4.14 SET, SHOW, and RESET

The SET command allows you to change various POSTGRESQL parameters. The changes remain in
effect for the duration of the database connection. Table 4.7 shows two common parameters that
can be controlled with SET.

The SET DATESTYLE command controls the appearance of dates when printed in psql, as seen
in Table 4.8. It controls the format (slashes, dashes, or year first) and the display of the month
first (US) or day first (European). The command SET DATESTYLE TO 'SQL,US’ would most likely
be selected by users in the United States, while Europeans might prefer SET DATESTYLE TO

44

test=> \df

Result | Function
___________ N
_bpchar | _bpchar
_varchar | _varchar

floatd | abs

float8 | abs

test=> \df int

CHAPTER 4.
List of functions
| Arguments
_____ o o 2
| _bpchar int4
| _varchar int4
| float4
| float8

List of functions

Result | Function | Arguments
__________ e e e e e —————
int2 | int2 | floatd

int2 | int2 | float8

int2 | int2 | int2

int2 | int2 | int4
test=> \df upper

List of functions
Result | Function | Arguments
________ I K,
text | upper | text
(1 row)
test=> \dd upper
Object descriptions

Name | Object | Description
_______ I SR

upper | function | uppercase

(1 row)

test=> SELECT upper('jacket');

upper

JACKET
(1 row)

test=> SELECT sqrt(2.0);
sqrt

1.4142135623731
(1 row)

-- square root

Figure 4.22: Function examples

CUSTOMIZING QUERIES

4.14. SET, SHOW, AND RESET

test=> \do
List of operators

Op | Left arg | Right arg | Result | Description
————— L e ittt ittt Rttt
I | int2 | | int4 |

' | intd | | int4 | factorial

I | int8 | | int8 | factorial

[N | int2 | int4 |
test=> \do /

List of operators

Op | Left arg | Right arg | Result | Description
e o o o
/ | box | point | box | divide box by point (scale)
/ | char | char | char | divide

/ | circle | point | circle | divide

/ | floatd | float4 | floatd | divide
test=> \do ~

List of operators

Op | Left arg | Right arg | Result | Description
P e ettt Fommmm— e Fommmee— R ettt

~ | float8 | float8 | float8 | exponentiation (x"y)

(1 row)
test=> \dd ~

Object descriptions

Name | Object | Description
______ Fomm e et e ———————

| operator | exponentiation (x"y)
(1 row)

test=> SELECT 2 + 3 ~ 4;
?2column?

Figure 4.23: Operator examples

46 CHAPTER 4. CUSTOMIZING QUERIES

Output for
Style ‘ Optional Ordering | February 1, 1983
ISO 1983-02-01
POSTGRES | US or NONEUROPEAN | 02-01-1983
POSTGRES | EUROPEAN 01-02-1983
SQL US or NONEUROPEAN | 02 /01/1983
SQL EUROPEAN 01/02/1983
German 01.02.1983

Table 4.8: DATESTYLE output

test=> SHOW DATESTYLE;

NOTICE: DateStyle is ISO with US (NonEuropean) conventions
SHOW VARIABLE

test=> SET DATESTYLE TO 'SQL, EUROPEAN';

SET VARIABLE

test=> SHOW DATESTYLE;

NOTICE: DateStyle is SQL with European conventions

SHOW VARIABLE

test=> RESET DATESTYLE;

RESET VARIABLE

test=> SHOW DATESTYLE;

NOTICE: DateStyle is ISO with US (NonEuropean) conventions
SHOW VARIABLE

Figure 4.24: SHOW and RESET examples

"POSTGRES,EUROPEAN’. The ISO datestyle and GERMAN datestyle are not affected by any of the
other options.

The TIMEZONE defaults to the time zone of the server or the PGTZ environment variable. The
psql client might be in a different time zone, so SET TIMEZONE allows this parameter to be changed
inside psql. See the SET manual page for a full list of SET options.

The SHOW command is used to display the current database session parameters. The RESET
command allows a session parameter to be reset to its default value. Figure 4.24 shows examples
of these commands.”

5Your site defaults may be different.

4.15. SUMMARY 47

4.15 Summary

This chapter has shown how simple commands can be enhanced using features like DISTINCT,
CASE, and complex WHERE clauses. These features give users great control over the execution
of queries. They were chosen by committees as important features that should be in all SQL
databases. Although you may never use all of the features mentioned in this chapter, many of them
will prove valuable when solving real-world problems.

Chapter 5

SQL Aggregates

Users often need to summarize database information. Instead of seeing all rows, they want just
a count or total. This type of operation is called aggregation or gathering together. This chapter
focuses on POSTGRESQL s ability to generate summarized database information using aggregates.

5.1 Aggregates

Table 5.1 lists five aggregates. COUNT operates on entire rows; the other four operate on specific
columns. Figure 5.1 shows examples of aggregate queries.

Aggregates can be combined with a WHERE clause to produce more complex results. For
example, the query SELECT AVG(age) FROM friend WHERE age >= 21 computes the average age of
people age 21 or older. This prevents Dick Gleason from being included in the average computation
because he is younger than 21. The column label defaults to the name of the aggregate. You can
use AS to change it, as described in Section 4.5.

NULL values are not processed by most aggregates, such as MAX(), SUM(), and AVG(); they are
simply ignored. However, if a column contains only NULL values, the result is NULL, not zero.
COUNT(*) is different in this respect. It does count NULL values because it looks at entire rows

Aggregate Function
COUNT(¥) count of rows
SUM(colname) | total
MAX(colname) | maximum
MIN(colname) | minimum
AVG(colname) | average

Table 5.1: Aggregates

49

CHAPTER 5. SQL AGGREGATES

test=> SELECT * FROM friend ORDER BY firstname;

firstname | lastname | city | state | age
----------------- S S
Dean | Yeager | Plymouth | MA | 24
Dick | Gleason | Ocean City | NJ | 19
Ned | Millstone | Cedar Creek | MD | 27
Sandy | Gleason | Ocean City | NJ | 25
Sandy | Weber | Boston | MA | 33
Victor | Tabor | Williamsport | PA | 22
(6 rows)

test=> SELECT COUNT(*) FROM friend;
count

test=> SELECT SUM(age) FROM friend;
sum

test=> SELECT MAX(age) FROM friend;
max

33
(1 row)

test=> SELECT MIN(age) FROM friend;
min

19
(1 row)

test=> SELECT AVG(age) FROM friend;
avg

Figure 5.1: Examples of Aggregates

5.2. USING GROUP BY 51

using the asterisk(*). It does not examine individual columns like the other aggregates. To find
the COUNT of all non-NULL values in a certain column, use COUNT(colname). To find the number of
distinct values in a column, use COUNT(DISTINCT colname).

Figure 5.2 illustrates aggregate handling of NULL values. First, a single row containing a NULL
column is used to show aggregates returning NULL results. Two versions of COUNT on a NULL
column are shown. Notice that COUNT never returns a NULL value. Then, a single non-NULL row is
inserted, and the results shown. Notice the AVG() of 3 and NULL is 3, not 1.5, illustrating the NULL
value is not considered in the average computation. Psql’s \da command lists all of the aggregates
supported by POSTGRESQL.

5.2 Using GROUP By

Simple aggregates return one row as a result. It is often desirable, however, to apply an aggregate
to groups of rows. In queries using aggregates with GROUP BY, the aggregate is applied to rows
grouped by another column in the table. For example, SELECT COUNT(*) FROM friend returns the
total number of rows in the table. The query in Figure 5.3 shows the use of GROUP BY to count
the number of people in each state. With GROUP BY, the table is split up into groups by sfate, and
COUNT(*) is applied to each group in turn.

The second query shows the minimum, maximum, and average ages of the people in each state.
It also shows an ORDER BY operation carried out on the aggregate column. Because the column is
the fourth one in the result, you can identify it by the number 4. Using ORDER BY avg would have
worked as well.

You can GROUP BY more than one column, as shown in Figure 5.4. GROUP BY collects all NULL
values into a single group.

5.3 Using HAVING

One more aggregate capability is often overlooked—the HAVING clause. HAVING allows a user to
perform conditional tests on aggregate values. It is often employed in conjunction with GROUP BY.
With HAVING, you can include or exclude groups based on the aggregate value for that group. For
example, suppose you want to know all states in which you have more than one friend. Looking at
the first query in Figure 5.3, you can see exactly which states have more than one friend. HAVING
allows you to test the count column, as shown in Figure 5.5. Aggregates cannot be used in a WHERE
clause; they are valid only inside HAVING.

5.4 Query Tips

In Figures 5.3 and 5.5, the queries are spread over several lines. When a query has several
clauses, such as FROM, WHERE, and GROUP BY, it is best to place each clause on a separate

52

CHAPTER 5. SQL AGGREGATES

test=> CREATE TABLE aggtest (col INTEGER);
CREATE

test=> INSERT INTO aggtest VALUES (NULL);
INSERT 19759 1
test=> SELECT SUM(col) FROM aggtest;

sum

(1 row)

test=> SELECT MAX(col) FROM aggtest;
max

(1 row)

test=> SELECT COUNT(*) FROM aggtest;
count

count

test=> INSERT INTO aggtest VALUES (3);
INSERT 19760 1

test=> SELECT AVG(col) FROM aggtest;
avg

count

count

Figure 5.2: Aggregates and NULL values

5.4. QUERY TIPS

test=> SELECT state, COUNT(*)
test-> FROM friend

test-> GROUP BY state;

state | count

test=> SELECT state, MIN(age), MAX(age), AVG(age)
test-> FROM friend

test-> GROUP BY state

test-> ORDER BY 4 DESC;

state

------- L e e

MA
MD
NJ

28
27
22
22

| min | max | avg
| 24 | 33|

| 27 | 27 |

| 19 | 25|

| 22| 22|

)

Figure 5.3: Aggregate with GROUP BY

53

54

CHAPTER 5. SQL AGGREGATES

test=> SELECT city, state, COUNT(*)
test-> FROM friend

test-> GROUP BY state, city

test-> ORDER BY 1, 2;

city | state | count
_________________ e S
Boston | MA | 1
Cedar Creek | MD | 1
Ocean City | NJ | 2
Plymouth | MA | 1
Williamsport | PA | 1
(5 rows)

Figure 5.4: GROUP BY with two columns

test=> SELECT state, COUNT(*)
test-> FROM friend

test-> GROUP BY state

test-> HAVING COUNT(*) > 1
test-> ORDER BY state;

state | count

_______ oo
MA | 2
N 2

(2 rows)

Figure 5.5: HAVING

5.5. SUMMARY 55

line. This convention makes queries easier to understand. Clear queries also use appropriate
capitalization.

In a test database, mistakes do not create a problem. In a live production database, however,
one incorrect query can cause great difficulty. It takes five seconds to issue an erroneous query,
and sometimes five days to recover from it. Double-check your queries before executing them.
This consideration is especially important for UPDATE, DELETE, and INSERT queries, because they
modify the database. Also, before performing an UPDATE or DELETE, do a SELECT or SELECT
COUNT(*) with the same WHERE clause. Make sure the SELECT result is reasonable before doing
the UPDATE or DELETE.

5.5 Summary

Sometimes users want less output rather than more. They want a total, count, average, maximum,
or minimum value for a column. Aggregates make this calculation possible. They aggregate data
into fewer rows and then send the result to the user.

Chapter 6

Joining Tables

This chapter discusses how to store data using multiple tables. Both multitable storage and
multitable queries are fundamental to relational databases.

We start this chapter by examining table and column references, which are important in
multitable queries. Then, we cover the advantages of splitting data into multiple tables. Next,
we introduce an example based on a mail-order company, showing table creation, insertion, and
queries using joins. Finally, we explore a variety of join types.

6.1 Table and Column References

Before dealing with joins, we must mention one important feature. Up to this point, all queries
have involved a single table. When a query involves multiple tables, column names can become
confusing. Unless you are familiar with each table, it is difficult to know which column names
belong to which tables. Sometimes two tables may use the same column name. For these reasons,
SQL allows you to fully qualify column names by preceding the column name with the table name.
Figure 6.1 shows an example of table name prefixing. In the figure, the first query has unqualified
column names. The second query is the same, but with fully qualified column names. A period
separates the table name from the column name.

The final query in Figure 6.1 shows another feature. Instead of specifying the table name, you
can create a fable alias to take the place of the table name in the query. The alias name follows the
table name in the FROM clause. In this example, f is used as an alias for the friend table. While
these features are not important in single table queries, they are useful in multitable queries.

6.2 Joined Tables

In our friend example, splitting data into multiple tables makes little sense. However, in cases
where we must record information about a variety of things, multiple tables have benefits. Consider

o7

58 CHAPTER 6. JOINING TABLES

test=> SELECT firstname FROM friend WHERE state = 'PA';
firstname

Victor
(1 row)

test=> SELECT friend.firstname FROM friend WHERE friend.state = 'PA';
firstname

test=> SELECT f.firstname FROM friend f WHERE f.state = 'PA';
firstname

Figure 6.1: Qualified column names

6.2. JOINED TABLES 59

Customer Employee Part

Salesorder

Figure 6.2: Joining tables

a company that sells parts to customers through the mail. Its database has to record information
about many things: customers, employees, sales orders, and parts. It is obvious that a single table
cannot hold these different types of information in an organized manner. Therefore, we create
four tables: customer, employee, salesorder, and part. Unfortunately, putting information in different
tables also causes problems. How do we record which sales orders belong to which customers?
How do we record the parts for the sales orders? How do we record which employee received
the sales order? The solution is to assign unique numbers to every customer, employee, and part.
When we want to record the customer in the salesorder table, for example, we put the customer’s
number in the salesorder table. When we want to record which employee took the order, we put the
employee’s number in the salesorder table. When we want to record which part has been ordered,
we put the part number in the salesorder table.

Breaking up the information into separate tables allows us to keep detailed information about
customers, employees, and parts. It also allows us to refer to those specific entries as many times
as needed by using a unique number. Figure 6.2 illustrates the joining of the separate tables we
will use.

People might question the choice of using separate tables. While not necessary, it is often
useful. Without a separate customer table, every piece of information about a customer would
have to be stored in the salesorder table every time a salesorder row was added. The customer’s
name, telephone number, address, and other information would have to be repeated. Any change
in customer information, such as a change in telephone number, would have to be performed in
all places in which that information is stored. With a customer table, the information is stored in
one place, and each salesorder points to the customer table. This approach is more efficient, and
it allows for easier administration and data maintenance. The advantages of using multiple tables
include the following:

60 CHAPTER 6. JOINING TABLES

» Easier data modification
» Easier data lookup
* Data stored in only one place

* Less storage space required

The only time duplicate data should #of be moved to a separate table is when all of the following
conditions are present:

* The time required to perform a join is prohibitive.
* Data lookup is unnecessary.
* Duplicate data require little storage space.

* Data are very unlikely to change.

The customer, employee, part, and salesorder example clearly benefits from multiple tables. The
process of distributing data across multiple tables to prevent redundancy is called data normaliza-
tion.

6.3 Creating Joined Tables

Figure 6.3 shows the SQL statements needed to create the tables in our mail-order example.'
The customer, employee, and part tables all have a column to hold their unique identification
numbers. The salesorder’ table includes columns to hold the customer, employee, and part
numbers associated with a particular sales order. For the sake of simplicity, we will assume that
each salesorder entry contains only one part number.

We have used underscore () to allow the use of multiple words in column names—for example,
customer_id. This is a common practice. You could enter the column as CustomerId, but POST-
GRESQL converts all identifiers, such as column and table names, to lowercase; thus the actual
column name becomes customerid, which is not very clear. The only way to define nonlowercase
column and table names is to use double quotes. Double quotes preserve any capitalization you
supply. You can even have spaces in table and column names if you surround the name with double
quotes (")—for example, "customer id". If you decide to use this feature, you must put double
quotes around the table or column name every time it is referenced. Obviously, this practice can
be cumbersome.

n the real world, the zame columns would be much longer, perhaps CHAR(60) or CHAR(180). You should base the length on
the longest name you may ever wish to store. Short names are used here so they display properly in the examples.

2A table cannot be called order. The word order is a reserved keyword, for use in the ORDER BY clause. Reserved keywords
are not available as table or column names.

6.3. CREATING JOINED TABLES

test=> CREATE TABLE customer (

test(> customer_id INTEGER,
test(> name CHAR(30),
test(> telephone CHAR(20),
test(> street CHAR(40),
test(> city CHAR(25),
test(> state CHAR(2),
test(> zipcode CHAR(10),
test(> country CHAR(20)
test(>);

CREATE

test=> CREATE TABLE employee (

test(> employee id INTEGER,
test(> name CHAR(30),
test(> hire_date DATE
test(>);

CREATE

test=> CREATE TABLE part (

test(> part id INTEGER,
test(> name CHAR(30),
test(> cost NUMERIC(8,2),
test(> weight FLOAT

test(>);

CREATE

test=> CREATE TABLE salesorder (

test(> order id INTEGER,
test(> customer_id INTEGER, -- joins to customer.customer id
test(> employee id INTEGER, -- joins to employee.employee id
test (> part_id INTEGER, -- joins to part.part_id
test(> order date DATE,

test(> ship_date DATE,

test(> payment NUMERIC(8,2)
test(>);

CREATE

Figure 6.3: Creation of company tables

61

62 CHAPTER 6. JOINING TABLES

Keep in mind that all table and column names not protected by double quotes should consist
of only letters, numbers, and the underscore character. Each name must start with a letter, not
a number. Do not use punctuation, except the underscore, in your names. For example, address,
office, and zipcode9 are valid names, but 2pair and my# are not.

The example in Figure 6.3 also shows the existence of a column named cusfomer id in two
tables. This duplication occurs because the two columns contain the same type of number, a
customer identification number. Giving them the same name clearly shows which columns join
the tables together. If you wanted to use unique names, you could name the column salesorder -
customer_id or sales_cust_id. This choice makes the column names unique, but still documents
the columns to be joined.

Figure 6.4 shows the insertion of a row into the customer, employee, and part tables. It also
shows the insertion of a row into the salesorder table, using the same customer, employee, and
part numbers to link the salesorder row to the other rows we inserted. For simplicity, we will use
only a single row per table.

6.4 Performing Joins

When data are spread across multiple tables, retrieval of that information becomes an important
issue. Figure 6.5 indicates how to find the customer name for a given order number. It uses
two queries. The first gets the customer id for order number 14673. The returned customer
identification number of 648 then is used in the WHERE clause of the next query. That query finds
the customer name record where the customer id equals 648. We call this two-query approach a
manual join, because the user manually took the result from the first query and placed that number
into the WHERE clause of the second query.

Fortunately, relational databases can perform this type of join automatically. Figure 6.6 shows
the same join as in Figure 6.5 but places it in a single query. This query shows all of the elements
necessary to perform the join of two tables:

* The two tables involved in the join are specified in the FROM clause.
* The two columns needed to perform the join are specified as equal in the WHERE clause.
* The salesorder table’s order number is tested in the WHERE clause.
* The customer table’s customer name is returned from the SELECT.
Internally, the database performs the join by carrying out the following operations:
* salesorder.order_id = 14673: Find that row in the salesorder table.

* salesorder.customer id = customer.customer id: From the row just found, get the cus-
tomer id. Find the equal cusfomer id in the customer table.

¢ customer.name: Return name from the customer table.

6.4. PERFORMING JOINS

test=>
test(>
test(>
test(>
test(>
test(>
test(>
test(>
test(>
test(>
INSERT
test=>
test(>
test(>
test(>
test(>
INSERT
test=>
test(>
test(>
test(>
test(>
INSERT
test=>
test(>
test(>
test(>
test(>
test(>
test(>
test(>
test(>
INSERT

INSERT INTO customer VALUES (
648,
'Fleer Gearworks, Inc.
'1-610-555-7829"',
'830 Winding Way',
'Millersville',
'AL',
'35041"',
'USA'

1
B

)s
19815 1
INSERT INTO employee VALUES (
24,
'Lee Meyers',
'10/16,/1989"
)s
19816 1
INSERT INTO part VALUES (
153,
'Garage Door Spring',
6.20
)s
19817 1
INSERT INTO salesorder VALUES(
14673,
648,
24,
153,
'7/19/1994',
'7/28/1994',
18.39
)s
19818 1

Figure 6.4: Insertion into company tables

63

CHAPTER 6. JOINING TABLES

test=> SELECT customer_id FROM salesorder WHERE order_id = 14673;
customer_id

(1 row)

test=> SELECT name FROM customer WHERE customer id = 648;
name

Fleer Gearworks, Inc.

(1 row)

Figure 6.5: Finding a customer name using two queries
test=> SELECT customer.name -- query result
test-> FROM customer, salesorder -- query tables
test-> -- table join
test-> WHERE customer.customer_id = salesorder.customer id AND
test-> salesorder.order id = 14673; -- query restriction

name

Fleer Gearworks, Inc.
(1 row)

Figure 6.6: Finding a customer name using one query

6.5. THREE- AND FOUR-TABLE JOINS 65

test=> SELECT salesorder.order id
test-> FROM salesorder, customer

test-> WHERE customer.name = 'Fleer Gearworks, Inc.' AND
test-> salesorder.customer_id = customer.customer id;
order_id

14673
(1 row)

Figure 6.7: Finding an order number for a customer name

That is, the database performs the same steps as the manual join, but much faster.

Notice that Figure 6.6 qualifies each column name by prefixing it with the table name, as
discussed in Section 6.1. While such prefixing is optional in many cases, it is required in this
example because the column customer id exists in both tables mentioned in the FROM clause,
customer and salesorder. Without such prefixing, the query would generate an error: ERROR: Column
‘customer_id' is ambiguous.

You can also perform the join in the opposite direction too. In the previous query, the order
number was supplied and the customer name returned. In Figure 6.7, the customer name is
supplied and the order number returned. The order of items in the FROM and WHERE clauses has
also been switched; the ordering of items is not important in these clauses.

6.5 Three- and Four-Table Joins

Figure 6.8 demonstrates a three-table join. In this example, the first printed column is the customer
name, and the second column is the employee name. Both columns are labeled name. You could
use AS to give the columns unique labels. Figure 6.9 shows a four-table join, using AS to make each
column label unique. The four-table join matches the arrows in Figure 6.2, with the arrows of the
salesorder table pointing to the other three tables.

Joins can also be performed among tables that are only indirectly related. Suppose you wish to
find employees who have taken orders for each customer. Figure 6.10 shows such a query. Notice
that this query displays just the customer and employee tables. The salesorder table is used to join
the two tables but does not appear in the result. The DISTINCT keyword is used because multiple
orders taken by the same employee for the same customer would make that employee appear
more than once, which was not desired. The second query uses an aggregate to return a count for
each unique customer/employee pair.

Until now, we have used only a single row in each table. As an exercise, add more customer,
employee, and part rows, and add salesorder rows that join to these new entries. You can use

CHAPTER 6. JOINING TABLES

test=> SELECT customer.name, employee.name
test-> FROM salesorder, customer, employee
test-> WHERE salesorder.customer_id = customer.customer id AND

test-> salesorder.employee id = employee.employee id AND
test-> salesorder.order id = 14673;
name | name
________________________________ S
Fleer Gearworks, Inc. | Lee Meyers
(1 row)

Figure 6.8: Three-table join

test=> SELECT customer.name AS customer name,

test-> employee.name AS employee name,

test-> part.name AS part name

test-> FROM salesorder, customer, employee, part

test-> WHERE salesorder.customer_id = customer.customer id AND

test-> salesorder.employee id = employee.employee id AND
test-> salesorder.part_id = part.part _id AND
test-> salesorder.order_id = 14673;
customer_name | employee name | part name
______________________________ o e e e e e e e
Fleer Gearworks, Inc. | Lee Meyers | Garage Door Spring

(1 row)

Figure 6.9: Four-table join

6.5. THREE- AND FOUR-TABLE JOINS 67

test=> SELECT DISTINCT customer.name, employee.name
test-> FROM customer, employee, salesorder
test-> WHERE customer.customer_id = salesorder.customer_id and

test-> salesorder.employee id = employee.employee id
test-> ORDER BY customer.name, employee.name;
name | name
________________________________ S
Fleer Gearworks, Inc. | Lee Meyers
(1 row)

test=> SELECT DISTINCT customer.name, employee.name, COUNT(*)
test-> FROM customer, employee, salesorder
test-> WHERE customer.customer_id = salesorder.customer id and
test-> salesorder.employee id = employee.employee id
test-> GROUP BY customer.name, employee.name
test-> ORDER BY customer.name, employee.name;
name | name | count

Fleer Gearworks, Inc. | Lee Meyers | 1
(1 row)

Figure 6.10: Employees who have taken orders for customers

68 CHAPTER 6. JOINING TABLES

SELECT employee.name

FROM customer, employee

WHERE customer.employee id = employee.employee id AND
customer.customer_id = 648;

SELECT customer.name

FROM customer, employee

WHERE customer.employee id = employee.employee id AND
employee.employee id = 24

ORDER BY customer.name;

Figure 6.11: Joining customer and employee

Figure 6.4 as an example. Choose any unique identification numbers you like, then try the queries
already shown in this chapter with your new data.

6.6 Additional Join Possibilities

So far, all of our example joins have involved the salesorder table in some form. Suppose we want
to assign an employee to manage each customer account. If we add an employee_id column to
the customer table, the column could store the identification number of the employee assigned to
manage the customer’s account. Figure 6.11 shows how to perform a join between the customer
and employee tables. The first query finds the employee name assigned to manage customer
number 648. The second query shows the customers managed by employee 24. Notice that the
salesorder table is not involved in these queries.

Suppose you want to assign an employee to be responsible for answering detailed questions
about parts. You would then add an employee_id column to the part table, place valid employee
identifiers in the column, and perform queries similar to those in Figure 6.12. Adding columns to
existing tables is covered in Section 13.2.

In some cases, a join could be performed with the state column. For example, to check state
mailing codes for validity, a statecode table could be created with all valid state codes.® An application
could check the state code entered by the user and report an error if it is not in the statecode table.
Another example would be the need to print the full state name in queries. State names could be
stored in a separate table and joined when the full state name is desired. Figure 6.13 shows an
example of such a statename table. Thus we have two more uses for additional tables:

3The United States Postal Service has assigned a unique two-letter code to each U.S. state.

6.6. ADDITIONAL JOIN POSSIBILITIES 69

-- find the employee assigned to part number 153

SELECT employee.name

FROM part, employee

WHERE part.employee id = employee.employee id AND
part.part id = 153;

-- find the parts assigned to employee 24

SELECT part.name

FROM part, employee

WHERE part.employee id = employee.employee id AND
employee.employee id = 24

ORDER BY name;

Figure 6.12: Joining part and employee

test=> CREATE TABLE statename (code CHAR(2),

test(> name CHAR(30)

test(>);

CREATE

test=> INSERT INTO statename VALUES ('AL', 'Alabama');
INSERT 20629 1

test=> SELECT statename.name AS customer statename
test-> FROM customer, statename

test-> WHERE customer.customer_id = 648 AND
test-> customer.state = statename.code;

Figure 6.13: The statename table

70 CHAPTER 6. JOINING TABLES

* Check codes against a list of valid values—that is, allow only valid state codes

* Store code descriptions—that is, state code and state name

6.7 Choosing a Join Key

The join key is the value used to link rows between tables. For example, in Figure 6.4, 648 is the
customer key, appearing in the customer table to uniquely identify the row, and in the salesorder
table to refer to that specific customer row.

Some people might question whether an identification number is needed. Should the customer
name be used as a join key? Using it as the join key is not a good idea for several reasons:

* Numbers are less likely to be entered incorrectly.

* Two customers with the same name would be impossible to distinguish in a join.
* [If the customer name changes, all references to that name would have to change.
* Numeric joins are more efficient than joins of long character strings.

* Numbers require less storage space than character strings.

In the statename table, the two-letter state code is probably a good join key for the following
reasons:

* Two-letter codes are easy for users to remember and enter.

* State codes are always unique.

* State codes do not change.

* Joins of short two-letter codes are not significantly slower than integer joins.

* Two-letter codes do not require significantly more storage space than integers.

Essentially, two choices for join keys exist: identification numbers and short character codes. If an
item is referenced repeatedly, it is best to use a short character code as a join key. You can display
this key to users and allow them to refer to customers and employees using codes. Users prefer to
identify items by short, fixed-length character codes containing numbers and letters. For example,
customers might be identified by six-character codes (FLEOO1), employees by their initials (BAW),
and parts by five-character codes (E7245). Codes are easy to use and remember. In many cases,
users can choose the codes, as long as they are unique.

It is possible to allow users to enter short character codes and still use identification numbers
as join keys. Adding a code column to the table accomplishes this goal. For the customer table, a
new column called code can be added to hold the customer code. When the user enters a customer

6.8. ONE-TO-MANY JOINS 71

SELECT order_id

FROM customer, salesorder

WHERE customer.code = 'FLEOO1' AND
customer.customer_id = salesorder.customer id;

Figure 6.14: Using a customer code

code, the query can find the customer_id assigned to the customer code, then use that customer id
in joins with other tables. Figure 6.14 shows a query using a customer code to find all order
numbers for that customer.

In some cases, identification numbers work well and codes are unnecessary, as in the following
cases:

* Items with short lifespans, such as order numbers
* Items without appropriate codes, such as payroll batch numbers

* Items used internally and not referenced by users

Defining codes for such values would be useless. It is better to allow the database to assign a
unique number to each item. Chapter 7 discusses database support for assigning unique identifiers.

No universal rule dictates when you should choose codes or identification numbers. U.S. states
are clearly better keyed on codes, because only 50 exist. The resulting codes are short, unique,
and well known by most users. At the other extreme, order numbers are best used without codes
because too many of them are possible and codes would be of little use.

6.8 One-to-Many Joins

Up to this point, when we joined two tables, one row in the first table matched exactly one row
in the second table, making the joins one-fo-one joins. But what if more than one salesorder row
existed for a customer ID? Multiple order numbers would be printed. In such a one-to-many join,
one customer row would join to more than one salesorder row. Now, suppose no orders were made
by a customer. Even though a valid customer row would exist, if there were no salesorder row for
that customer identification number, no rows would be returned. We could call that situation a
one-to-none join. Section 8.3 covers outer joins, which allow unjoined rows to appear in the result.

Consider the example in Figure 6.15. Because the animal table’s 507 rabbit row joins to three
rows in the vegetable table, the rabbit row is duplicated three times in the output. This is a one-to-
many join. There is no join for the 508 cat row in the vegetable table, so the 508 cat row does not
appear in the output. This is an example of a one-to-none join.

72

test=> SELECT * FROM animal;

animal_id | name
_______ :___+_________________
507 | rabbit
508 | cat
(2 rows)

test=> SELECT * FROM vegetable;

animal_id | name
___________ o e —————
507 | lettuce
507 | carrot
507 | nut
(3 rows)

test=> SELECT *
test-> FROM animal, vegetable
test-> WHERE animal.animal_id =

animal_id | name |
e P, -
507 | rabbit |
507 | rabbit |
507 | rabbit |
(3 rows)

animal_id |

CHAPTER 6. JOINING TABLES

vegetable.animal_id;
name

507 | lettuce
507 | carrot
507 | nut

Figure 6.15: A one-to-many join

6.9. UNJOINED TABLES 73

test=> SELECT *
test-> FROM animal, vegetable;

animal_id | name | animal_id | name
----------- Fmm e m b
507 | rabbit | 507 | lettuce
508 | cat | 507 | lettuce
507 | rabbit | 507 | carrot
508 | cat | 507 | carrot
507 | rabbit | 507 | nut
508 | cat | 507 | nut
(6 rows)

Figure 6.16: Unjoined tables

SELECT order_id

FROM customer c, salesorder s

WHERE c.code = 'FLEOO1' AND
c.customer_id = s.customer id;

Figure 6.17: Using table aliases

6.9 Unjoined Tables

When joining tables, it is necessary to join each table mentioned in the FROM clause by specifying
joins in the WHERE clause. If you use a table name in the FROM clause but fail to join it in the
WHERE clause, the table is marked as unjoined. It is then paired with every row in the query result.
Figure 6.16 illustrates this effect using the tables from Figure 6.15. The SELECT does not join any
column from animal to any column in vegetable, causing every value in animal to be paired with
every value in vegetable. This result, called a Cartesian product, is usually not intended. When a
query returns many more rows than expected, look for an unjoined table in the query.

6.10 Table Aliases and Self-joins

In Section 6.1, you saw how to refer to specific tables in the FROM clause using a table alias.
Figure 6.17 shows a rewrite of the query in Figure 6.14 using aliases. A ¢ is used as an alias for
the customer table, and an s is used as an alias for the salesorder table. Table aliases are handy in
these cases.

74 CHAPTER 6. JOINING TABLES

SELECT c2.name

FROM customer c, customer c2

WHERE c.customer_id = 648 AND
c.zipcode = c2.zipcode;

SELECT c2.name, s.order id

FROM customer c, customer c2, salesorder s

WHERE c.customer id = 648 AND
c.zipcode = c2.zipcode AND
c2.customer_id = s.customer_id AND
c2.customer id <> 648;

SELECT c2.name, s.order id, p.name
FROM customer c, customer c2, salesorder s, part p
WHERE c.customer id = 648 AND

c.zipcode = c2.zipcode AND

c2.customer_id = s.customer_id AND

s.part_id = p.part_id AND

c2.customer id <> 648;

Figure 6.18: Examples of self-joins using table aliases

With table aliases, you can even join a table to itself in a self-join. In this case, the same table
is given two different alias names. Each alias then represents a different instance of the table.
This concept might seem to have questionable utility, but it can prove useful. Figure 6.18 shows
practical examples. For simplicity, results are not shown for these queries.

The first query in Figure 6.18 uses ¢ as an alias for the cusfomer table and ¢2 as another alias for
customer. It finds all customers in the same ZIP code as customer number 648. The second query
finds all customers in the same ZIP code as customer number 648. It then finds the order numbers
placed by those customers. We have restricted the ¢2 table’s customer identification number to
be not equal to 648 because we do not want customer 648 to appear in the result. The third query
goes further, retrieving the part numbers associated with those orders.

6.11 Non-equijoins

Equijoins, the most common type of join, use equality (=) to join tables. Figure 6.19 shows our
first non-equijoin. The first query uses not equal (< >) to perform the join. It returns all customers
not in the same country as customer number 648. The second query uses less than (<) to perform

6.12. ORDERING MULTIPLE PARTS 75

SELECT c2.name

FROM customer c, customer c2

WHERE c.customer_id = 648 AND
c.country <> c2.country

ORDER BY c2.name;

SELECT e2.name, e2.hire_date

FROM employee e, employee e2

WHERE e.employee_id = 24 AND
e.hire_date < e2.hire_date

ORDER BY e2.hire_date, e2.name;

SELECT p2.name, p2.cost
FROM part p, part p2
WHERE p.part_id = 153 AND

p.cost > p2.cost
ORDER BY p2.cost;

Figure 6.19: Non-equijoins

the join. Instead of finding equal values to join, it joins all rows later than a specific hire date. The
query returns all employees hired after employee number 24. The third query uses greater than
(>) in a similar way. It returns all parts that cost less than part number 153. Non-equijoins are not
used often, but certain queries require them.

6.12 Ordering Multiple Parts

Our mail-order example has a serious limitation: It allows only one part_id per salesorder. In the
real world, this restriction would not be acceptable. Now that we have covered many complex
join topics in this chapter, we are ready to create a more complete database layout that allows for
multiple parts per order.

Figure 6.20 shows a new version of the salesorder table. Notice that the part id column has
been removed. The customer, employee, and part tables remain unchanged.

Figure 6.21 shows a new table, orderpart. This table is needed because the original salesorder
table could hold only one part number per order. Instead of having part id in the salesorder table,
the orderpart table holds one row for each part number ordered. If five part numbers are in order
number 15398, then five rows will appear in the orderpart table with order id equal to 15398.

We also add a quantity column. If a customer orders seven of the same part number, we put
only one row in the orderpart table, but set the quantity field equal to 7. We use DEFAULT to set the
quantity to I if no quantity is specified.

Notice that the orderpart table does not include a price field. Instead, the price is stored in the

76

CREATE TABLE salesorder (
order id
customer_id
employee id
order date
ship_date
payment

CHAPTER 6. JOINING TABLES

INTEGER,

INTEGER, -- joins to customer.customer id
INTEGER, -- joins to employee.employee id
DATE,

DATE,

NUMERIC(8,2)

Figure 6.20: New salesorder table for multiple parts per order

CREATE TABLE orderpart(

order id INTEGER,

part_id

INTEGER,

quantity INTEGER DEFAULT 1

Figure 6.21: The orderpart table

6.13. PRIMARY AND FOREIGN KEYS 77

part table. Whenever the price is needed, a join is performed to get the price. This choice allows
us to change a part’s price in one place, and all references to it will be updated automatically.*

The table layout illustrates the master/detail use of tables. The salesorder table is the master
table, because it holds information common to each order, such as customer and employee identi-
fiers and order date. The orderpart table is the detail table, because it contains the specific parts
making up the order. Master/detail tables are a common use of multiple tables.

Figure 6.22 shows a variety of queries using the new orderpart table. The queries demonstrate
increasing complexity. The first query already contains the order number of interest, so there is
no reason to use the salesorder table. It goes directly to the orderpart table to find the parts making
up the order, joining to the part table to obtain part descriptions. The second query does not have
the order number, only the customer id and order_date. It must use the salesorder table to find the
order number, then join to the orderpart and part tables to get order quantities and part information.
The third query does not have the customer id, but instead must join to the customer table to
get the customer _id for use with the other tables. Notice that each query displays an increasing
number of columns to the user. The final query computes the total cost of the order. It uses an
aggregate to SUM cost times (*) quantity for each part in the order.

6.13 Primary and Foreign Keys

A join is performed by comparing two columns, like customer.customer id and salesorder.customer -
td. The customer.customer id is called a primary key because it is the unique (primary) identifier
for the customer table. The salesorder.customer id is called a foreign key because it holds a key to
another (foreign) table.

6.14 Summary

This chapter dealt with technique—the technique of creating an orderly data layout using multiple
tables. Acquiring this skill takes practice. Expect to improve your first table layouts many times.

Good data layout can make your job easier. Bad data layout can turn queries into a nightmare.
As you create your first real-world tables, you will learn to identify good and bad data designs.
Continually review your table structures and refer to this chapter again for ideas. Do not be afraid
to redesign everything. Redesign is hard, but when it is done properly, queries become easier to
craft.

Relational databases excel in their ability to relate and compare data. Tables can be joined and
analyzed in ways you might never have anticipated. With good data layout and the power of SQL,
you can retrieve an unlimited amount of information from your database.

“4In our example, changing part.price would change the price on previous orders of the part, which would cause problems. In
the real world, we would need a partprice table to store the part number, price, and effective date for the price.

78

CHAPTER 6. JOINING TABLES

-- first query

SELECT part.name

FROM orderpart, part

WHERE orderpart.part id = part.part_id AND
orderpart.order_id = 15398;

-- second query

SELECT part.name, orderpart.quantity

FROM salesorder, orderpart, part

WHERE salesorder.customer id = 648 AND
salesorder.order date = '7/19/1994' AND
salesorder.order_id = orderpart.order_id AND
orderpart.part_id = part.part id;

-- third query

SELECT part.name, part.cost, orderpart.quantity

FROM customer, salesorder, orderpart, part

WHERE customer.name = 'Fleer Gearworks, Inc.' AND
salesorder.order date = '7/19/1994' AND
salesorder.customer_id = customer.customer_id AND
salesorder.order_id = orderpart.order_id AND
orderpart.part_id = part.part id;

-- fourth query

SELECT SUM(part.cost * orderpart.quantity)

FROM customer, salesorder, orderpart, part

WHERE customer.name = 'Fleer Gearworks, Inc.' AND
salesorder.order date = '7/19/1994' AND
salesorder.customer_id = customer.customer_id AND
salesorder.order_id = orderpart.order_id AND
orderpart.part_id = part.part_id;

Figure 6.22: Queries involving the orderpart table

Chapter 7

Numbering Rows

Unique identification numbers and short character codes allow references to specific rows in a
table. They were used extensively in Chapter 6. For example, the cusfomer table had a customer -
1d column that held a unique identification number for each customer. The employee and part tables
included similar uniquely numbered columns that were important for joins to those tables.

While unique character codes must be supplied by users, unique row numbers can be generated
automatically using two methods. This chapter describes how to use these methods.

7.1 Object Identification Numbers (0OIDs)

Every row in POSTGRESQL is assigned a unique, normally invisible number called an object iden-
tification number (0ID). When the software is initialized with initdb,! a counter is created and
set to approximately seventeen-thousand.” The counter is used to uniquely number every row.
Although databases may be created and destroyed, the counter continues to increase. It is used
by all databases, so identification numbers are always unique. No two rows in any table or in any
database will ever have the same object ID.*

You have seen object identification numbers already—they are displayed after every INSERT
statement. If you look back at Figure 3.4 on page 15, you will see the line INSERT 19053 1. INSERT is
the command that was executed, 19053 is the object identification number assigned to the inserted
row, and 1 is the number of rows inserted. A similar line appears after every INSERT statement.
Figure 6.4 on page 63 shows sequential object identification numbers assigned by consecutive
INSERT statements.

Normally, a row’s object identification number is displayed only by INSERT queries. However,
if the OID is specified by a non-INSERT query, it will be displayed, as shown in Figure 7.1. In that

1See Appendix B for a description of initdb.
2Values less than this are reserved for internal use.
3Technically, OID’s are unique among all databases sharing a common /data directory tree.

79

80 CHAPTER 7. NUMBERING ROWS

test=> CREATE TABLE oidtest(age INTEGER);
CREATE

test=> INSERT INTO oidtest VALUES (7);
INSERT 21515 1

test=> SELECT oid, age FROM oidtest;

oid | age
_______ Fommmm
21515 | 7
(1 row)

Figure 7.1: OID test

example, the SELECT has accessed the normally invisible OID column. The OID displayed by the
INSERT and the OID displayed by the SELECT are the same.

Even though no OID column is mentioned in CREATE TABLE statements, every POSTGRESQL
table includes an invisible column called OID. This column appears only if you specifically access
it.! The query SELECT * FROM table name does not display the OID column. However, SELECT oid,
* FROM table name will display it.

Object identification numbers can be used as primary and foreign key values in joins. Since
every row has a unique object ID, a separate column is not needed to hold the row’s unique number.

For example, in Chapter 6 we used a column called customer.customer_id. This column held the
customer number and uniquely identified each row. Alternatively, we could have used the row’s
object identification number as the unique number for each row, eliminating the need to create the
column customer.customer_id. In that case, customer.oid would be the unique customer number.

With this change, a similar change should be made in the salesorder table. We could rename
salesorder.customer_id to salesorder.customer oid because the column now refers to an OID. The
column type should be changed as well. The salesorder.customer_id was defined as type INTEGER.
The new salesorder.customer_oid column would hold the OID of the customer who placed the order.
For this reason, we should change the column type from INTEGER to OID. Figure 7.2 shows a new
version of the salesorder table using each row’s OID as a join key.

A column of type OID is similar to an INTEGER column, but defining it as a type OID documents
that the column holds OID values. Do not confuse a column of type OID with a column named OID.
Every row has a column named OID, which is normally invisible. A row can have zero, one, or
more user-defined columns of type OID.

A column of type OID is not automatically assigned any special value from the database. Only
the column named OID is specially assigned during INSERT.

Also, the order_id column in the salesorder table could be eliminated. The salesorder.oid column
would then represent the unique order number.

4Several other invisible columns exist as well. The POSTGRESQL manuals cover their meaning and use.

7.2. OBJECT IDENTIFICATION NUMBER LIMITATIONS 81

test=> CREATE TABLE salesorder (

test(> order_id INTEGER,

test(> customer oid O0ID, -- joins to customer.oid
test(> employee oid O0ID, -- joins to employee.oid
test(> part oid 0ID, -- joins to part.oid

Figure 7.2: Columns with OIDs

7.2 Object Identification Number Limitations

This section covers three limitations of object identification numbers.

Nonsequential Numbering

The global nature of object identification assignment means most OIDs in a table are not sequential.
For example, if you insert one customer today, and another one tomorrow, the two customers will
not get sequential OIDs. In fact, their OIDs could differ by thousands because any INSERTS into other
tables between the two customer inserts would increment the object counter. If the OID is not
visible to users, this gap in numbering is not a problem. The nonsequential numbering does not
affect query processing. However, if users can see and enter these numbers, it might seem strange
that customer identification numbers are not sequential and have large gaps between them.

Nonmodifiable

An OID is assigned to every row during INSERT. UPDATE cannot modify the system-generated OID
of a row.

Not Backed Up by Default

During database backups, the system-generated OID of each row is normally not backed up. A flag
must be added to enable the backup of OIDs. See Section 20.5 for details.

7.3 Sequences

POSTGRESQL offers another way of uniquely numbering rows—sequences. Sequences are named
counters created by users. After its creation, a sequence can be assigned to a table as a column
DEFAULT. Using sequences, unique numbers can be automatically assigned during INSERT.

82 CHAPTER 7. NUMBERING ROWS

Function ‘ Action
nextval(name’) Returns the next available sequence number, and updates the counter
currval(name’) Returns the sequence number from the previous nextval() call

setval('name’, newval) | Sets the sequence number counter to the specified value

Table 7.1: Sequence number access functions

The advantage of sequences is that they avoid gaps in numeric assignment, as happens with
0IDs.” Sequences are ideal for use as user-visible identification numbers. If one customer is
created today, and another is created tomorrow, then the two customers will have sequential
numbers because no other table shares the sequence counter.’

Sequence numbers are generally unique only within a single table. For example, if a table has
a unique row numbered 937, another table might have a row numbered 937 as well, assigned by a
different sequence counter.

7.4 Creating Sequences

Sequences are not created automatically, like OIDs. Instead, you must use the CREATE SEQUENCE
command. Three functions control the sequence counter, as shown in Table 7.1.

Figure 7.3 shows an example of sequence creation and sequence function usage. The first
command creates the sequence, then various sequence functions are called. Note that the SELECTs
do not include a FROM clause. Sequence function calls are not directly tied to any table. In the
figure:

* nextval() returns ever-increasing values.
* currval() returns the previous sequence value without incrementing.
* setval() sets the sequence counter to a new value.

Currval() returns the sequence number assigned by a prior nextval() call in the current session.
It is not affected by the nextval() calls of other users, which allows reliable retrieval of nextval()
assigned values in later queries.

7.5 Using Sequences to Number Rows

Configuring a sequence to uniquely number rows involves several steps:

5This is not completely accurate. Gaps can occur if a query is assigned a sequence number as part of an aborted transaction.
See Section 10.2 for a description of aborted transactions.
6Tables can be configured to share sequence counters, if desired.

7.5. USING SEQUENCES TO NUMBER ROWS

test=> CREATE

CREATE

test=> SELECT
nextval

nextval

test=> SELECT
currval

test=> SELECT
setval

test=> SELECT
nextval

SEQUENCE functest seq;

nextval (' functest seq');

nextval (' functest seq');

currval (' functest seq');

setval (' functest seq', 100);

nextval (' functest seq');

Figure 7.3: Examples of sequence function use

83

84

test=>
CREATE
test=>
test(>
test(>
test(>
CREATE
test=>
INSERT
test=>
INSERT
test=>
INSERT
test=>

CHAPTER 7. NUMBERING ROWS

CREATE SEQUENCE customer seq;

CREATE TABLE customer (
customer_id INTEGER DEFAULT nextval('customer seq'),
name CHAR(30)

)s

INSERT INTO customer VALUES (nextval('customer seq'), 'Bread Makers');
19004 1

INSERT INTO customer (name) VALUES ('Wax Carvers');

19005 1

INSERT INTO customer (name) VALUES ('Pipe Fitters');

19008 1

SELECT * FROM customer;

customer_id | name

______ F o e e e ———————
1 | Bread Makers
2 | Wax Carvers
3 | Pipe Fitters

(3 rows)

Figure 7.4: Numbering customer rows using a sequence

1. Create the sequence.

2. Create the table, defining nextval() as the column default.

3. During the INSERT, do not supply a value for the sequenced column, or use nextval().

Figure 7.4 shows the use of a sequence for unique row numbering in the customer table. The
first statement creates a sequence counter named customer seq. The second command creates
the customer table, and defines nextval("customer_seq’) as the default for the customer id column.
The first INSERT manually supplies the sequence value for the column. The nextval(’customer -
seq’) function call will return the next available sequence number, and increment the sequence
counter. The second and third INSERTs allow the nextval(’customer _seq’) DEFAULT to be used for
the customer id column. Remember, a column’s DEFAULT value is used only when a value is not
supplied by an INSERT statement. (This is covered in Section 4.4.) The SELECT shows that the
customer rows have been sequentially numbered.

7.6. SERIAL COLUMN TYPE 85

test=> CREATE TABLE customer (

test(> customer_id SERIAL,
test (> name CHAR(30)
test(>);

NOTICE: CREATE TABLE will create implicit sequence 'customer_customer_id -
seq' for SERIAL column 'customer.customer_id'
NOTICE: CREATE TABLE/UNIQUE will create implicit index 'customer_customer_id_-
key' for table 'customer'
CREATE
test=> \d customer

Table "customer"

Attribute | Type | Extra
_____________ o e e e e o e ——————————————————————————
customer_id | int4 | not null default nextval('customer_customer_id_seq'::text)
name | char(30) |

Index: customer_customer_id_key

test=> INSERT INTO customer (name) VALUES ('Car Wash');
INSERT 19152 1

test=> SELECT * FROM customer;

customer_id | name

_____________ o e e e e —————

1 | Car Wash

Figure 7.5: The customer table using SERIAL

7.6 Serial Column Type

An even easier way to use sequences exists. If you define a column of type SERIAL, a sequence
will be automatically created, and a proper DEFAULT will be assigned to the column. Figure 7.5
shows an example. The first NOTICE line indicates that a sequence was created for the SERIAL
column. Do not be concerned about the second NOTICE line in the figure. (Indexes are covered in
Section 11.1.)

7.7 Manually Numbering Rows

Some people wonder why OIDs and sequences are needed at all. Why can’t a database user just
find the highest number in use, add one, and use the result as the new unique row number? In
reality, OIDs and sequences are preferred for several reasons:

86 CHAPTER 7. NUMBERING ROWS

* Performance
* Concurrency

¢ Standardization

First, it is usually a slow process to scan all numbers currently in use to find the next available
number. Referring to a counter in a separate location is faster. Second, if one user gets the highest
number, and another user is looking for the highest number at the same time, the two users might
choose the same next-available highest number. Of course, in this case, the number would not be
unique. Such concurrency problems do not occur when using OIDs or sequences. Third, it is more
reliable to use database-supplied unique number generation than to generate unique numbers
manually.

7.8 Summary

Both 0IDs and sequences allow the automatic unique numbering of rows. OIDs are always created
and numbered, while sequences require more work to configure. Both are valuable tools for
uniquely numbering rows.

Chapter 8

Combining SELECTSs

So far, this book has covered topics such as regular expressions, aggregates, and joins. These
powerful SQL features allow the construction of complex queries. In some cases, however, even
these tools may prove inadequate. This chapter shows how SELECTSs can be combined to create
even more powerful queries.

8.1 UNION, EXCEPT, and INTERSECT Clauses

Sometimes a single SELECT statement cannot produce the desired result. UNION, EXCEPT, and
INTERSECT allow SELECT statements to be chained together, enabling the construction of more
complex queries.

For example, suppose we want to output the friend table’s firstname and lastname in the same
column. Normally, two queries would be required, one for each column.With UNION, however,
the output of two SELECTs can be combined in a single query, as shown in Figure 8.1. The query
combines two columns into a single output column.

UNION allows an unlimited number of SELECT statements to be combined to produce a single
result. Each SELECT must return the same number of columns. If the first SELECT returns two
columns, the other SELECTs must return two columns as well. The column types must also be
similar. If the first SELECT returns an INTEGER value in the first column, the other SELECTs must
return an INTEGER in their first columns, too.

With UNION, an ORDER BY clause can be used only at the end of the last SELECT. The ordering
applies to the output of the entire query. In Figure 8.1, the ORDER BY clause specifies the ordering
column by number. Instead of a number, we could use ORDER BY firstname because UNION’s output
labels are the same as the column labels of the first SELECT.

As another example, suppose we have two tables that hold information about various animals.
One table holds information about aquatic animals, and the other contains data about terrestrial
animals. Two tables are used because each records information specific to one class of animal.
The aquatic_animal table holds information meaningful only for aquatic animals, like preferred

87

88 CHAPTER 8. COMBINING SELECTS

test=> SELECT firstname

test-> FROM friend

test-> UNION

test-> SELECT Tastname

test-> FROM friend

test-> ORDER BY 1;
firstname

Dick
Gleason
Millstone
Ned

Sandy
Tabor
Victor
Weber
Yeager
(10 rows)

Figure 8.1: Combining two columns with UNION

water temperature. The terrestrial_animal table holds information meaningful only for terrestrial
animals, like running speed. We could have included the animals in the same table, but keeping
them separate was clearer. In most cases, we will deal with the animal types separately.

Suppose we need to list all of the animals, both aquatic and terrestrial. No single SELECT can
show the animals from both tables. We cannot join the tables because no join key exists; joining is
not desired. Instead, we want rows from the terrestrial_animal table and the aquatic_animal table
output together in a single column. Figure 8.2 shows how these two tables can be combined with
UNION.

By default, UNION prevents duplicate rows from being displayed. For example, Figure 8.3 inserts
penguin into both tables, but penguin is not duplicated in the output. To preserve duplicates, you
must use UNION ALL, as shown in Figure 8.4.

You can perform more complex operations by chaining SELECTs. EXCEPT allows all rows to be
returned from the first SELECT except rows that appear in the second SELECT. Figure 8.5 shows
an EXCEPT query. Although the aquatic_animal table contains swordfish and penguin, the query in
Figure 8.5 returns only swordfish. The penguin is excluded from the output because it is returned
by the second query. While UNION adds rows to the first SELECT, EXCEPT subtracts rows from it.

INTERSECT returns only rows generated by all SELECTs. Figure 8.6 uses INTERSECT to display
only penguin. While several animals are returned by the two SELECTS, only penguin is returned by
both SELECTS.

You can link any number of SELECTs using these methods. The previous examples allowed

8.1. UNION, EXCEPT, AND INTERSECT CLAUSES

test=> INSERT INTO terrestrial animal (name) VALUES ('tiger');
INSERT 19122 1
test=> INSERT INTO aquatic_animal (name) VALUES ('swordfish');
INSERT 19123 1
test=> SELECT name
test-> FROM aquatic_animal
test-> UNION
test-> SELECT name
test-> FROM terrestrial_animal;

name
swordfish
tiger
(2 rows)

Figure 8.2: Combining two tables with UNION

test=> INSERT INTO aquatic_animal (name) VALUES ('penguin');

INSERT
test=>
INSERT
test=>
test->
test->
test->
test->

19124 1
INSERT INTO terrestrial animal (name) VALUES ('penguin');
19125 1
SELECT name
FROM aquatic_animal
UNION
SELECT name
FROM terrestrial animal;
name

penguin
swordfish

tiger

(3 rows)

Figure 8.3: UNION with duplicates

89

90

CHAPTER 8. COMBINING SELECTS

test=> SELECT name

test-> FROM aquatic_animal

test-> UNION ALL

test-> SELECT name

test-> FROM terrestrial_animal;
name

swordfish

penguin

tiger

penguin

(4 rows)

Figure 8.4: UNION ALL with duplicates

test=> SELECT name

test-> FROM aquatic_animal

test-> EXCEPT

test-> SELECT name

test-> FROM terrestrial_animal;
name

swordfish

(1 row)

Figure 8.5: EXCEPT restricts output from the first SELECT

8.2. SUBQUERIES 91

test=> SELECT name

test-> FROM aquatic_animal

test-> INTERSECT

test-> SELECT name

test-> FROM terrestrial_animal;
name

penguin

(1 row)

Figure 8.6: INTERSECT returns only duplicated rows

multiple columns to occupy a single result column. Without the ability to chain SELECTs using
UNION, EXCEPT, and INTERSECT, it would be impossible to generate some of these results. SELECT
chaining can enable other sophisticated operations, such as joining a column to one table in the
first SELECT, then joining the same column to another table in the second SELECT.

8.2 Subqueries

Subqueries are similar to SELECT chaining. While SELECT chaining combines SELECTS on the same
level in a query, however, subqueries allow SELECTs to be embedded inside other queries. They
can perform several functions:

* They can take the place of a constant.
* They can take the place of a constant yet vary based on the row being processed.
* They can return a list of values for use in a comparison.

Subqueries can be quite complicated. If you have trouble understanding this section, skip over it
and return to it later.

Subqueries as Constants

A subquery, also called a subselect, can replace a constant in a query. While a constant never
changes, a subquery’s value is computed every time the query is executed.

As an example, let’s use the friend table from the previous chapters. Suppose we want to find
friends who are not in the same state as Dick Gleason. We could place his state in the query using
the constant string 'NJ'. If he moves to another state, however, we would have to change the
query. Using the state column is more reliable.

92 CHAPTER 8. COMBINING SELECTS

Figure 8.7 shows two ways to generate the correct result. One query uses a self-join to do the
comparison to Dick Gleason’s state. (Self-joins were covered in Section 6.10.) The last query uses
a subquery that returns the state as 'NJ'; this value is used by the upper query. The subquery has
taken the place of a constant. Unlike a constant, however, the value is computed every time the
query is executed.

Although we have used table aliases in the subquery for clarity, they are not required. A column
name with no table specification is automatically paired with a table in the current subquery. If no
matching table is found in the current subquery, higher parts of the query are searched for a match.
The state, firstname, and lastname in the subquery refer to the instance of the friend table in the
subquery. The same column names in the upper query automatically refer to the friend instance
in that query. If a column name matches two tables in the same subquery, an error is returned,
indicating the column is ambiguous.

Subqueries can also eliminate table joins. For example, consider the mail-order parts company
used in Figures 6.3 and 6.4 on page 61. To find the customer name for order number 14673, we
join the salesorder and customer tables, as shown in the first query in Figure 8.8. The second query
in the figure does not have a join, but instead gets the customer_id from a subquery. In general, if
a table is involved in only one join, and no columns from the table appear in the query result, the
join can be eliminated and the table moved to a subquery.

In this example, we have specified salesorder.customer id and customer.customer id to clearly
indicate the tables being referenced. However, this specification is not required. We could have
used only customer id in both places. POSTGRESQL finds the first table in the same subquery or
higher that contains a matching column name.

Subqueries can be used anywhere a computed value is needed. Each has its own FROM and
WHERE clauses. It can also have its own aggregate, GROUP BY, and HAVING clauses. A subquery’s
only interaction with the upper query is the value it returns. This approach allows sophisticated
comparisons that would be difficult if the subquery’s clauses had to be combined with those of the
upper query.

Subqueries as Correlated Values

In addition to acting as constants in queries, subqueries can act as correlated values. Correlated
values vary based on the row being processed. A normal subquery is evaluated once and its value
used by the upper query. In a correlated subquery, the subquery is evaluated repeatedly for every
row processed.

For example, suppose you want to find the name of your oldest friend in each state. You can
accomplish this task with HAVING and table aliases, as shown in the first query of Figure 8.9.
Alternatively, you can execute a subquery for each row that finds the maximum age for that state.
If the maximum age equals the age of the current row, the row is output, as shown in the second
query. This query references the friend table two times, using the aliases f1 and /2. The upper
query uses fI. The subquery uses f2. The correlating specification is WHERE fl.state = f2.state,

8.2. SUBQUERIES

test=> SELECT * FROM friend ORDER BY firstname;
| lastname

firstname

(6 rows)

+
| Yeager

| Gleason

| Millstone
| Gleason

| Weber

| Tabor

| city

+
| Plymouth

| Ocean City
| Cedar Creek
| Ocean City

| Boston

| Williamsport

test=> SELECT fl.firstname, fl.lastname, fl.state
friend f1, friend f2
test-> WHERE fl.state <> f2.state AND

test-> FROM

test->
test->

f2.firstname =
f2.lastname =

'Dick' AND
'Gleason'

test-> ORDER BY firstname, Tastname;

firstname

| lastname | state
_________________ P KU

| Yeager | MA

| Millstone | MD

| Weber | MA

| Tabor | PA

(4 rows)

test=> SELECT fl.firstname, fl.lastname, fl.state

| state | age
| MA | 24
[N | 19
| M | 27
[N | 25
| MA | 33
| PA | 22

test-> FROM friend fl
test-> WHERE fl.state <> (
test(> SELECT f2.state
test(> FROM friend f2
test (> WHERE f2.firstname = 'Dick' AND
test(> f2.lastname = 'Gleason'
test(>)
test-> ORDER BY firstname, Tastname;
firstname | lastname | state
_________________ PP S,
Dean | Yeager | MA
Ned | Millstone | MD
Sandy | Weber | MA
Victor | Tabor | PA
(4 rows)

Figure 8.7: Friends not in Dick Gleason’s state

93

94

CHAPTER 8. COMBINING SELECTS

test=> SELECT name
test-> FROM customer, salesorder
test-> WHERE customer.customer_id = salesorder.customer_id AND
test-> salesorder.order _id = 14673;
name
Fleer Gearworks, Inc.
(1 row)

test=> SELECT name
test-> FROM customer
test-> WHERE customer.customer id = (

test(> SELECT salesorder.customer id
test(> FROM salesorder
test(> WHERE order id = 14673
test(>)s
name

Fleer Gearworks, Inc.
(1 row)

Figure 8.8: Subqueries can replace some joins

8.2. SUBQUERIES

test=> SELECT fl.firstname, fl.lastname, fl.age

test-> FROM friend f1l, friend f2

test-> WHERE fl.state = f2.state

test-> GROUP BY f2.state, fl.firstname, fl.lastname, fl.age
test-> HAVING fl.age = max(f2.age)

test-> ORDER BY firstname, lastname;

firstname | Tastname | age
_________________ St T
Ned | Millstone | 27
Sandy | Gleason | 25
Sandy | Weber | 33
Victor | Tabor | 22
(4 rows)

test=> SELECT fl.firstname, fl.lastname, fl.age
test-> FROM friend fl
test-> WHERE age = (

test(> SELECT MAX(f2.age)
test(> FROM friend f2
test(> WHERE fl.state = f2.state
test(>)
test-> ORDER BY firstname, lastname;

firstname | Tastname | age
_________________ T
Ned | Millstone | 27
Sandy | Gleason | 25
Sandy | Weber | 33
Victor | Tabor | 22
(4 rows)

Figure 8.9: Correlated subquery

95

96 CHAPTER 8. COMBINING SELECTS

which creates a correlated subquery because the subquery references a column from the upper
query. Such a subquery cannot be evaluated once and the same result used for all rows. Instead,
it must be evaluated for every row because the upper column value can change.

Subqueries as Lists of Values

The previous subqueries returned one row of data to the upper query. If any of the previous
subqueries returned more than one row, an error would be generated: ERROR: More than one tuple
returned by a subselectused as an expression. Itispossible, however, to have subqueries return
multiple rows.

Normal comparison operators like equal and less-than expect a single value on the left and on
the right. For example, equality expects one value on the left of the equals sign (=) and one on
the right—for example, col = 3. Two special comparisons, IN and NOT IN, allow multiple values to
appear on the right side. For example, the test col IN (1,2,3,4) compares col against four values.
If co1 equals any of the four values, the comparison will return true and output the row. The test
col NOT IN (1,2,3,4) will return true if col does not equal any of the four values.

You can specify an unlimited number of values on the right side of an IN or NOT IN comparison.
More importantly, a subquery (instead of a constant) can be placed on the right side. It can then
return multiple rows. The subquery is evaluated, and its output used like a list of constant values.

Suppose we want all employees who took sales orders on a certain date. We could perform this
query in two ways. We could join the employee and salesorder tables, as shown in the first query of
Figure 8.10. Alternatively, we could use a subquery, as shown in the second query. In this case,
the subquery is evaluated and generates a list of values used by IN to perform the comparison.
The subquery is possible because the salesorder table is involved in a single join, and the query
does not return any columns from the salesorder table.

A NOT IN comparison returns true if a column’s value is not found. For example, suppose we
want to see all customers who have never ordered a product. That is, we need to find the customers
who have no sales orders. This task cannot be accomplished with a join. We need an anti-join,
because we want to find all customer rows that do not join to any salesorder row. Figure 8.11 shows
the relevant query. The subquery returns a list of customer ids representing all customers who
have placed orders. The upper query returns all customer names where the customer id does not
appear in the subquery output.

NOT IN and Subqueries with NULL Values

If a NOT IN subquery returns a NULL value, the NOT IN comparison always returns false. NOT IN
requires the upper column to be not equal to every value returned by the subquery. Because all
comparisons with NULL return false—even inequality comparisons—NOT IN returns false. NULL
comparisons were covered in Section 4.3.

We can prevent NULL values from reaching the upper query by adding IS NOT NULL to the
subquery. As an example, in Figure 8.11, if any NULL customer_id values existed, the query would

8.2. SUBQUERIES 97

test=> SELECT DISTINCT employee.name
test-> FROM employee, salesorder
test-> WHERE employee.employee id = salesorder.employee id AND

test-> salesorder.order date = '7/19/1994"';
name
Lee Meyers
(1 row)

test=> SELECT name
test-> FROM employee
test-> WHERE employee id IN (

test(> SELECT employee id
test(> FROM salesorder
test(> WHERE order date = '7/19/1994'
test(>)s
name
Lee Meyers
(1 row)

Figure 8.10: Employees who took orders

test=> SELECT name
test-> FROM customer
test-> WHERE customer_id NOT IN (

test(> SELECT customer id
test(> FROM salesorder
test (>)s

name

(0 rows)

Figure 8.11: Customers who have no orders

98 CHAPTER 8. COMBINING SELECTS

return no rows. We can prevent this situation by adding WHERE customer id IS NOT NULL to the
subquery. An IN subquery does not have this problem with NULLs.

Subqueries Returning Multiple Columns

Although most subqueries return a single column to the upper query, it is possible to handle
subqueries returning more than one column. For example, the test WHERE (7, 3) IN (SELECT coll,
col2 FROM subtable) returns true if the subquery returns arow with 7 in the first column and 3 in the
second column. The test WHERE (uppercoll, uppercol2) IN (SELECT coll, col2 FROM subtable)
performs equality comparisons between the upper query’s two columns and the subquery’s two
columns. Multiple columns in the upper query can then be compared with multiple columns in the
subquery. Of course, the number of values specified on the left of IN or NOT IN must be the same
as the number of columns returned by the subquery.

ANY, ALL, and EXISTS Clauses

IN and NOT IN are special cases of the more generic subquery clauses ANY, ALL, and EXISTS. ANY
will return true if the comparison operator is true for any value in the subquery. For example, the
test col = ANY(5,7,9) returns true if col equals any of the three values. ALL requires all subquery
values to compare as true, so col != ALL(5,7,9) returns true if col is not equal to all three values.
IN() is the same as = ANY(), and NOT IN() is the same as <> ALL().

Normally, you can use operators like equal and greater-than only with subqueries returning one
row. With ANY and ALL, however, comparisons can be made with subqueries returning multiple
rows. They allow you to specify whether any or all of the subquery values, respectively, must
compare as true.

EXISTS returns true if the subquery returns any rows, and NOT EXISTS returns true if the
subquery returns no rows. By using a correlated subquery, EXISTS permits complex comparisons of
upper-query values inside the subquery. For example, two upper-query variables can be compared
in the subquery’s WHERE clause. EXISTS and NOT EXISTS do not specify anything in the upper
query, so it does not matter which columns are returned by the subquery.

Figure 8.12 shows the IN subquery from Figure 8.10, with the query rewritten using ANY and
EXISTS. Notice that the EXISTS subquery uses a correlated subquery to join the employee_id columns
of the two tables. Figure 8.13 shows the NOT IN query from Figure 8.11, with the query rewritten
using ALL and NOT EXISTS.

Summary

A subquery can represent a fixed value, a correlated value, or a list of values. You can use any
number of subqueries. You can also nest subqueries inside other subqueries.

In some cases, subqueries simply provide an alternative way to phrase a query. In others, a
subquery is the only way to produce the desired result.

8.2. SUBQUERIES

SELECT name
FROM employee
WHERE employee id IN (
SELECT employee id
FROM salesorder
WHERE order date = '7/19/1994'
)s

SELECT name

FROM employee

WHERE employee id = ANY (
SELECT employee id
FROM salesorder
WHERE order date = '7/19/1994'
)s

SELECT name
FROM employee
WHERE EXISTS (
SELECT employee_id
FROM salesorder
WHERE salesorder.employee id = employee.employee id AND
order_date = '7/19/1994'
)s

Figure 8.12: IN query rewritten using ANY and EXISTS

99

100 CHAPTER 8. COMBINING SELECTS

SELECT name

FROM customer

WHERE customer_id NOT IN (
SELECT customer_id
FROM salesorder

)s

SELECT name

FROM customer

WHERE customer_id <> ALL (
SELECT customer_id
FROM salesorder

)s

SELECT name
FROM customer
WHERE NOT EXISTS (
SELECT customer_id
FROM salesorder
WHERE salesorder.customer_id = customer.customer_id

)3

Figure 8.13: NOT IN query rewritten using ALL and EXISTS

8.3. OUTER JOINS 101

SELECT name, order id

FROM customer, salesorder

WHERE customer.customer id = salesorder.customer id

UNION ALL

SELECT name, NULL

FROM customer

WHERE customer.customer id NOT IN (SELECT customer id FROM salesorder)
ORDER BY name;

Figure 8.14: Simulating outer joins

8.3 Outer Joins

An outer join is similar to a normal join, except that it performs special handling to prevent
unjoined rows from being suppressed in the result. For example, in the join customer.customer id
= salesorder.customer_id, only customers who have sales orders appear in the result. If a customer
has no sales orders, he or she is suppressed from the output. If the salesorder table is used in an
outer join, however, the result will include all customers. The customer and salesorder tables will
then be joined and output, as well as one row for every unjoined customer. In the query result, any
reference to salesorder columns for these unjoined customers will return NULL.

POSTGRESQL 7.0 does not support outer joins. You can simulate them using subqueries and
UNION ALL, as shown in Figure 8.14. In this example, the first SELECT performs a normal join of
the customer and salesorder tables. The second SELECT displays customers who have no orders,
with NULL appearing as their order number.

8.4 Subqueries in Non-SELECT Queries

Subqueries can also be used in UPDATE and DELETE statements. Figure 8.15 shows two examples.
The first query deletes all customers with no sales orders. The second query sets the ship date
equal to '11/16/96" for all orders made by Fleer Gearworks, Inc. The numbers after DELETE and
UPDATE indicate the number of rows affected by the queries.

8.5 UPDATE with FROM

UPDATE can include an optional FROM clause, which permits joins to other tables. The FROM clause
also allows the use of columns from other tables in the SET clause. With this capability, columns
can be updated with data from other tables.

102 CHAPTER 8. COMBINING SELECTS

test=> DELETE FROM customer
test-> WHERE customer_id NOT IN (

test(> SELECT customer_id
test(> FROM salesorder
test(>)

DELETE 0

test=> UPDATE salesorder
test-> SET ship _date = '11/16/96'
test-> WHERE customer_id = (

test(> SELECT customer_id

test(> FROM customer

test(> WHERE name = 'Fleer Gearworks, Inc.'
test (>)s

UPDATE 1

Figure 8.15: Subqueries with UPDATE and DELETE

UPDATE salesorder

SET order _date = employee.hire date

FROM employee

WHERE salesorder.employee id = employee.employee id AND
salesorder.order_date < employee.hire_date;

Figure 8.16: UPDATE the order date

Suppose we want to update the salesorder table’s order date column. Some orders have order -
dates earlier than the hire date of the employee who recorded the sale. For these rows, we wish
to set the order date equal to the employee’s hire_date. Figure 8.16 shows this query.

The FROM clause allows the use of the employee table in the WHERE and SET clauses. While
UPDATE can use subqueries to control which rows are updated, the FROM clause allows you to
include columns from other tables in the SET clause.

Actually, the FROM clause is not even required. The UPDATE in Figure 8.16 will work in the same
way without its FROM clause. POSTGRESQL automatically creates a reference to any table used in
a query. That is, the query SELECT salesorder.* automatically adds salesorder to the FROM clause
and executes the query. Likewise, the query DELETE FROM salesorder WHERE salesorder.order -
date = employee.hire date AND employee.employee id = 24 uses the employee table. This feature
1s particularly useful with DELETE because it does not support a FROM clause as SELECT and UPDATE
do.

8.6. INSERTING DATA USING SELECT 103

test=> INSERT INTO customer (name, city, state, country)

test-> SELECT trim(firstname) || ' ' || lastname, city, state, 'USA'
test-> FROM friend;

INSERT 0 6

Figure 8.17: Using SELECT with INSERT

8.6 Inserting Data Using SELECT

Up to this point, all of our INSERT statements have inserted a single row. Each INSERT contained
a VALUES clause listing the constants to be inserted. Another form of the INSERT statement also
exists; it allows the output of a SELECT to be used to insert values into a table.

Suppose we wish to add all of our friends from the friend table to the customer table. As shown
in Figure 8.17, instead of a VALUES clause, INSERT can use the output of SELECT to insert data into
the table. Each column of the SELECT matches a receiving column in the INSERT. Column names
and character string constants can be used in the SELECT output. In the line INSERT 0 6, SiX rows
are inserted into the customer table. A zero object identifier is returned because more than one
row is inserted.

Inserting into the customer name column presents an interesting challenge. The friend table
stores first and last names in separate columns. In contrast, the customer table has only a single
name column. The solution is to combine the firstname and lastname columns, with a space
separating them. For example, a firstname of 'Dean' and a lastname of 'Yeager' must be inserted
into customer.name as 'Dean Yeager'. This combination becomes possible with #7im() and the | |
operator. The #rim() function removes trailing spaces. The two pipe symbols, ||, allow character
strings to be joined together to form a single string, in a process called concatenation. In this
example, trim(firstname), space ("), and lastname are joined using | |.

8.7 Creating Tables Using SELECT

In addition to inserting into existing tables, SELECT can use an INTO clause to create a table and
place all of its output into the new table. For example, suppose we want to create a new table
called newfriend that is just like our friend table but lacks an age column. This task is easily done
with the query shown in Figure 8.18. The SELECT...INTO query performs three operations:

1. It creates a table called newfriend.
2. It uses SELECT’s column labels to name the columns of the new table.

3. It uses SELECT’s column types as the column types of the new table.

104 CHAPTER 8. COMBINING SELECTS

test=> SELECT firstname, lastname, city, state
test-> INTO newfriend

test-> FROM friend;

SELECT

test=> \d newfriend
Table "newfriend"

Attribute | Type

firstname | char(15)

lastname | char(20)
city | char(15)
state | char(2)

test=> SELECT * FROM newfriend ORDER BY firstname;

firstname | Tastname | city | state
----------------- B itttk ST
Dean | Yeager | Plymouth | MA
Dick | Gleason | Ocean City | NJ
Ned | Millstone | Cedar Creek | MD
Sandy | Gleason | Ocean City | NJ
Sandy | Weber | Boston | MA
Victor | Tabor | Williamsport | PA

(6 rows)

Figure 8.18: Table creation with SELECT

8.8. SUMMARY 105

SELECT...INTO essentially combines CREATE TABLE and SELECT in a single statement. The AS
clause can be used to change the column labels and thus control the column names in the new
table. The other commands in the figure show the new table’s structure and contents.

SELECT...INTO tablename can also be written as CREATE TABLE tablename AS SELECT.... The
preceding query can then be rewritten as CREATE TABLE newfriend AS SELECT firstname, lastname,
city, state FROM friend.

8.8 Summary

This chapter has described how to combine queries in ways you probably never anticipated. It
showed how queries could be chained and placed inside other queries. In addition, it demonstrated
how UPDATE can use FROM, and how SELECT can create tables.

Although these features may seem confusing, they are very powerful. In most cases, you will
need only the simplest of these features. However, you may get that rare request that requires
one of the more complicated queries covered in this chapter. If you recognize such a query, return
to this chapter to refresh your memory.

Chapter 9

Data Types

Data types have been used in previous chapters. This chapter covers them in detail.

9.1 Purpose of Data Types

It is tempting to think that databases would be easier to use if only one data type existed—a type
that could hold any type of information, such as numbers, character strings, or dates. Although
a single data type would certainly make table creation simpler, having different data types offers
definite advantages:

Consistent Results Columns of a uniform type produce consistent results. Displaying, sorting,
aggregates, and joins deliver consistent results. No conflict arises over how different types
are compared or displayed. For example, selecting from an INTEGER column always yields
INTEGER values.

Data Validation Columns of a uniform type accept only properly formated data; invalid data are
rejected. For example, a column of type INTEGER will reject a DATE value.

Compact Storage Columns of a uniform type are stored more compactly.

Performance Columns of a uniform type are processed more quickly.

For these reasons, each column in a relational database can hold only one type of data. You cannot
mix data types within a column.

This limitation can cause some difficulties. For example, our friend table includes an age column
of type INTEGER. Only whole numbers can be placed in that column. The values “I will ask for his
age soon” or “She will not tell me her age” cannot be placed in that column. NULL can represent
“I do not know her age.” The solution is to create an age_comments column of type CHAR() to hold
comments that cannot be placed in the age field.

107

108 CHAPTER 9. DATA TYPES
Category Type Description
Character string | TEXT variable storage length
VARCHAR(length) variable storage length with maximum length
CHAR(length) fixed storage length, blank-padded to length,
internally BPCHAR
Number INTEGER integer, +2 billion range, internally INT4
INT2 integer, +32 thousand range
INT8 integer, +£4 x 10'® range
0ID object identifier
NUMERIC(precision, decimal) | number, user-defined precision and decimal location
FLOAT floating-point number, 15-digit precision,
internally FLOAT8
FLOAT4 floating-point number, 6-digit precision
Temporal DATE date
TIME time
TIMESTAMP date and time
INTERVAL interval of time
Logical BOOLEAN boolean, true or false
Geometric POINT point
LSEG line segment
PATH list of points
BOX rectangle
CIRCLE circle
POLYGON polygon
Network INET IP address with optional netmask
CIDR IP network address
MACADDR Ethernet MAC address

Table 9.1: POSTGRESQL data types

9.2 Installed Types

POSTGRESQL supports a large number of data types, as shown in Table 9.1. Except for the number
types, all entered values must be surrounded by single quotes.

Character String

Character string types are the most commonly used data types. They can hold any sequence
of letters, digits, punctuation, and other valid characters. Typical character strings are names,
descriptions, and mailing addresses. You can store any value in a character string. Nevertheless,
this type should be used only when other data types are inappropriate, as other types provide
better data validation, more compact storage, and better performance.

Three character string data types exist: TEXT, VARCHAR(length), and CHAR(length). TEXT does
not limit the number of characters stored. VARCHAR(length) limits the length of the field to

9.2. INSTALLED TYPES 109

length characters. Both TEXT and VARCHAR() store only the number of characters in the string.
CHARC(length) is similar to VARCHAR(), except it always stores exactly length characters. This type
pads the value with trailing spaces to achieve the specified length, and provides slightly faster
access than TEXT or VARCHAR().

Understanding why character string types differ from other data types can be difficult. For
example, you can store 763 as a character string. In that case, you will store the symbols 7, 6, and
3, not the numeric value 763. Consequently, you cannot add a number to the character string 763,
because it does not make sense to add a number to three symbols. Similarly, the character string
3/8/1992 consists of eight symbols starting with 3 and ending with 2. If you store this value in a
character string data type, it is not a date. You cannot sort the string with other values and expect
them to be in chronological order. The string 1/4/1998 is less than 3/8/1992 when both are sorted
as character strings because 1 is less than 3.

These examples illustrate why the other data types are valuable. The other types use predefined
formats for their data, and they support more appropriate operations on the stored information.

Nevertheless, there is nothing wrong with storing numbers or dates in character strings when
appropriate. The street address 100 Maple Avenue is best stored in a character string type, even
though a number is part of the street address. It makes no sense to store the street number in a
separate INTEGER field. Also, part numbers such as G8223-9 must be stored in character strings
because of the G and dash. In fact, part numbers that are always five digits, such as 32911 or
00413, should be stored in character strings as well. They are not real numbers, but symbols.
Leading zeros cannot be displayed by INTEGER fields, but are easily displayed in character strings.

Number

Number types allow the storage of numbers. The number types are INTEGER, INT2, INT8, OID,
NUMERIC(), FLOAT, and FLOAT4.

INTEGER, INT2, and INT8 store whole numbers of various ranges. Larger ranges require more
storage. For example, INT8 requires twice the storage of INTEGER and is slower that INTEGER.

OID is used to store POSTGRESQL object identifiers. Although you could use INTEGER for this
purpose, OID better documents the meaning of the value stored in the column.

NUMERIC(precision, decimal) allows user-defined digits of precision, rounded to decimal places.
This type is slower than the other number types.

FLOAT and FLOAT4 allow storage of floating-point values. Numbers are stored using 15 (FLOAT)
or 6 (FLOAT4) digits of precision. The location of the decimal point is stored separately, so large
values such as 4.78145¢+32 can be represented. FLOAT and FLOAT4 are fast and have compact
storage, but can produce imprecise rounding during computations. When you require complete
accuracy of floating-point values, use NUMERIC() instead. For example, store monetary amounts
as NUMERIC().

110 CHAPTER 9. DATA TYPES

Type Example Note
POINT 2,7 (x,y) coordinates
LSEG [(0,0),(1,3)] start and stop points of a line segment
PATH ((0,0),(3,0),(4,5),(1,6)) | ()1is a closed path, [] is an open path
Box (1,1),(3,3) opposite corner points of a rectangle
CIRCLE <(1,2),60> center point and radius
POLYGON | ((3,1),(3,3),(1,0)) points form closed polygon

Table 9.2: Geometric types

Temporal

Temporal types allow storage of date, time, and time interval information. Although these data can
be stored in character strings, it is better to use temporal types, for the reasons outlined earlier in
this chapter.

The four temporal types are DATE, TIME, TIMESTAMP, and INTERVAL. DATE allows storage of
a single date consisting of a year, month, and day. The format used to input and display dates
is controlled by the DATESTYLE setting (see Section 4.14 on page 43). TIME allows storage of an
hour, minute, and second, separated by colons. TIMESTAMP stores both the date and the time—for
example, 2000-7-12 17:34:29. INTERVAL represents an interval of time, like 5 hours or 7 days.
INTERVAL values are often generated by subtracting two TIMESTAMP values to find the elapsed
time. For example, 1996—-12-15 19:00:40 minus 1996—12-8 14:00:10 results in an INTERVAL value
of 7 05:00:30, which is 7 days, 5 hours, and 30 seconds. Temporal types can also handle time zone
designations.

Logical

The only logical type is BOOLEAN. A BOOLEAN field can store only true or false, and of course NULL.
You can input true as true, t, yes, 3, or 1. False can be input as false, f no, n, or 0. Although true and
false can be input in a variety of ways, true is always output as ¢ and false as f.

Geometric

The geometric types support storage of geometric primitives. They include POINT, LSEG, PATH,
BOX, CIRCLE, and POLYGON. Table 9.2 shows the geometric types and typical values for each.
Network

The network types are INET, CIDR, and MACADDR. INET allows storage of an IP address, with or
without a netmask. A typical INET value with a netmask is 172.20.90.150 255.255.255.0. CIDR

9.3. TYPE CONVERSION USING CAST 111

stores IP network addresses. It allows a subnet mask to specify the size of the network segment.
A typical CIDR value is 172.20.90.150/24. MACADDR stores MAC (Media Access Control) addresses,
which are assigned to Ethernet network cards at the time of their manufacture. A typical MACADDR
value is 0:50:4:1d:f6:db.

Internal

A variety of types are used internally. Psql’s \dT command shows all data types.

9.3 Type Conversion Using CAST

In most cases, values of one type are converted to another type automatically. In those rare
circumstances where you need to explicitly convert one type to another, you can use CAST to
perform the conversion. To convert val to an INTEGER, use CAST(val AS INTEGER). To convert a
column date_col of type DATE to type TEXT, use CAST(date_col AS TEXT). You can also perform type
casting using double colons—that is, date_col::text or num_val::numeric(10,2).

9.4 Support Functions

Functions enable you to access specialized routines from SQL. They take one or more arguments
and return a result.

Suppose you want to uppercase a value or column. No command will perform this operation,
but a function can handle it. POSTGRESQL has a function called upper that takes a single string
argument and returns the argument in uppercase. The function call upper(col) calls the function
upper with col as its argument and returns it in uppercase. Figure 9.1 shows an example of the use
of the upper function.

POSTGRESQL provides many functions. Table 9.3 shows the most common ones, organized by
the data types supported. Psql’s \df shows all defined functions and their arguments. Section 16.1
describes all the psql commands.

If you call a function with a type for which it is not defined, you will get an error message, as
shown in the first query of Figure 9.2. In the first query, 5/8/1971 is a character string, not a date.
The second query converts 5/8/1971 to a date, so date_part() can be used.

9.5 Support Operators

Operators are similar to functions (see Section 4.13 on page 43). Table 9.4 lists the most common
operators. Psql’s \do command shows all defined operators and their arguments.

112 CHAPTER 9. DATA TYPES

test=> SELECT * FROM functest;
name

upper

Figure 9.1: Example of a function call

test=> SELECT date part('year', '5/8/1971');

ERROR: Function 'date part(unknown, unknown)' does not exist
Unable to identify a function that satisfies the given argument types
You may need to add explicit typecasts

test=> SELECT date part('year', CAST('5/8/1971' AS DATE));

date part

Figure 9.2: Error generated by undefined function/type combination.

9.5. SUPPORT OPERATORS 113
Type Function Example Returns
Character length() length(col) length of col
String character_length() character_length(col) length of col, same as length()
octet_length() octet_length(col) length of col, including multibyte overhead
trim() trim(col) col with leading and trailing spaces removed
trim(BOTH...) trim(BOTH, col) same as trim()
trim(LEADING...) trim(LEADING col) col with leading spaces removed
trim(TRAILING...) trim(TRAILING col) col with trailing spaces removed
trim(...FROM...) trim(str FROM col) col with leading and trailing st removed
rpad() rpad(col, len) col padded on the right to len characters
rpad() rpad(col, len, str) col padded on the right using str
Ipad() Ipad(col, len) col padded on the left to len characters
Ipad() Ipad(col, len, str) col padded on the left using str
upper() upper(col) col uppercased
lower() lower(col) col lowercased
initcap() initcap(col) col with the first letter capitalized
strpos() strpos(col, str) position of st in col
position() position(str IN col) same as strpos()
substr() substr(col, pos) col starting at position pos
substring(...FROM...) | substring(col FROM pos) same as substr()
substr() substr(col, pos, len) col starting at position pos for length len
substring(...FROM... substring(col FROM pos same as substr()
FOR...) FOR len)
translate() translate(col, from, to) col with from changed to fo
to_number() to_number(col, mask) convert col to NUMERIC() based on mask
to_date() to_date(col, mask) convert col to DATE based on mask
to_timestamp() to_timestamp(col, mask) | convert col to TIMESTAMP based on mask
Number round() round(col) round to an integer
round() round(col, len) NUMERIC() col rounded to len decimal places
trunc() trunc(col) truncate to an integer
trunc() trunc(col, len) NUMERIC() col truncated to len decimal places
abs() abs(col) absolute value
factorial() factorial(col) factorial
sqrt() sqrt(col) square root
chrt() chrt(col) cube root
exp() exp(col) exponential
In() In(col) natural logarithm
log() log(log) base-10 logarithm
to_char() to_char(col, mask) convert col to a string based on mask
Temporal date_part() date_part(units, col) units part of col
extract(...FROM...) extract(units FROM col) same as date_part()
date_trunc() date_trunc(units, col) col rounded to units
isfinite() isfinite(col) BOOLEAN indicating whether col is a valid date
now() now() TIMESTAMP representing current date and time
timeofday() timeofday() string showing date/time in Unix format
overlaps() overlaps(cl, c2, ¢3, c4) BOOLEAN indicating whether col’s overlap in time
to_char() to_char(col, mask) convert col to string based on mask
Geometric see psql’s \df for a list of geometric functions
Network broadcast() broadcast(col) broadcast address of col
host() host(col) host address of col
netmask() netmask(col) netmask of col
masklen() masklen(col) mask length of col
network() network(col) network address of col
NULL nullif() nullif(col1, col2) return NULL if coll equals col2, else return coll
coalesce() coalesce(coll, col2,...) return first non-NULL argument

Table 9.3: Common functions

114

CHAPTER 9. DATA TYPES

Type Function Example Returns
Character | || coll || col2 append col2 on to the end of coll
String - col ~ pattern BOOLEAN, col matches regular expression pattern
s col ™ pattern BOOLEAN, col does not match regular expression pattern
T col “* pattern same as ~, but case-insensitive
1= col \™* pattern same as ! 7, but case-insensitive
o col ~~ pattern BOOLEAN, col matches LIKE pattern
LIKE col LIKE pattern same as ~~
1= col \”" pattern BOOLEAN, col does not match LIKE pattern
NOT LIKE ¢ol NOT LIKE pattern | same as !™~
Number ! Icol factorial
+ coll + col2 addition
- coll — col2 subtraction
* coll * col2 multiplication
/ coll / col2 division
% coll % col2 remainder/modulo
" coll * col2 coll raised to the power of col2
Temporal + coll + col2 addition of temporal values
- coll — col2 subtraction of temporal values
(...) OVERLAPS | (clI, c2) OVERLAPS BOOLEAN indicating cols overlap in time
(... (3, cd)
Geometric see psql’s \do for a list of geometric operators
Network << coll << col2 BOOLEAN indicating if coll is a subnet of col2
<<= coll <<= col2 BOOLEAN indicating if coll is equal or a subnet of col2
>> coll >> col2 BOOLEAN indicating if col1 is a supernet of col2
>>= coll >>= col2 BOOLEAN indicating if coll is equal or a supernet of col2

Table 9.4: Common operators

9.6. SUPPORT VARIABLES 115

test=> SELECT CAST('1/1/1992' AS DATE) + CAST('1/1/1993' AS DATE);

ERROR: Unable to identify an operator '+' for types 'date' and 'date'
You will have to retype this query using an explicit cast

test=> SELECT CAST('1/1/1992' AS DATE) + CAST('l year' AS INTERVAL);
?2column?

1993-01-01 00:00:00-05
(1 row)

test=> SELECT CAST('1/1/1992' AS TIMESTAMP) + 'l year';
?column?

1993-01-01 00:00:00-05
(1 row)

Figure 9.3: Error generated by undefined operator/type combination

Variable ‘ Meaning

CURRENT DATE current date

CURRENT _TIME current time
CURRENT_TIMESTAMP | current date and time
CURRENT USER user connected to the database

Table 9.5: Common variables

All data types support the standard comparison operators <, <=, =, >=, >, and <>. Not all
operator/type combinations are defined, however. For example, if you try to add two DATE values,
you will get an error, as shown in the first query of Figure 9.3.

9.6 Support Variables

Several variables are defined in POSTGRESQL. These variables are shown in Table 9.5.

116 CHAPTER 9. DATA TYPES

test=> CREATE TABLE array test (

test(> coll INTEGER[5],
test(> col2 INTEGER[][],
test(> col3 INTEGER[2][2][]
test(>);

CREATE

Figure 9.4: Creation of array columns

9.7 Arrays

Arrays allow a column to store several simple data values. You can store one-dimensional arrays,
two-dimensional arrays, or arrays with any number of dimensions.

You create an array column in the same way as an ordinary column, except that you use brackets
to specify the dimensions of the array. The number of dimensions and size of each dimension are
for documentation purposes only. Values that do not match the dimensions specified at the time of
column creation are not rejected.

Figure 9.4 creates a table with one-, two-, and three-dimensional INTEGER columns. The first
and last columns have sizes specified. The first column is a one-dimensional array, also called a list
or vector. Values inserted into that column have an appearance like {3,10,9,32,24} or {20,8,9,1,4}.
That is, each value is a list of integers, surrounded by curly braces. The second column, col2, is
a two-dimensional array. Typical values for this column are {{2,9,3},{4,3,5}} or {{18,6},{32,5}}.
Notice the double braces. The outer brace surrounds two one-dimensional arrays. You can think
of this structure as a matrix, with the first one-dimensional array representing the first row of the
array, and the second representing the second row of the array. Commas separate the individual
elements as well as each pair of braces. The third column of the array test table is a three-
dimensional array, holding values like {{{3,1},{1,9}},{{45},{82}}}. This three-dimensional
matrix is made up of two 2 x2 matrices. Arrays of any size can be constructed.

Figure 9.5 shows a query inserting values into array test plus several queries selecting data
from this table. Brackets are used to access individual array elements.

Any data type can be used as an array. If you need to frequently access or update individual
elements of the array, use separate columns or tables rather than arrays.

9.8 Large Objects (BLOBS)

POSTGRESQL cannot store values of more than several thousand bytes using the data types
discussed so far, nor can binary data be easily entered within single quotes. Instead, large
objects—also called Binary Large Objects or BLOBS—are used to store very large values and
binary data.

9.8. LARGE OBJECTS (BLOBS) 117

test=> INSERT INTO array test VALUES (

test (> '{1,2,3,4,5}',

test (> "{{1,2},{3,4}}",

test(> "{{{1,2},{3,4}}.{{5.,6}, {7.8}}}'
test(>);

INSERT 52694 1
test=> SELECT * FROM array test;

coll | col2 | col3
_____________ O
{1,2,3,4,5} | {{1,2},{3,4}} | {{{1,2},{3,4}},{{5.6},{7,8}}}
(1 row)

test=> SELECT coll[4] FROM array test;
coll

col2

col3

Figure 9.5: Using arrays

118 CHAPTER 9. DATA TYPES

test=> CREATE TABLE fruit (name CHAR(30), image 0ID);
CREATE

test=> INSERT INTO fruit

test-> VALUES ('peach', lo_import('/usr/images/peach.jpg'));
INSERT 27111 1

test=> SELECT lo_export(fruit.image, '/tmp/outimage.jpg"')
test-> FROM fruit

test-> WHERE name = 'peach';

To_export

(1 row)

test=> SELECT lo_unlink(fruit.image) FROM fruit;
To_unlink

Figure 9.6: Using large images

Large objects permit storage of any operating system file, including images or large text files,
directly into the database. You load the file into the database using lo_import(), and retrieve it from
the database using lo_export().

Figure 9.6 shows an example that stores a fruit name and image. The lo_import() function
stores /usr/images/peach.jpg into the database. The function call returns an OID that is used to
refer to the imported large object. This value is stored in fruit.image. The lo_export() function uses
the OID value to find the large object stored in the database, then places the image into the new file
/tmp/outimage.jpg. The I returned by lo_export() indicates a successful export. The lo_unlink()
function removes large objects.

Full path names must be used with large objects because the database server runs in a different
directory than the psql client. Files are imported and exported by the posigres user, so posigres
must have permission to read the file for lo_import() and directory write permission for lo_export().
Because large objects use the local filesystem, users connecting over a network cannot use lo_-
import or lo_export(). They can, however, use psql’s \lo_import and \lo_export commands.

9.9. SUMMARY 119

9.9 Summary

Use care when choosing your data types. The many data types provide great flexibility. Wise
decisions about column names and types will give your database structure and consistency. The
appropriate choice also improves performance and allows efficient data storage. Do not choose
types hastily—you will regret it later.

Chapter 10

Transactions and Locks

Up to this point, we have used POSTGRESQL as a sophisticated filing cabinet. However, a database
is much more. It allows users to view and modify information simultaneously. It helps ensure data
integrity. This chapter explores these database capabilities.

10.1 Transactions

Although you may not have heard the term transaction before, you have already used transactions.
Every SQL query is executed in a transaction. Transactions give databases an all-or-nothing
capability when making modifications.

For example, suppose the query UPDATE trans_test SET col = 3is in the process of modifying
700 rows. After it has modified 200 rows, the user presses control-C or hits the computer reset
button. When the user looks at trans_test, he will see that none of the rows has been updated.

This result might surprise you. Because 200 of the 700 rows had already updated, you might
suspect that 200 rows would show as modified. However, POSTGRESQL uses transactions to
guarantee that queries are either fully completed or have no effect.

This feature is valuable. Suppose you were executing a query to add $500 to everyone’s salary
and accidentally kicked the power cord out of the wall during the update procedure. Without
transactions, the query may have updated half the salaries, but not the rest. It would be difficult to
know where the UPDATE stopped. You would wonder, “Which rows were updated, and which ones
were not?” You cannot simply re-execute the query, because some people would have already
received their $500 increase. With transactions, you can check to see if any of the rows were
updated. If one was updated, then all were updated. If not, you can simply re-execute the query.

121

122 CHAPTER 10. TRANSACTIONS AND LOCKS

test=> INSERT INTO trans_test VALUES (1);
INSERT 130057 1

Figure 10.1: INSERT with no explicit transaction

test=> BEGIN WORK;

BEGIN

test=> INSERT INTO trans_test VALUES (1);
INSERT 130058 1

test=> COMMIT WORK;

COMMIT

Figure 10.2: INSERT using an explicit transaction

10.2 Multistatement Transactions

By default, each SQL query runs in its own transaction. Consider Figures 10.1 and 10.2, which
show two identical queries. Figure 10.1 is a typical INSERT query. Before POSTGRESQL starts
the INSERT, it begins a transaction. It performs the INSERT, then commits the transaction. This
step occurs automatically for any query with no explicit transaction. In Figure 10.2, the INSERT
uses an explicit transaction. BEGIN WORK starts the transaction, and COMMIT WORK commits the
transaction. The only difference between the two queries is that an implied BEGIN WORK...COMMIT
WORK surrounds the first INSERT.

Even more valuable is the ability to bind multiple queries into a single transaction. In such a
case, either all queries execute to completion or none has any effect. As an example, Figure 10.3
shows two INSERTS in a transaction. PostgreSQL guarantees that either both INSERTS succeed or
neither.

As a more complicated example, suppose you have a table of bank account balances, and
you wish to transfer $100 from one account to another account. This operation is performed
using two queries: an UPDATE to subtract $100 from one account, and an UPDATE to add $100 to
another account. The UPDATEs should either both complete or have no effect. If the first UPDATE
completes but not the second, the $100 would disappear from the bank records. It would have
been subtracted from one account, but never added to the other account. Such errors are very
hard to find. Multistatement transactions prevent them from happening. Figure 10.4 shows the
two queries bound into a single transaction. The transaction forces POSTGRESQL to perform the
queries as a single operation.

When you begin a transaction with BEGIN WORK, you do not have to commit it using COMMIT

10.2. MULTISTATEMENT TRANSACTIONS 123

test=> BEGIN WORK;

BEGIN

test=> INSERT INTO trans_test VALUES (1);
INSERT 130059 1

test=> INSERT INTO trans_test VALUES (2);
INSERT 130060 1

test=> COMMIT WORK;

COMMIT

Figure 10.3: Tiwo INSERTS in a single transaction

test=> BEGIN WORK;

BEGIN

test=> UPDATE bankacct SET balance = balance - 100 WHERE acctno
UPDATE 1

test=> UPDATE bankacct SET balance
UPDATE 1

test=> COMMIT WORK;

COMMIT

'82021"';

balance + 100 WHERE acctno

'96814"';

Figure 10.4: Multistatement transaction

124 CHAPTER 10. TRANSACTIONS AND LOCKS

test=> INSERT INTO rollback test VALUES (1);
INSERT 19369 1

test=> BEGIN WORK;

BEGIN

test=> DELETE FROM rollback test;

DELETE 1

test=> ROLLBACK WORK;

ROLLBACK

test=> SELECT * FROM rollback test;

(1 row)
Figure 10.5: Transaction rollback
User 1 ‘ User 2 ‘ Notes
SELECT (*) FROM trans_test | returns 0
INSERT INTO trans_test VALUES (1) add row to trans_test
SELECT (*) FROM trans_test returns 1

SELECT (*) FROM trans_test | returns 1

Table 10.1: Visibility of single-query transactions

WORK. Instead, you can close the transaction with ROLLBACK WORK and the transaction will be
discarded. The database is left as though the transaction had never been executed. In Figure 10.5,
the current transaction is rolled back, causing the DELETE to have no effect. Likewise, if any query
inside a multistatement transaction cannot be executed due to an error, the entire transaction is
automatically rolled back.

10.3 Visibility of Committed Transactions

Although we have focused on the all-or-nothing nature of transactions, they have other important
benefits. Only committed transactions are visible to users. Although the current user sees his
changes, other users do not see them until the transaction is committed.

For example, Table 10.1 shows two users issuing queries using the default mode in which
every statement is in its own transaction. Table 10.2 shows the same query with user 1 using a

10.4. READ COMMITTED AND SERIALIZABLE ISOLATION LEVELS 125

User 1 User 2 Notes
BEGIN WORK User 1 starts a transaction
SELECT (*) FROM trans_test | returns 0
INSERT INTO trans_test VALUES (1) add row to trans_test
SELECT (*) FROM trans_test returns 1

SELECT (*) FROM trans_test | returns 0
COMMIT WORK

SELECT (*) FROM trans_test | returns 1

Table 10.2: Visibility of multiquery transactions

multiquery transaction. User 1 sees the changes made by his transaction. User 2, however, does
not see the changes until user 1 commits the transaction.

This shielding is another advantage of transactions. They insulate users from seeing uncom-
mitted transactions, so that users never see a partially committed view of the database.

As another example, consider the bank account query where we transferred $100 from one
bank account to another. Suppose we were calculating the total amount of money in all bank
accounts at the same time the $100 was being transferred. If we did not see a consistent view
of the database, we might see the $100 removed from the account, but not the $100 added. Our
bank account total would then be wrong. A consistent database view means that either we see the
$100 in its original account or we see it in its new account. Without this feature, we would have
to ensure that no one was making bank account transfers while we were calculating the amount of
money in all accounts.

Although this case is a contrived example, real-world database users INSERT, UPDATE, and
DELETE data all at the same time, even as others SELECT data. This activity is orchestrated by the
database so that each user can operate in a secure manner, knowing that other users will not affect
their results in an unpredictable way.

10.4 Read Committed and Serializable Isolation Levels

The previous section illustrated that users see only committed transactions. It did not address
what happens if someone commits a transaction while you are in your own transaction. In some
cases, you need to control whether other transaction commits are seen by your transaction.

POSTGRESQL’s default isolation level, READ COMMITTED, allows you to see other transaction
commits while your transaction is open. Figure 10.6 illustrates this effect. First, the transaction
does a SELECT COUNT(*). Then, while you are sitting at a psql prompt, someone INSERTS into the
table. The next SELECT COUNT(*) shows the newly INSERTED row. When another user commits a
transaction, it is seen by the current transaction, even if it is committed affer the current transaction
started.

126 CHAPTER 10. TRANSACTIONS AND LOCKS

test=> BEGIN WORK;

BEGIN

test=> SELECT COUNT(*) FROM trans_test;
count

test=> --

test=> -- someone commits INSERT INTO trans test
test=> --

test=> SELECT COUNT(*) FROM trans_test;

test=> COMMIT WORK;
COMMIT

Figure 10.6: Read-committed isolation level

10.4. READ COMMITTED AND SERIALIZABLE ISOLATION LEVELS 127

test=> BEGIN WORK;

BEGIN

test=> SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET VARIABLE

test=> SELECT COUNT(*) FROM trans_test;

count

test=> --

test=> -- someone commits INSERT INTO trans_test
test=> --

test=> SELECT COUNT(*) FROM trans_test;

test=> COMMIT WORK;
COMMIT

Figure 10.7: Serializable isolation level

You can, however, prevent your transaction from seeing changes made to the database. SET
TRANSACTION ISOLATION LEVEL SERIALIZABLE changes the isolation level of the current transaction.
SERIALIZABLE isolation prevents the current transaction from seeing commits made by other
transactions. Thus, any commit made after the start of the first query of the transaction is not
visible. Figure 10.7 shows an example of a SERIALIZABLE transaction.

SERIALIZABLE isolation provides a stable view of the database for SELECT transactions. For
transactions containing UPDATE and DELETE queries, SERIALIZABLE mode is more complicated.
SERIALIZABLE isolation forces the database to execute all transactions as though they were run
serially (one after another), even if they are run concurrently. If two concurrent transactions
attempt to update the same row, serializability is impossible. In such a case, POSTGRESQL forces
one transaction to roll back.

For SELECT-only transactions, use the SERIALIZABLE isolation level when you do not want to
see other transaction commits during your transaction. For UPDATE and DELETE transactions,
SERIALIZABLE isolation prevents concurrent modification of the same data row; it should therefore
be used with caution.

128 CHAPTER 10. TRANSACTIONS AND LOCKS

Transaction 1 | Transaction 2 Notes
BEGIN WORK BEGIN WORK start both transactions
UPDATE row 64 transaction 1 exclusively locks row 64
UPDATE row 64 | transaction 2 must wait to see if transaction 1 commits
COMMIT WORK transaction 1 commits; transaction 2 returns from UPDATE
COMMIT WORK | transaction 2 commits

Table 10.3: Waiting for a lock

10.5 Locking

Exclusive locks, also called write locks, prevent other users from modifying a row or an entire table.
Rows modified by UPDATE and DELETE are then exclusively locked automatically for the duration
of the transaction. This approach prevents other users from changing the row until the transaction
is either committed or rolled back.

Table 10.3 shows two simultaneous UPDATE transactions affecting the same row. The first
transaction must wait to see whether the second transaction commits or rolls back. If SERIALIZABLE
isolation level had been used, transaction 2 would have been rolled back automatically if transaction
1 committed.

The only time when users must wait for other users is when they are trying to modify the same
row. If they modify different rows, no waiting is necessary. SELECT queries never have to wait.

The database performs locking automatically. In certain cases, however, locking must be
controlled manually. As an example, Figure 10.8 shows a query that first SELECTs a row, then
performs an UPDATE. The problem arises because another user can modify the James row between
the SELECT and UPDATE. To prevent this problem, you can use SERIALIZABLE isolation. In this
mode, however, one of the UPDATES would fail.

A better solution is to use SELECT...FOR UPDATE to lock the selected rows. Figure 10.9 shows
the same query using SELECT...FOR UPDATE. Another user cannot modify the James row between
the SELECT...FOR UPDATE and UPDATE. In fact, the row remains locked until the transaction ends.

You can also manually control locking by using the LOCK command. It allows specification of a
transaction’s lock type and scope. See the LOCK manual page for more information.

10.6 Deadlocks

It is possible to create an unrecoverable lock condition, called a deadlock. Table 10.4 illustrates how
two transactions might become deadlocked. In this example, each transaction holds a lock and is
waiting for the other transaction’s lock to be released. POSTGRESQL must roll back one transaction
because otherwise the two transactions will wait forever. Obviously, if they had acquired locks in
the same order, no deadlock would occur.

10.6. DEADLOCKS 129

test=> BEGIN WORK;

BEGIN

test=> SELECT *

test-> FROM Tock test

test-> WHERE name = 'James';

id | name

_____ o e e
521 | James

(1 row)

test=> --

test=> -- the SELECTed row is not locked
test=> --

test=> UPDATE Tock_test

test-> SET name = 'Jim'

test-> WHERE name = 'James';

UPDATE 1
test=> COMMIT WORK;
COMMIT
Figure 10.8: SELECT with no locking
Transaction 1 Transaction2 Notes
BEGIN WORK BEGIN WORK start both transactions
UPDATE row 64 | UPDATE row 83 independent rows write-locked
UPDATE row 83 holds waiting for transaction 2 to release write lock
UPDATE row 64 attempt to get write lock held by transaction 1
auto-ROLLBACK WORK | deadlock detected—transaction 2 is rolled back
COMMIT WORK transaction 1 returns from UPDATE and commits

Table 10.4: Deadlock

130

test=>
BEGIN
test=>
test->
test->
test->
id |

_____ +-

521 |

(1 row)

test=>
test=>
test=>
test=>
test->
test->
UPDATE
test=>
COMMIT

CHAPTER 10.

BEGIN WORK;
SELECT *
FROM Tock_test
WHERE name = 'James'
FOR UPDATE;

name
James
-- the SELECTed row is locked
UPDATE Tock_test
SET name = 'Jim'
WHERE name = 'James';
1
COMMIT WORK;

TRANSACTIONS AND LOCKS

Figure 10.9: SELECT...FOR UPDATE

10.7 Summary

Single-user database queries are concerned with getting the job done. Multiuser queries must be
designed to gracefully handle multiple users accessing the same data.
Multiuser interaction can be very confusing, because the database is constantly changing. In
a multiuser environment, improperly constructed queries can randomly fail when users perform
simultaneous operations. Queries cannot assume that rows from previous transactions still exist.
By learning about POSTGRESQLS multiuser behavior, you are now prepared to create robust
queries. POSTGRESQL has the features necessary to construct reliable multiuser queries.

Chapter 11

Performance

In an ideal world, users would never need to be concerned about performance. The system would
tune itself. Unfortunately, we do not live in an ideal world. An untuned database can be thousands
of times slower than a tuned one, so it pays to take steps to improve performance. This chapter
shows you how to get the optimal performance from your database.

11.1 Indexes

When accessing a table, POSTGRESQL normally reads from the beginning of the table to the end,
looking for relevant rows. With an index, it can quickly find specific values in the index, then go
directly to matching rows. In this way, indexes allow fast retrieval of specific rows from a table.

For example, consider the query SELECT * FROM customer WHERE col = 43, Without an index,
POSTGRESQL must scan the entire table looking for rows where col equals 43. With an index on
col, POSTGRESQL can go directly to rows where col equals 43, bypassing all other rows.

For a large table, it can take minutes to check every row. Using an index, finding a specific row
takes fractions of a second.

Internally, POSTGRESQL stores data in operating system files. Each table has its own file, and
data rows are stored one after another in the file. An index is a separate file that is sorted by one
or more columns. It contains pointers into the table file, allowing rapid access to specific values in
the table.

POSTGRESQL does not create indexes automatically. Instead, users should create them for
columns frequently used in WHERE clauses.

To create an index, use the CREATE INDEX command, as shown in Figure 11.1. In this example,
customer _custid_idx is the name of the index, customer is the table being indexed, and customer id
is the column being indexed. Although you can use any name for the index, it is good practice to use
the table and column names as part of the index name—for example, customer _customer _id_idx or
1_customer _custid. This index is useful only for finding rows in customer for specific customer ids.

131

132 CHAPTER 11. PERFORMANCE

test=> CREATE INDEX customer custid idx ON customer (customer id);
CREATE

Figure 11.1: Example of CREATE INDEX

It cannot help when you are accessing other columns, because indexes are sorted by a specific
column.

You can create as many indexes as you wish. Of course, an index on a seldom-used column is a
waste of disk space. Also, performance can suffer if too many indexes exist, because row changes
require an update to each index.

It is possible to create an index spanning multiple columns. Multicolumn indexes are sorted by
the first indexed column. When the first column contains several equal values, sorting continues
using the second indexed column. Multicolumn indexes are useful only on columns with many
duplicate values.

The command CREATE INDEX customer age gender idx ON customer (age, gender) creates an
index that is sorted by age and, when several age rows have the same value, then sorted on gender.
This index can be used by the query SELECT * FROM customer WHERE age = 36 AND gender = 'F'
and the query SELECT * FROM customer WHERE age = 36.

The index customer _age gender idx is useless if you wish to find rows based only on gender,
however. The gender component of the index can be used only after the age value has been specified.
Thus, the query SELECT * FROM customer WHERE gender = 'F' cannot use the index because it does
not place a restriction on age, which is the first part of the index.

Indexes can be useful for columns involved in joins, too. They can even be employed to speed
up some ORDER BY clauses.

To remove an index, use the DROP INDEX command. See the CREATE INDEX and DROP_INDEX
manual pages for more information.

11.2 Unique Indexes

Unique indexes resemble ordinary indexes, except that they prevent duplicate values from occur-
ring in the table. Figure 11.2 shows the creation of one table and a unique index. The index is
unique because of the keyword UNIQUE. The remaining queries try to insert a duplicate value, but
the unique index prevents this and displays an appropriate error message.

Sometimes unique indexes are created only to prevent duplicate values, not for performance
reasons. Multicolumn unique indexes ensure that the combination of indexed columns remains
unique. Unique indexes do allow multiple NULL values, however. Unique indexes both speed data
access and prevent duplicates.

11.3. CLUSTER 133

test=> CREATE TABLE duptest (channel INTEGER);

CREATE

test=> CREATE UNIQUE INDEX duptest channel idx ON duptest (channel);

CREATE

test=> INSERT INTO duptest VALUES (1);

INSERT 130220 1

test=> INSERT INTO duptest VALUES (1);

ERROR: Cannot insert a duplicate key into unique index duptest channel idx

Figure 11.2: Example of a unique index

11.3 CLUSTER

The CLUSTER command reorders the table file to match the ordering of an index. This specialized
command is valuable when performance is critical and the indexed column has many duplicate
values.

For example, suppose the column customer.age has many duplicate values, and the query SELECT
* FROM customer WHERE age = 98 is executed. An index on age allows rapid retrieval of the row
locations from the index. If thousands of matching rows exist, however, they may be scattered in
the table file, requiring many disk accesses to retrieve them. CLUSTER reorders the table, placing
duplicate values next to each other. This speeds access for large queries accessing many duplicate
values.

CLUSTER even helps with range queries like col >= 3 AND col <= 5. The command places
these rows next to each other on disk, speeding indexed lookups.

In addition, CLUSTER can also speed ORDER BY processing. See the CLUSTER manual page for
more information.

11.4 VACUUM

When POSTGRESQL updates a row, it keeps the original copy of the row in the table file and writes
a new one. The original row, marked as expired, is used by other transactions still viewing the
database in its prior state. Deletions are similarly marked as expired, but not removed from the
table file.

The VACUUM command removes expired rows from the file. In the process, it moves rows from
the end of the table into the expired spots, thereby compacting the table file.

You should run VACUUM periodically to clean out expired rows. For tables that are heavily
modified, it is useful to run VACUUM every night in an automated manner. For tables with few

134 CHAPTER 11. PERFORMANCE

test=> EXPLAIN SELECT customer id FROM customer;
NOTICE: QUERY PLAN:

Seq Scan on customer (cost=0.00..15.00 rows=1000 width=4)

EXPLAIN

Figure 11.3: Using EXPLAIN

modifications, VACUUM should be run less frequently. The command exclusively locks the table
while processing.

You can run VACUUM in two ways. Using VACUUM alone vacuums all tables in the database.
Using VACUUM tablename vacuums a single table.

11.5 VACUUM ANALYZE

The VACUUM ANALYZE command resembles VACUUM, but also collects statistics about each column’s
proportion of duplicate values and the maximum and minimum values. POSTGRESQL uses this
information when deciding how to efficiently execute complex queries. You should run VACUUM
ANALYZE when a table is initially loaded and when a table’s data changes dramatically.

The VACUUM manual page shows all of the VACUUM options.

11.6 EXPLAIN

EXPLAIN causes POSTGRESQL to display how a query will be executed, rather than executing it.
As an example, Figure 11.3 shows a SELECT query preceeded by the word EXPLAIN. In the figure,
POSTGRESQL reports a sequential scan will be used on customer, meaning it will read the entire
table. The cost is an estimate of the work required to execute the query (the numbers are only
meaningful for comparison). The 7ows indicates the number of result rows expected. The width is
the number of bytes per row.

Figure 11.4 shows more interesting examples of EXPLAIN. The first EXPLAIN shows a SELECT
with the restriction customer _id = 55. The command reports another sequential scan, but the
restriction causes POSTGRESQL to estimate that ten rows will be returned. A VACUUM ANALYZE
command is then run, causing the next query to properly estimate that one row will be returned
instead of ten. An index is created, and the query rerun. This time, an index scan is used, allowing
POSTGRESQL to go directly to the rows where customer_id equals 55. The next EXPLAIN shows a
query with no WHERE restriction. POSTGRESQL realizes that the index is useless and performs a

11.6. EXPLAIN 135

test=> EXPLAIN SELECT customer_id FROM customer WHERE customer_id = 55;
NOTICE: QUERY PLAN:

Seq Scan on customer (cost=0.00..22.50 rows=10 width=4)

EXPLAIN

test=> VACUUM ANALYZE customer;

VACUUM

test=> EXPLAIN SELECT customer_id FROM customer WHERE customer_id = 55;
NOTICE: QUERY PLAN:

Seq Scan on customer (cost=0.00..17.50 rows=1 width=4)

EXPLAIN

test=> CREATE UNIQUE INDEX customer custid idx ON customer (customer id);
CREATE

test=> EXPLAIN SELECT customer id FROM customer WHERE customer id = 55;
NOTICE: QUERY PLAN:

Index Scan using customer custid -
idx on customer (cost=0.00..2.01 rows=1 width=4)

EXPLAIN

test=> EXPLAIN SELECT customer id FROM customer;

NOTICE: QUERY PLAN:

Seq Scan on customer (cost=0.00..15.00 rows=1000 width=4)
EXPLAIN

test=> EXPLAIN SELECT * FROM customer ORDER BY customer id;

NOTICE: QUERY PLAN:

Index Scan using customer custid -
idx on customer (cost=0.00..42.00 rows=1000 width=4)

EXPLAIN

Figure 11.4: More complex EXPLAIN examples

136 CHAPTER 11. PERFORMANCE

test=> EXPLAIN SELECT * FROM tabl, tab2 WHERE coll = col2;
NOTICE: QUERY PLAN:

Merge Join (cost=139.66..164.66 rows=10000 width=8)
-> Sort (cost=69.83..69.83 rows=1000 width=4)
-> Seq Scan on tab2 (cost=0.00..20.00 rows=1000 width=4)
-> Sort (cost=69.83..69.83 rows=1000 width=4)
-> Seq Scan on tabl (cost=0.00..20.00 rows=1000 width=4)

EXPLAIN

Figure 11.5: EXPLAIN example using joins

sequential scan. The last query has an ORDER BY that matches an index, so POSTGRESQL uses an
index scan.

Even more complex queries can be studied using EXPLAIN, as shown in Figure 11.5. In this
example, fabl and tab2 are joined on coll and col2. Each table is sequentially scanned, and the
result sorted. The two results are then merge joined to produce output. It also supports hash join
and #nested loop join methods. It chooses the join method it believes to be the fastest.

11.7 Summary

A variety of tools are available to speed up POSTGRESQL queries. Although their use is not
required, they can produce huge improvements in query speed. Section 20.8 outlines more steps
that database administrators can take to improve performance.

Chapter 12

Controlling Results

When a SELECT query is issued in psql, it travels to the POSTGRESQL server, is executed, and
the result then sent back to psql to be displayed. POSTGRESQL allows you to exert fine-grained
control over which rows are returned. This chapter explores the methods available to achieve this
goal.

12.1 LiMIT

The LIMIT and OFFSET clauses of SELECT allow the user to specify which rows to return. For
example, suppose customer has 1,000 rows with customer id values ranging from 1 to 1,000.
Figure 12.1 shows queries using LIMIT and LIMIT...OFFSET. The first query sorts the table by
customer_id and uses LIMIT to return the first three rows. The second query is similar, except that
it skips to the 997th row before returning three rows.

Notice that each query uses ORDER BY. Although this clause is not required, LIMIT without
ORDER BY returns random rows from the query, which would be useless.

LMIT improves performance by reducing the number of rows returned to the client. If an index
matches the ORDER BY, sometimes LIMIT can even produce results without executing the entire
query.

12.2 Cursors

Ordinarily, all rows generated by a SELECT are returned to the client. Cursors allow a SELECT
query to be named, and individual result rows retrieved as needed by the client.

Figure 12.2 shows an example of cursor usage. Note that cursor activity must take place inside
a transaction. To declare cursors, you use DECLARE...CURSOR FOR SELECT.... The result rows are
retrieved using FETCH. MOVE allows the user to move the cursor position. CLOSE releases all

137

138 CHAPTER 12. CONTROLLING RESULTS

test=> SELECT customer id FROM customer ORDER BY customer id LIMIT 3;
customer_id

(3 rows)

test=> SELECT customer_id FROM customer ORDER BY customer -
id LIMIT 3 OFFSET 997;
customer_id
998
999
1000
(3 rows)

Figure 12.1: Examples of LIMIT and LIMIT/OFFSET

rows stored in the cursor. See the DECLARE, FETCH, MOVE, and CLOSE manual pages for more
information.

12.3 Summary

LMIT specifies which rows to return in the result. Cursors allow dynamic row retrieval. The
difference between LIMIT and cursors is that LIMIT specifies the rows as part of the SELECT, while
cursors allow dynamic fetching of rows. Both LIMIT and cursors offer new ways to tailor your
queries so that you obtain exactly the desired results.

12.3. SUMMARY 139

test=> BEGIN WORK;

BEGIN

test=> DECLARE customer_cursor CURSOR FOR
test-> SELECT customer_id FROM customer;
SELECT

test=> FETCH 1 FROM customer_cursor;
customer_id

(1 row)

test=> FETCH 1 FROM customer_cursor;
customer_id

(1 row)

test=> FETCH 2 FROM customer_cursor;
customer_id

(2 rows)

test=> FETCH -1 FROM customer_cursor;
customer_id

(1 row)

test=> FETCH -1 FROM customer_cursor;
customer_id

(1 row)

test=> MOVE 10 FROM customer_cursor;

MOVE

test=> FETCH 1 FROM customer_cursor;
customer_id

(1 row)

test=> CLOSE customer_cursor;
CLOSE

test=> COMMIT WORK;

COMMIT

Figure 12.2: Cursor usage

Chapter 13

Table Management

This chapter covers a variety of topics involved in managing SQL tables.

13.1 Temporary Tables

Temporary tables are short-lived tables—they exist only for the duration of a database session.
When a database session terminates, its temporary tables are automatically destroyed. Figure 13.1
illustrates this concept. In the figure, CREATE TEMPORARY TABLE creates a temporary table. On
psql exit, the temporary table is destroyed. Restarting psql reveals that the temporary table no
longer exists.

Temporary tables are visible only to the session that creates them; they remain invisible to
other users. In fact, several users can create temporary tables with the same name, and each user
will see only his version of the table. (See Table 13.1 for an example.) Temporary tables even
mask ordinary tables with the same name.

Temporary tables are ideal for holding intermediate data used by the current SQL session. For
example, suppose you need to do many SELECTS on the result of a complex query. An efficient
strategy is to execute the complex query once, then store the result in a temporary table.

As an example, Figure 13.2 uses SELECT ... INTO TEMPORARY TABLE to collect all Pennsylvania
customers into a temporary table. It also creates a temporary index on the temporary table. The

User 1 | User 2
CREATE TEMPORARY TABLE femptest (col INTEGER) | CREATE TEMPORARY TABLE temptest (col INTEGER)
INSERT INTO femptest VALUES (1) INSERT INTO femptest VALUES (2)
SELECT col FROM temptest returns 1 SELECT col FROM temptest returns 2

Table 13.1: Temporary table isolation

141

142

CHAPTER 13.

$ psql test
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

test=> CREATE TEMPORARY TABLE temptest(col INTEGER);
CREATE

test=> SELECT * FROM temptest;

col

(0 rows)

test=> \q
$ psql test
Welcome to psql, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

test=> SELECT * FROM temptest;
ERROR: Relation 'temptest' does not exist

TABLE MANAGEMENT

Figure 13.1: Temporary table auto-destruction

13.2. ALTER TABLE 143

test=> SELECT *

test-> INTO TEMPORARY customer pennsylvania

test-> FROM customer

test-> WHERE state = 'PA';

SELECT

test=> CREATE index customer penna custid_idx ON customer -
pennsylvania (customer id);

CREATE

Figure 13.2: Example of temporary table use

customer_pennsylvania table can then be used in subsequent SELECT queries. Multiple users can
perform this operation at the same time with the same temporary names without fear of collision.

13.2 ALTER TABLE

ALTER TABLE allows the following operations:

¢ Rename tables

¢ Rename columns

Add columns

Add column defaults

¢ Remove column defaults

Figure 13.3 shows examples of these options.

13.3 GRANT and REVOKE

When a table is created, only its owner can access it. If the owner wants others to have access,
he must change the table’s permissions using the GRANT command. Figure 13.4 shows some
examples of the use of GRANT. Available privileges are SELECT, UPDATE, DELETE, RULE, and ALL.
Access can be granted to individual users, groups, or everyone (PUBLIC). The rules for granting
access are covered in Section 13.6.

REVOKE removes permissions from a table. See the GRANT and REVOKE manual pages for more
information.

144

CHAPTER 13. TABLE MANAGEMENT

test=> CREATE TABLE altertest (coll INTEGER);

CREATE

test=> ALTER TABLE altertest RENAME TO alterdemo;
ALTER

test=> ALTER TABLE alterdemo RENAME COLUMN coll TO democol;
ALTER
test=> ALTER TABLE alterdemo ADD COLUMN col2 INTEGER;
ALTER
test=> -- show renamed table, renamed column, and new column
test=> \d alterdemo
Table "alterdemo"

Attribute | Type | Modifier

___________ R S

democol | integer |

col2 | integer |

test=> ALTER TABLE alterdemo ALTER COLUMN col2 SET DEFAULT 0;
ALTER
test=> -- show new default value
test=> \d alterdemo
Table "alterdemo"
Attribute | Type | Modifier

___________ S S
democol | integer |

col2 | integer | default 0

test=> ALTER TABLE alterdemo ALTER COLUMN col2 DROP DEFAULT;

ALTER

Figure 13.3: ALTER TABLE examples

13.4. INHERITANCE 145

test=> CREATE TABLE permtest (col INTEGER);

CREATE

test=> -- now only the owner can use permtest

test->

test=> GRANT SELECT ON permtest TO meyers;

CHANGE

test=> -- now user 'meyers' can do SELECTs on permtest
test=>

test=> GRANT ALL ON permtest TO PUBLIC;

CHANGE

test=> -- now all users can perform all operations on permtest
test=>

Figure 13.4: Examples of the GRANT command

13.4 Inheritance

Inheritance allows the creation of a new table related to an existing table. Figure 13.5 shows the
creation of an inherited table. With inheritance, the child table receives all of the columns of its
parent, plus the additional columns it defines. In the example, child_test gets coll from parent test,
plus the column colZ2.

Inheritance also links rows in parent and child tables. If the parent table is referenced with an
asterisk suffix, rows from the parent and all children are accessed. Figure 13.6 shows insertion
into two tables related by inheritance. In the figure, parent _test accesses only the parent_test rows,
but parent test* accesses both parent test and child_test rows. That is, parent test™ accesses only
columns common to all tables. Because child_test.col2 is not in the parent table, it is not displayed.
Figure 13.7 shows that inherited tables can be layered on top of one another.

Consider a practical example that records information about employees and managers. The
table employee can hold information about nonmanagerial employees; the table manager can hold
information about managers. The manager table can inherit all the columns from employee and
have additional columns as well. You can then access nonmanagerial employees using employee,
managers using manages, and all employees including managers using employee ™.

POSTGRESQL release 7.1 and later automatically accesses any inherited tables. An asterisk is
not needed after the table name. The keyword ONLY is used to prevent inherited table access.

146

CHAPTER 13.

test=> CREATE TABLE parent_test (coll INTEGER);
CREATE
test=> CREATE TABLE child_test (col2 INTEGER) INHERITS (parent_test);
CREATE
test=> \d parent_test
Table "parent_test"
Attribute | Type | Modifier
___________ Fommmme et
coll | integer

test=> \d child_test

Table "child_test"
Attribute | Type | Modifier
___________ Fommmm et — e
coll | integer
col2 | integer

Figure 13.5: Creation of inherited tables

test=> INSERT INTO parent_test VALUES (1);
INSERT 18837 1

test=> INSERT INTO child_test VALUES (2,3);
INSERT 18838 1

test=> SELECT * FROM parent_test;

coll

test=> SELECT * FROM child_test;

coll | col2
______ [,

2 | 3
(1 row)

test=> SELECT * FROM parent_test*;
coll

(2 rows)

Figure 13.6: Accessing inherited tables

TABLE MANAGEMENT

13.4. INHERITANCE

test=> CREATE TABLE grandchild test (col3 INTEGER) INHERITS (child test);
CREATE

test=> INSERT INTO grandchild test VALUES (4, 5, 6);

INSERT 18853 1

test=> SELECT * FROM parent test*;

coll

(3 rows)

test=> SELECT * FROM child test*;

coll | col2
______ Fomeo o
2 | 3
4 | 5
(2 rows)

Figure 13.7: Inheritance in layers

147

148 CHAPTER 13. TABLE MANAGEMENT

test=> CREATE VIEW customer ohio AS

test-> SELECT *

test-> FROM customer

test-> WHERE state = 'OH';

CREATE 18908 1

test=>

test=> -- let sanders see only Ohio customers

test=> GRANT SELECT ON customer ohio TO sanders;

CHANGE

test=>

test=> -- create view to show only certain columns

test=> CREATE VIEW customer_address AS

test-> SELECT customer id, name, street, city, state, zipcode, country
test-> FROM customer;

CREATE 18909 1

test=>

test=> -- create view that combines fields from two tables
test=> CREATE VIEW customer finance AS

test-> SELECT customer.customer_id, customer.name, finance.credit limit
test-> FROM customer, finance

test-> WHERE customer.customer id = finance.customer id;
CREATE 18910 1

Figure 13.8: Examples of views

13.5 Views

Views are pseudo-tables. That is, they are not real tables, but nevertheless appear as ordinary
tables to SELECT. A view can represent a subset of a real table, selecting certain columns or certain
rows from an ordinary table. A view can even represent joined tables. Because views are assigned
separate permissions, you can use them to restrict table access so that users see only specific
rows or columns of a table.

Views are created using the CREATE VIEW command. Figure 13.8 shows the creation of several
views. The view customer ohio selects only customers from Ohio. SELECTS on it will therefore
show only Ohio customers. The user sanders is then given SELECT access to the view. The
customer_address will show only address information. The customer finance view is a join of
customer and finance, showing columns from both tables.

DROP VIEW removes a view. Because views are not ordinary tables, INSERTs, UPDATES, and
DELETESs on views have no effect. The next section shows how rules can correct this problem.

13.6. RULES 149

test=> CREATE TABLE ruletest (col INTEGER);

CREATE

test=> CREATE RULE ruletest insert AS -- rule name

test-> ON INSERT TO ruletest -- INSERT rule

test-> DO INSTEAD -- DO INSTEAD-type rule
test-> NOTHING; -- ACTION is NOTHING

CREATE 18932 1

test=> INSERT INTO ruletest VALUES (1);
test=> SELECT * FROM ruletest;

col

(0 rows)

Figure 13.9: Rule to prevent an INSERT

13.6 Rules

Rules allow actions to take place when a table is accessed. In this way, they can modify the effects
of SELECT, INSERT, UPDATE, and DELETE.

Figure 13.9 shows a rule that prevents INSERTS into a table. The INSERT rule is named rulefest -
insert and the action is NOTHING. NOTHING is a special rule keyword that does nothing.

Two types of rules exist. DO rules perform SQL commands in addition to the submitted query.
DO INSTEAD rules replace the user query with the rule action.

Figure 13.10 shows how rules can track table changes. In the figure, service request holds
current service requests, and service_request_log records changes in the service_request table. The
figure also creates two DO rules on service_request. The rule service request update causes an
INSERT into service_request log each time that service request is updated. The special keyword
old is used to insert the pre-UPDATE column values into service_request log; the keyword new
would refer to the new query values. The second rule, service_request_delete, tracks deletions
to service_request by inserting into service_request log. To distinguish updates from deletes in
service_request_log, updates are inserted with a mod_type of 'U’ and deletes with a mod_type of °D".

In figure 13.10, DEFAULT was used for the user name and timestamp fields. A column’s default
value is used when an INSERT does not supply a value for the column. In this example, defaults
allow auto-assignment of these values on INSERT to service_request, and on rule INSERTS to service_-
request log.

Figure 13.11 demonstrates the use of these rules. A row is inserted, updated, and deleted from
service_request. A SELECT on service_request log shows the UPDATE rule recorded the pre-UPDATE
values, a U in mod_type, and the user, date, and time of the UPDATE. The DELETE rule follows a
similar pattern.

150

test=>
test->
test->
test->
test->
CREATE
test=>
test->
test->
test->
test->
test->
CREATE
test=>
test->
test->
test->
test->
CREATE
test=>
test->
test->
test->
test->
CREATE

CHAPTER 13. TABLE MANAGEMENT

CREATE TABLE service_request (
customer_id INTEGER,
description text,
cre_user text DEFAULT CURRENT USER,
cre_timestamp timestamp DEFAULT CURRENT TIMESTAMP);

CREATE TABLE service request log (
customer_id INTEGER,
description text,
mod_type char(1),
mod user text DEFAULT CURRENT USER,
mod_timestamp timestamp DEFAULT CURRENT_TIMESTAMP);

CREATE RULE service request update AS -- UPDATE rule

ON UPDATE TO service request

DO
INSERT INTO service request log (customer_id, description, mod_type)
VALUES (old.customer_id, old.description, 'U');

19670 1

CREATE RULE service_request_delete AS -- DELETE rule

ON DELETE TO service_request

DO
INSERT INTO service request log (customer id, description, mod type)
VALUES (old.customer_id, old.description, 'D');

19671 1

Figure 13.10: Rules to log table changes

13.6. RULES 151

test=> INSERT INTO service_request (customer_id, description)
test-> VALUES (72321, 'Fix printing press');

INSERT 18808 1

test=> UPDATE service_request

test-> SET description = 'Fix large printing press'
test-> WHERE customer_id = 72321;

UPDATE 1

test=> DELETE FROM service_request

test-> WHERE customer_id = 72321;

DELETE 1

test=> SELECT *

test-> FROM service_request_log

test-> WHERE customer_id = 72321;

customer_id | description | mod_type | mod_user | mod_timestamp
_____________ O Sy
72321 | Fix printing press | U | williams | 2000-04-09 07:13:07-04
72321 | Fix large printing press | D | matheson | 2000-04-10 12:47:20-04
(2 rows)

Figure 13.11: Use of rules to log table changes

Although views ignore INSERT, UPDATE, and DELETE, rules can be used to properly handle them.
Figure 13.12 shows the creation of a table and a view on the table. In the figure, INSERTS into a
view are ignored, as are UPDATEs and DELETES.

Figure 13.13 shows the creation of DO INSTEAD rules to properly handle INSERT, UPDATE, and
DELETE. This procedure involves changing INSERT, UPDATE, and DELETE queries on the view
to queries on realtable. Notice that the INSERT rule uses new to reference the new value to be
inserted. In contrast, UPDATE and DELETE use old to reference old values. Figure 13.14 shows
how the view properly handles modifications. It would be wise to add an index on col because the
rules do lookups on that column.

You can also create SELECT rules. In fact, views are implemented internally as SELECT rules.
Rules can even be applied to only certain rows. To remove them, use DROP RULE command. See
the CREATE_RULE and DROP_RULE manual pages for more information.

Creating a rule whose action performs the same command on the same table causes an infinite
loop. That is, POSTGRESQL will call the rule again and again from the rule action. For example, if
an UPDATE rule on ruletest has a rule action that also performs an UPDATE on ruletest, it will cause
an infinite loop. POSTGRESQL will detect the infinite loop and return an error.

Fortunately, POSTGRESQL also supports triggers. Triggers allow actions to be performed when
a table is modified. In this way, they can perform actions that cannot be implemented using rules.
See Section 18.4 for information on the use of triggers.

152 CHAPTER 13. TABLE MANAGEMENT

test=> CREATE TABLE realtable (col INTEGER);

CREATE

test=> CREATE VIEW view_realtable AS SELECT * FROM realtable;
CREATE 407890 1

test=> INSERT INTO realtable VALUES (1);

INSERT 407891 1

test=> INSERT INTO view_realtable VALUES (2);

INSERT 407893 1

test=> SELECT * FROM realtable;

col

test=> SELECT * FROM view_realtable;

col
1
(1 row)
Figure 13.12: Views ignore table modifications
test=> CREATE RULE view_realtable_insert AS -- INSERT rule

test-> ON INSERT TO view_realtable

test-> DO INSTEAD

test-> INSERT INTO realtable

test-> VALUES (new.col);

CREATE 407894 1

test=>

test=> CREATE RULE view_realtable_update AS -- UPDATE rule
test-> ON UPDATE TO view_realtable

test-> DO INSTEAD

test-> UPDATE realtable

test-> SET col = new.col

test-> WHERE col = old.col;

CREATE 407901 1

test=>

test=> CREATE RULE view_realtable_delete AS -- DELETE rule
test-> ON DELETE TO view_realtable

test-> DO INSTEAD

test-> DELETE FROM realtable

test-> WHERE col = old.col;

CREATE 407902 1

Figure 13.13: Rules to handle view modifications

13.6. RULES 153

test=> INSERT INTO view realtable VALUES (3);
INSERT 407895 1

test=> SELECT * FROM view realtable;

col

(2 rows)

test=> UPDATE view realtable

test-> SET col = 4;

UPDATE 2

test=> SELECT * FROM view realtable;
col

test=> DELETE FROM view_realtable;
DELETE 2

test=> SELECT * FROM view realtable;
col

(0 rows)

Figure 13.14: Example of rules that handle view modifications

154 CHAPTER 13. TABLE MANAGEMENT

13.7 LISTEN and NOTIFY

POSTGRESQL allows users to send signals to one another using LISTEN and NOTIFY. For example,
suppose a user wants to receive notification when a table is updated. He can register the table
name using the LISTEN command. If someone updates the table and then issues a NOTIFY command,
all registered listeners will be informed of the change. For more information, see the LISTEN and
NOTIFY manual pages.

13.8 Summary

This chapter has covered features that give administrators and users new capabilities in managing
database tables. Chapter 14 turns to restrictions that can be placed on table columns to improve
data management.

Chapter 14

Constraints

Constraints keep user data constrained, thereby helping to prevent invalid data from being entered
into the database. Defining a data type for a column is a constraint in itself. For example, a column
of type DATE constrains the column to valid dates.

This chapter covers a variety of constraints. We have already shown DEFAULT can be specified
at table creation. Constraints are defined at table creation in a similar way.

14.1 Not NULL

The constraint NOT NULL prevents NULL values from appearing in a column. Figure 14.1 shows the
creation of a table with a NOT NULL constraint. Insertion of a NULL value, or an INSERT that would
set col2 to NULL, causes the INSERT to fail. As shown in the figure, an UPDATE of a NULL value also
fails.

Figure 14.2 adds a DEFAULT value for col2. This addition permits INSERTSs that do not specify a
value for col2.

14.2 UNIQUE

The UNIQUE constraint prevents duplicate values from appearing in the column. It is implemented
by creating a unique index on a column. As indicated in Figure 14.3, UNIQUE prevents duplicates.
CREATE TABLE displays the name of the unique index created. The figure also shows that multiple
NULL values can be inserted into a UNIQUE column.

If a UNIQUE constraint consists of more than one column, UNIQUE cannot be used as a column
constraint. Instead, you must use a separate UNIQUE line to specify the columns that make up the
constraint. This approach creates a UNIQUE fable constraint.

Figure 14.4 shows a multicolumn UNIQUE constraint. While coll or col2 themselves may not
be unique, the constraint requires the combination of coll and col2 to be unique. For example, in a

155

156 CHAPTER 14. CONSTRAINTS

test=> CREATE TABLE not null test (

test(> coll INTEGER,

test(> col2 INTEGER NOT NULL
test(>)

CREATE

test=> INSERT INTO not null test

test-> VALUES (1, NULL);

ERROR: ExecAppend: Fail to add null value in not null attribute col2
test=> INSERT INTO not null test (coll)

test-> VALUES (1);

ERROR: ExecAppend: Fail to add null value in not null attribute col2
test=> INSERT INTO not null test VALUES (1, 1);

INSERT 174368 1

test=> UPDATE not_null_test SET col2 = NULL;

ERROR: ExecReplace: Fail to add null value in not null attribute col2

Figure 14.1: NOT NULL constraint

test=> CREATE TABLE not null_with_default test (

test(> coll INTEGER,

test(> col2 INTEGER NOT NULL DEFAULT 5
test (>)s

CREATE

test=> INSERT INTO not null_with_default_test (coll)
test-> VALUES (1);
INSERT 148520 1
test=> SELECT *
test-> FROM not null _with_default_test;
coll | col2
______ Fommm e
1| 5
(1 row)

Figure 14.2: NOT NULL with DEFAULT constraint

14.2. UNIQUE 157

test=> CREATE TABLE uniquetest (coll INTEGER UNIQUE);
NOTICE: CREATE TABLE/UNIQUE will create implicit index 'uniquetest coll -
key' for table 'uniquetest'
CREATE
test=> \d uniquetest
Table "uniquetest"
Attribute | Type | Modifier
___________ e B
coll | integer |
Index: uniquetest coll key

test=> INSERT INTO uniquetest VALUES (1);

INSERT 148620 1

test=> INSERT INTO uniquetest VALUES (1);

ERROR: Cannot insert a duplicate key into unique index uniquetest coll key
test=> INSERT INTO uniquetest VALUES (NULL);

INSERT 148622 1

test=> INSERT INTO uniquetest VALUES (NULL);

INSERT

Figure 14.3: UNIQUE column constraint

test=> CREATE TABLE uniquetest2 (

test(> coll INTEGER,
test(> col2 INTEGER,
test(> UNIQUE (coll, col2)
test (>)s

NOTICE: CREATE TABLE/UNIQUE will create implicit index 'uniquetest2? coll -
key' for table 'uniquetest2'

Figure 14.4: Multicolumn UNIQUE constraint

158 CHAPTER 14. CONSTRAINTS

test=> CREATE TABLE primarytest (col INTEGER PRIMARY KEY);
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'primarytest -
pkey' for table 'primarytest'
CREATE
test=> \d primarytest
Table "primarytest"
Attribute | Type | Modifier
___________ e B
col | integer | not null
Index: primarytest pkey

Figure 14.5: Creation of a PRIMARY KEY column

table that contains the driver’s license numbers of people in various states, two people in different
states might have the same license number, but the combination of their state and license number
should always be unique.

14.3 PRIMARY KEY

The PRIMARY KEY constraint, which marks the column that uniquely identifies each row, is a
combination of UNIQUE and NOT NULL constraints. With this type of constraint, UNIQUE prevents
duplicates, and NOT NULL prevents NULL values in the column. Figure 14.5 shows the creation of
a PRIMARY KEY column. Notice that an index is created automatically, and the column is defined as
NOT NULL.

Just as with UNIQUE, a multicolumn PRIMARY KEY constraint must be specified on a separate
line. In Figure 14.6, coll and col2 are combined to form the primary key.

A table cannot have more than one PRIMARY KEY specification. Primary keys have special
meaning when using foreign keys, which are covered in the next section.

14.4 Foreign Key/REFERENCES

Foreign keys are more complex than primary keys. Primary keys make a column UNIQUE and NOT
NULL. Foreign keys, on the other hand, constrain data based on columns in other tables. They are
called foreign keys because the constraints are foreign—that is, outside the table.

For example, suppose a table contains customer addresses, and part of each address is a United
States two-character state code. If a table held all valid state codes, a foreign key constraint could
be created to prevent a user from entering invalid state codes.

14.4. FOREIGN KEY/REFERENCES 159

test=> CREATE TABLE primarytest2 (

test(> coll INTEGER,

test(> col2 INTEGER,

test(> PRIMARY KEY(coll, col12)
test(>)

NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'primarytest2 -
pkey' for table 'primarytest2'
CREATE

Figure 14.6: Example of a multicolumn PRIMARY KEY

Figure 14.7 shows the creation of a primary key/foreign key relationship. Foreign key con-
straints are created by using REFERENCES to refer to the primary key of another table. Foreign
keys link the tables together and prevent the insertion or updating of invalid data.

Figure 14.8 shows how foreign keys constrain column values. Here AL is a primary key value
in statename, so the INSERT is accepted. XX is not a primary key value in statename, so the INSERT
is rejected by the foreign key constraint.

Figure 14.9 shows the creation of the company tables from Figure 6.3, page 61, using primary
and foreign keys.

A variety of foreign key options are discussed next that make foreign keys even more powerful.

Modification of Primary Key Row

If a foreign key constraint references a row as its primary key, and the primary key row is updated
or deleted, then the default foreign key action is to prevent the operation. The foreign key options
ON UPDATE and ON DELETE, however, allow a different action to be taken. Figure 14.10 shows how
these options work. The new customer table’s ON UPDATE CASCADE specifies that if statename’s
primary key is updated, customer.state should be updated with the new value as well. The foreign
key ON DELETE SET NULL option specifies that if someone tries to delete a statename row that is
referenced by another table, the delete operation should set the foreign key to NULL.
The ON UPDATE and ON DELETE options can have the following actions:

NO ACTION UPDATEs and DELETES to the primary key are prohibited if referenced by a foreign key
row. This is the default.

CASCADE UPDATEs to the primary key update all foreign key columns that reference it. DELETEs
on the primary key cause the deletion of all foreign key rows that reference it.

SET NULL UPDATEs and DELETESs to the primary key row cause the foreign key to be set to NULL.

160 CHAPTER 14. CONSTRAINTS

test=> CREATE TABLE statename (code CHAR(2) PRIMARY KEY,
test(> name CHAR(30)

test(>);

CREATE

test=> INSERT INTO statename VALUES ('AL', 'Alabama');
INSERT 18934 1

test=> CREATE TABLE customer (

test(> customer _id INTEGER,

test(> name CHAR(30),

test(> telephone CHAR(20),

test(> street CHAR(40),

test(> city CHAR(25),

test(> state CHAR(2) REFERENCES statename,
test(> zipcode CHAR(10),

test (> country CHAR(20)

test(>);

CREATE

Figure 14.7: Foreign key creation

test=> INSERT INTO customer (state)

test-> VALUES ('AL');

INSERT 148732 1

test=> INSERT INTO customer (state)

test-> VALUES ('XX');

ERROR: <unnamed> referential integrity violation -
key referenced from customer not found in statename

Figure 14.8: Foreign key constraints

14.4. FOREIGN KEY/REFERENCES

test=>
test(>
test(>
test(>
test(>
test(>
test(>
test(>
test(>
test(>
CREATE
test=>
test(>
test(>
test(>
test (>
CREATE
test=>
test (>
test (>
test(>
test (>
test (>
CREATE
test=>
test(>
test(>
test(>
test(>
test(>
test(>
test(>
test(>
CREATE

CREATE TABLE customer (
customer_id INTEGER PRIMARY KEY,

name CHAR(30),
telephone CHAR(20),
street CHAR(40),
city CHAR(25),
state CHAR(2),

zipcode CHAR(10),
country CHAR(20)
)s

CREATE TABLE employee (
employee id INTEGER PRIMARY KEY,
name CHAR(30),
hire date DATE

)s

CREATE TABLE part (
part_id INTEGER PRIMARY KEY,

name CHAR(30),
cost NUMERIC(8,2),
weight FLOAT

)s

CREATE TABLE salesorder (
order_id INTEGER,
customer_id INTEGER REFERENCES customer,
employee id INTEGER REFERENCES employee,
part id INTEGER REFERENCES part,
order date DATE,
ship_date DATE,
payment NUMERIC(8,2)

)s

Figure 14.9: Creation of company tables using primary and foreign keys

161

162 CHAPTER 14. CONSTRAINTS

test=> CREATE TABLE customer (

test(> customer_id INTEGER,

test(> name CHAR(30),

test(> telephone CHAR(20),

test(> street CHAR(40),

test(> city CHAR(25),

test(> state CHAR(2) REFERENCES statename
test (> ON UPDATE CASCADE
test(> ON DELETE SET NULL,
test(> zipcode CHAR(10),

test(> country CHAR(20)

test(>);

CREATE

Figure 14.10: Customer table with foreign key actions

SET DEFAULT UPDATEs and DELETESs to the primary key row cause the foreign key to be set to its
DEFAULT.

Figure 14.11 illustrates the use of the CASCADE and NO ACTION rules. First, primarytest, which was
used in Figure 14.5, is created. Then a foreigntest table with ON UPDATE CASCADE and ON DELETE
NO ACTION is created. NO ACTION is the default, so ON DELETE NO ACTION was not required. Next, a
single row is inserted into each table, and an UPDATE on primarytest cascades to UPDATE foreigntest.
The primarytest row cannot be deleted unless the foreign key row is deleted first. Foreign key
actions offer you great flexibility in controlling how primary key changes affect foreign key rows.

Multicolumn Primary Keys

To specify a multicolumn primary key, it was necessary to use PRIMARY KEY on a separate line
in the CREATE TABLE statement. Multicolumn foreign keys have the same requirement. Using
primarytest? from Figure 14.6, Figure 14.12 shows how to create a multicolumn foreign key.
FOREIGN KEY (col, ...) must be used to label any multicolumn foreign key table constraints.

Handling NULL Values in the Foreign Key

A NULL value cannot reference a primary key. A single-column foreign key is either NULL or
matches a primary key. In a multicolumn foreign key, sometimes only part of a foreign key can
be NULL. The default behavior allows some columns in a multicolumn foreign key to be NULL and
others to be not NULL.

14.4. FOREIGN KEY/REFERENCES 163

test=> CREATE TABLE primarytest (col INTEGER PRIMARY KEY);
NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'primarytest -
pkey' for table 'primarytest'

CREATE

test=> CREATE TABLE foreigntest (

test (> col2 INTEGER REFERENCES primarytest

test (> ON UPDATE CASCADE

test (> ON DELETE NO ACTION

test (>)s

NOTICE: CREATE TABLE will create implicit trigger(s) for FOREIGN KEY check(s)
CREATE

test=> INSERT INTO primarytest values (1);
INSERT 148835 1

test=> INSERT INTO foreigntest values (1);
INSERT 148836 1

test=>

test=> -- CASCADE UPDATE is performed
test=>

test=> UPDATE primarytest SET col = 2;
UPDATE 1

test=> SELECT * FROM foreigntest;

col2

test=>

test=> -- NO ACTION prevents deletion

test=>

test=> DELETE FROM primarytest;

ERROR: <unnamed> referential integrity violation -
key in primarytest still referenced from foreigntest
test=>

test=> -- By deleting the foreign key first, the DELETE succeeds
test=>

test=> DELETE FROM foreigntest;

DELETE 1

test=> DELETE FROM primarytest;

DELETE 1

Figure 14.11: Foreign key actions

164 CHAPTER 14. CONSTRAINTS

test=> CREATE TABLE primarytest2 (

test(> coll INTEGER,

test(> col2 INTEGER,

test(> PRIMARY KEY(coll, col12)
test(>)

NOTICE: CREATE TABLE/PRIMARY KEY will create implicit index 'primarytest2 -
pkey' for table 'primarytest2'

CREATE

test=> CREATE TABLE foreigntest2 (col3 INTEGER,

test(> col4 INTEGER,

test(> FOREIGN KEY (col3, col4) REFERENCES primary-
test2

test->)s

NOTICE: CREATE TABLE will create implicit trigger(s) for FOREIGN KEY check(s)
CREATE

Figure 14.12: Example of a multicolumn foreign key

Using MATCH FULL in a multicolumn foreign key constraint requires all columns in the key to
be NULL or all columns to be not NULL. Figure 14.13 illustrates this case. First, the tables from
Figure 14.12 are used to show that the default allows one column of a foreign key to be set to NULL.
Next, the table maitchtest is created with the MATCH FULL foreign key constraint option. MATCH
FULL allows all key columns to be set to NULL, but rejects the setting of only some multicolumn
key values to NULL.

Frequency of Foreign Key Checking

By default, foreign key constraints are checked at the end of each INSERT, UPDATE, and DELETE
query. Thus, if you perform a set of complex table modifications, the foreign key constraints must
remain valid at all times. For example, using the tables in Figure 14.7, if a new state is added and
then a new customer in the new state is inserted, the new state must be added to statename before
the customer is added to customer.

In some cases, it may not be possible to keep foreign key constraints valid between queries. For
example, if two tables are foreign keys for each other, it may not be possible to INSERT into one table
without having the other table row already present. A solution is to use the DEFERRABLE foreign
key option and SET CONSTRAINTS so that foreign key constraints are checked only at transaction
commit. With this approach, a multiquery transaction can make table modifications that violate
foreign key constraints inside the transaction as long as the foreign key constraints are met at

14.4. FOREIGN KEY/REFERENCES 165

test=> INSERT INTO primarytest2
test-> VALUES (1,2);

INSERT 148816 1

test=> INSERT INTO foreigntest2
test-> VALUES (1,2);

INSERT 148817 1

test=> UPDATE foreigntest2
test-> SET col4 = NULL;

UPDATE 1

test=> CREATE TABLE matchtest (

test(> col3 INTEGER,

test(> col4 INTEGER,

test(> FOREIGN KEY (col3, col4) REFERENCES primarytest2
test (> MATCH FULL

test(>)

NOTICE: CREATE TABLE will create implicit trigger(s) for FOREIGN KEY check(s)
CREATE

test=> UPDATE matchtest

test-> SET col3 = NULL, col4 = NULL;

UPDATE 1

test=> UPDATE matchtest

test-> SET col4 = NULL;

ERROR: <unnamed> referential integrity violation -

MATCH FULL doesn't allow mixing of NULL and NON-NULL key values

Figure 14.13: MATCH FULL foreign key

166 CHAPTER 14. CONSTRAINTS

transactions commit. Figure 14.14 is a contrived example of this case; the proper way to perform
this query is to INSERT into primarytest first, then INSERT into defertest. In complex situations, such
reordering might not be possible, so DEFERRABLE and SET CONSTRAINTS should be used to defer
foreign key constraints. A foreign key may also be configured as INITIALLY DEFERRED, causing the
constraint to be checked only at transaction commit by default.

You can name constraints if desired. The constraint names will appear in constraint violation
messages and can be used by SET CONSTRAINTS. See the CREATE_TABLE and SET manual pages for
more information.

14.5 CHECK

The CHECK constraint enforces column value restrictions. Such constraints can restrict a column,
for example, to a set of values, only positive numbers, or reasonable dates. Figure 14.15 shows an
example of CHECK constraints using a modified version of the friend table from Figure 3.2, page 13.
This figure has many CHECK clauses:

state Forces the column to be two characters long. CHAR() pads the field with spaces, so stafe
must be trim()-ed of trailing spaces before length() is computed.

age Forces the column to hold only positive values.
gender Forces the column to hold either M or F.
last_ met Forces the column to include dates between January 1, 1950, and the current date.

table Forces the table to accept only rows where firstname is not ED or lastname is not RIVERS.
The effect is to prevent Ed Rivers from being entered into the table. His name will be rejected
if it is in uppercase, lowercase, or mixed case. This restriction must be implemented as a
table-level CHECK constraint. Comparing firstname to ED at the column level would have
prevented all EDs from being entered, which was not desired. Instead, the desired restriction
1s a combination of firstname and lastname.

Next, the example tries to INSERT a row that violates all CHECK constraints. Although the CHECK
failed on the friend2 last met constraint, if that were corrected, the other constraints would prevent
the insertion. By default, CHECK allows NULL values.

14.6 Summary

This chapter covered a variety of constraints that help restrict user data within specified limits.
With small databases, constraints are of marginal benefit. With databases holding millions of rows,
however, they help keep database information organized and complete.

14.6. SUMMARY 167

test=> CREATE TABLE defertest(

test(> col2 INTEGER REFERENCES primarytest
test (> DEFERRABLE

test(>);

NOTICE: CREATE TABLE will create implicit trigger(s) for FOREIGN KEY check(s)
CREATE

test=> BEGIN;

BEGIN

test=> -- INSERT is attempted in non-DEFERRABLE mode

test=>

test=> INSERT INTO defertest VALUES (5);

ERROR: <unnamed> referential integrity violation -

key referenced from defertest not found in primarytest

test=> COMMIT;

COMMIT

test=> BEGIN;

BEGIN

test=> -- all foreign key constraints are set to DEFERRED
test=>

test=> SET CONSTRAINTS ALL DEFERRED;

SET CONSTRAINTS

test=> INSERT INTO defertest VALUES (5);
INSERT 148946 1

test=> INSERT INTO primarytest VALUES (5);
INSERT 148947 1

test=> COMMIT;

COMMIT

Figure 14.14: DEFERRABLE foreign key constraint

test=> CREATE TABLE friend2 (

test(> firstname CHAR(15),

test(> lastname CHAR(20),

test(> city CHAR(15),

test(> state CHAR(2) CHECK (Tength(trim(state)) = 2),
test(> age INTEGER CHECK (age >= 0),

test(> gender CHAR(1) CHECK (gender IN ('M','F")),
test(> last met DATE CHECK (last_met BETWEEN '1950-01-01'
test(> AND CURRENT_DATE),

test(> CHECK (upper(trim(firstname)) != '"ED' OR

test(> upper(trim(lastname)) != 'RIVERS')

test(>);

CREATE

test=> INSERT INTO friend2
test-> VALUES ('Ed', 'Rivers', 'Wibbleville', 'J', -35, 'S', '1931-09-23');

ERROR:

ExecAppend: rejected due to CHECK constraint friend2 last met

Figure 14.15: CHECK constraints

Chapter 15

Importing and Exporting Data

Copy allows rapid loading and unloading of user tables. This command can write the contents of a
table to an ASCII file or load a table from an ASCII file. These files can be used for backup purposes
or to transfer data between POSTGRESQL and other applications.

The first section of this chapter describes the use of COPY to unload and load database tables.
The next part of the chapter shows how to use COPY to share data with other applications. The
final section contains tips for using COPY.

15.1 Using COPY

Copy...TO allows you to copy the contents of a table to a file. The file can later be read using
COPY...FROM.

Figure 15.1 shows the creation of a table with columns of various types. Two rows are then
inserted into copytest. SELECT shows the contents of the table, and COPY...TO writes the table to
the file /tmp/copytest.out. The rows are then deleted. Finally, COPY...FROM reloads the table, as
shown by the last SELECT.

Copy provides a quick way to load and unload tables. It is used for database backup (see
Section 20.5). The following sections cover various COPY features that are important when reading
or writing COPY files in other applications.

15.2 Copry File Format

CoPY...TO can export data to be loaded into other applications, and COPY...FROM can import data
from other applications. If you are constructing a file for use with the COPY command or are reading
a COPY file in another application, it is important to understand COPY’s file format.

Figure 15.2 shows the contents of the COPY file from Figure 15.1. First, \q exits psql to an

169

170

CHAPTER 15. IMPORTING AND EXPORTING DATA

test=> CREATE TABLE copytest (
test(> intcol INTEGER,
test(> numcol NUMERIC(16,2),
test(> textcol TEXT,
test(> boolcol BOOLEAN
test(>);
CREATE
test=> INSERT INTO copytest
test-> VALUES (1, 23.99, 'fresh spring water', 't');
INSERT 174656 1
test=> INSERT INTO copytest
test-> VALUES (2, 55.23, 'bottled soda', 't');
INSERT 174657 1

test=> SELECT * FROM copytest;

intcol | numcol | textcol | boolcol
-------- e it ettt

1| 23.99 | fresh spring water | t
2 | 55.23 | bottled soda | t

(2 rows)

test=> COPY copytest TO '/tmp/copytest.out';
COPY

test=> DELETE FROM copytest;

DELETE 2

test=> COPY copytest FROM '/tmp/copytest.out';
COPY

test=> SELECT * FROM copytest;

intcol | numcol | textcol | boolcol
-------- S
1| 23.99 | fresh spring water | t
2 | 55.23 | bottled soda | t
(2 rows)

Figure 15.1: Example of COPY...TO and COPY...FROM

15.3. DELIMITERS 171

test=> \q

$ cat /tmp/copytest.out

1 23.99 fresh spring water t

2 55.23 bottled soda t

$ sed 's/ /<TAB>/g' /tmp/copytest.out # the gap between / / is a TAB

1<TAB>23.99<TAB>fresh spring water<TAB>t
2<TAB>55.23<TAB>bottled soda<TAB>t

Figure 15.2: Example of COPY...FROM

operating system prompt. Then, the Unix cat! command displays the file /tmp/copytest.out. This
file contains one line for every row in the table. Columns in the file are separated by tabs. These
tabs are called delimiters because they delimit (that is, separate) columns.

Tabs are difficult to see because they look like multiple spaces. The next command processes
the file using sed ? to display tabs as <TAB>. This option clearly shows the tabs in the file, which
differ from spaces.

The columns in Figure 15.2 do not line up as they do in psql, because they are of different
lengths. The value of fextcol in the first line is longer than the value in the second line. The lack of
alignment is expected because the COPY file is designed for easy processing, with one tab between
each column. It is not designed for display purposes.

15.3 DELIMITERS

You can easily change the default tab column delimiter. COPY’s USING DELIMITERS option allows
you to set the column delimiter. In Figure 15.3, setting the delimiter to a pipe symbol (|) causes
the output file to use pipes to separate columns.

If a COPY file does not use the default tab column delimiter, COPY...FROM must employ the
proper USING DELIMITERS option. As shown in Figure 15.4, if a file uses pipes rather than tabs
as column delimiters, COPY...FROM must specify pipes as delimiters. The first COPY...FROM fails
because it cannot find a tab to separate the columns. The second COPY...FROM succeeds because
the proper delimiter for the file was used.

INon-Unix operating system users would use the #ype command.
2The sed operating system command replaces one string with another. See the sed (1) manual page for more information.

172

CHAPTER 15. IMPORTING AND EXPORTING DATA

test=> COPY copytest TO '/tmp/copytest.out' USING DELIMITERS '|';
COPY

test=> \q

$ cat /tmp/copytest.out

1|23.99|fresh spring water|t

2|55.23|bottled soda|t

Figure 15.3: Example of COPY...TO...USING DELIMITERS

test=> DELETE FROM copytest;

DELETE 2

test=>

test=> COPY copytest FROM '/tmp/copytest.out';

ERROR: copy: line 1, pg atoi: error in "1|23.99|fresh spring water|t": can-
not parse "|23.99|fresh spring water|t"

test=>

test=> COPY copytest FROM '/tmp/copytest.out' USING DELIMITERS '|';

COPY

Figure 15.4: Example of COPY...FROM...USING DELIMITERS

15.4. COPY WITHOUT FILES 173

test=> COPY copytest FROM stdin;

Enter data to be copied followed by a newline.

End with a backslash and a period on a line by itself.
test> 3 77.43 coffee f

test> \.

test=> COPY copytest TO stdout;

1 23.99 fresh spring water t
2 55.23 bottled soda t

3 77.43 coffee f

test=>

Figure 15.5: COPY using stdin and stdout

15.4 CoPy Without Files

COPY can also be used without files. The command can, for example, use the same input and output
locations used by psql. The special name stdin represents the psql input, and stdout represents
the psql output. Figure 15.5 shows how you can use stdin to supply COPY input directly from
your keyboard. For clarity, text typed by the user appears in bold. The gaps in the second typed
line were generated by pressing the tab key. The user typed \. to exit COPY...FROM. A COPY to
stdout operation displays the COPY output on your screen, which can be useful when using psql in
automated scripts.

15.5 Backslashes and NULL Values

There is potential for confusion if the character used as a column delimiter also exists in user data.
If both appear the same way in the file, COPY...FROM would be unable to determine whether the
character is a delimiter or user data.

Copy avoids any confusion by specially marking delimiters appearing in user data. It precedes
them with a backslash (\). If a pipe is the delimiter, COPY...TO uses pipes (|) for delimiters, and
backslash-pipes (\ |) for pipes in user data. In Figure 15.6, for example, each column is separated
by a pipe, but the pipe that appears in user data is output as abc\ |def.

Use of a backslash causes any character that follows it to be treated specially. As a result, a
backslash in user data is output as two backslashes (\\).

Another special backslash used in Figure 15.6 is \N, which represents NULL. It prevents NULL
values from being confused with user values.

To change the default NULL representation, you use WITH NULL AS. For example, the com-
mand COPY copytest TO '/tmp/copytest.out' WITH NULL AS '?' will output NULL values as ques-

174

test=> DELETE FROM copytest;

DELETE 3

test=> INSERT INTO copytest

CHAPTER 15. IMPORTING AND EXPORTING DATA

test-> VALUES (4, 837.20, 'abc|def', NULL);

INSERT 174786 1

test=> COPY copytest TO stdout USING DELIMITERS '|';

4]837.20]|abc\ |def|\N

Figure 15.6: COPY backslash handling

Backslash String Meaning

\ TAB tab if using default delimiter tab

\ pipe if using pipe as the delimiter

\N NULL if using the default NULL output
\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\v vertical tab

\### character represented by octal number ###
\\ backslash

Table 15.1: Backslashes understood by COPY

tion marks. Unfortunately, it will make a user column containing a single question mark indistin-
guishable from a NULL in the file. To output NULL values as blank columns, use the command COPY
copytest TO '/tmp/copytest.out' WITH NULL AS '\,'. To treat empty columns as NULL values on
input, use COPY copytest FROM '/tmp/copytest.out' WITH NULL AS '\,'.

Table 15.1 summarizes the delimiter, NULL, and backslash handling of COPY. The first two
lines in the table show that preceding a character with a backslash prevents the character from
being interpreted as a delimiter. The next line shows that \IN. means NULL under the default
representation. The other backslash entries show simple representations for common characters.
The last line shows that a double-backslash is required to represent a literal backslash.

15.6. COPY TIPS 175

15.6 Copry Tips

You must use full path names with the COPY command because the database server runs in a
different directory than the psql client. Files are read and written by the posigres user, so postgres
must have permission to read the file for COPY...FROM and directory write permission for COPY...TO.
Because COPY uses the local file system, users connecting over a network cannot use file names.
They can use stdin and stdout, or psql’s \copy command.

By default, the system-generated OID column is not written out, and loaded rows receive new
OIDs. COPY...WITH OIDS allows OIDs to be written and read.

Copy writes only entire tables. To COPY only part of a table, use SELECT...INTO TEMPORARY
TABLE with an appropriate WHERE clause and then COPY the temporary table to a file.

See the COPY manual page for more detailed information.

15.7 Summary

CoPY can be thought of as a crude INSERT and SELECT command. It imports and exports data in a
very generic format, which makes it ideal for use by other applications and for backup purposes.

Chapter 16

Database Query Tools

This chapter covers two popular POSTGRESQL database query tools: psql and pgaccess.

16.1 Psql

This section summarize the capabilities of psql. The psql manual has detailed information about
each item. See Chapter 2 for an introduction to psql.

Query Buffer Commands

Table 16.1 shows the commands used to control psq1’s query buffer. There is one item of particular
interest, edit (\e), which allows editing of the query buffer. The \e command loads the contents of
the query buffer into the default editor. When the user exits the editor, the editor’s contents are
reloaded into the query buffer, ready for execution. The environment variable EDITOR specifies
the default editor.

General Commands

Table 16.2 lists psql’s general commands. Psql’s local copy interface allows copy operations using
files local to the computer running psql, rather than local to the computer running the database
server. Later sections in this chapter cover the use of the \set, \unset, and \pset commands.

Output Format Options

The \pset command controls the output format used by psql1. Table 16.3 lists the available formatting
commands, and Figure 16.1 shows examples of their use. In the figure, \pset tuples only causes
psql to show only data rows, suppressing table headings and row counts. The fuples only does not

177

178

CHAPTER 16. DATABASE QUERY TOOLS

Function Command Argument
Print \p
Execute \gor; file or |command
Quit \q
Clear \r
Edit \e file
Backslash help \?
SQL help \h topic
Include file \i file
Output to file/command | \o file or |command
Write buffer to file \W file
Show/save query history | \s file
Run subshell \! command

Table 16.1: psql’s query buffer commands

Operation

Command

Connect to another database
Copy table file to/from database
Set a variable

Unset a variable

Set output format

Echo

Echo to \o output

Copyright

Change character encoding

\connect dbname

\copy tablename to | from filename
\set variable or \set variable value
\unset variable

\pset option or \pset option value
\echo string or \echo “command®
\gecho string or \qecho ‘command®

\copyright

\encoding newencoding

Table 16.2: psql’s general commands

16.1. PSQL

Format Parameter Options
Field alignment format unaligned, aligned, html, or latex
Field separator fieldsep separator
One field per line expanded
Rows only tuples_only
Row separator recordsep separator
Table title title title
Table border border 0,1,0r2
Display NULL values | null null_string
HTML table tags tableattr tags
Page output pager command

Table 16.3: psql’s \pset options

test=> SELECT NULL;
?column?

(1 row)

test=> \pset tuples only
Showing only tuples.
test=> SELECT NULL;

test=> \pset null '(null)"’
Null display is '(null)'.
test=> SELECT NULL;

(null)

Figure 16.1: Example of \pset

179

180 CHAPTER 16. DATABASE QUERY TOOLS

Modifies Command | Argument
Field alignment | \a
Field separator \f separator
One field per line | \x
Rows only \t
Table title \C title
Enable HTML \H
HTML table tags | \T tags

Table 16.4: psql’s output format shortcuts

take a second argument, as it is an on/off parameter. The first \pset tuples_only turns it on, and the
second one turns it off. The second \pset in the figure causes psql to display NULL as (null).

Output Format Shortcuts

In addition to using \pset, some output format options have shortcuts, as shown in Table 16.4.

Variables

The \set command sets a variable, and \unset removes a variable. To access a variable you precede
its name with a colon. The \sef command used alone lists all defined variables.

Figure 16.2 shows the use of psql variables. The first variable assigned, num_var, is accessed
in the SELECT query by preceding the variable name with a colon. The second \set command places
the word SELECT into a variable, then uses that variable to perform a SELECT query. The next
example uses backslash-quotes (\') to create a string that contains single quotes. This variable
then replaces a quoted string in a query. With dafe vaz, grave accents (") allow a command to be run
and the result placed into a variable. In this case, the output of the Unix date command is captured
and placed into a variable. The assignment to date var2 combines the use of backslash-quotes
and grave accents to run the date command and surround it with single quotes. The final SELECT
shows that date_var2 holds a quoted date string that can be used in queries.

Psql includes a number of predefined variables, as listed in Table 16.5. The variables in the
first group contain useful information; the others affect psql’s behavior. Some of the predefined
variables do not take an argument but are activated using \sef, and deactivated using \uznset.

Listing Commands

You can find a great deal of information about the current database by using psq1’s listing commands,
as shown in Table 16.6. They provide information about tables, indexes, functions, and other
objects defined in the database.

16.1. PSQL 181

test=> \set num var 4
test=> SELECT :num var;
?column?

(1 row)

test=> \set operation SELECT
test=> :operation :num_ var;
?column?

(1 row)

test=> \set str var '\'My Tong string\''
test=> \echo :str_var
'My long string'
test=> SELECT :str_var;
?2column?
My Tong string
(1 row)

test=> \set date_var “date’
test=> \echo :date var
Thu Aug 11 20:54:21 EDT 1994

test=> \set date var2 '\''“date™'\"'
test=> \echo :date_var2
'Thu Aug 11 20:54:24 EDT 1994'
test=> SELECT :date var2;

?column?

Thu Aug 11 20:54:24 EDT 1994
(1 row)

Figure 16.2: psql variables

182

CHAPTER 16. DATABASE QUERY TOOLS

Meaning ‘ Variable Name | Argument
Database DBNAME
Multibyte encoding ENCODING
Host HOST
Previously assigned OID | LASTOID
Port PORT
User USER
Echo queries ECHO all
Echo \d* queries ECHO_HIDDEN noexec
History control HISTCONTROL ignorespace, ignoredups, or
ignoreboth
History size HISTSIZE command_count
Terminate on end of file | IGNOREEOF eof count
\lobject transactions LO_TRANSACTION rollback, commit, nothing
Stop on query errors ON_ERROR_STOP
Command prompt PROMPT1, PROMPTZ2, PROMPT3 | string
Suppress output QUIET
Single-line mode SINGLELINE
Single-step mode SINGLESTEP

Table 16.5: psql’s predefined variables

16.1. PSQL 183

Listing Command | Argument

Table, index, view, or sequence | \d name
Tables \dt name
Indexes \di name
Sequences \ds name
Views \dv name
Permissions \z or \dp name
System tables \dS name
Large objects \dl name
Types \dT name
Functions \df name
Operators \do name
Aggregates \da name
Comments \dd name
Databases \l

Table 16.6: psql’s listing commands

Most listing commands take an optional name parameter, which can be specified as a regular
expression. For example, \dt sec displays all table names beginning with sec, and \dt .*x.* shows
all table names containing an x. Regular expressions were covered in Section 4.10.

When you are using listing commands, the descriptions of the various data types and functions
are called comments. POSTGRESQL predefines many comments, and the COMMENT command allows
users to define their own as well. The \dd command and others then display these comments. See
the COMMENT manual page for more information.

Many commands support the use of an optional plus sign, which shows additional information.
For example, \dT lists all data types, \dT+ includes the size of each type, and \df+ shows additional
information about functions. With the other commands, a plus sign causes the comments for the
object to be displayed.

Large Object Commands

Psql has a local large object interface that supports large object operations using files local to the
computer running psql, rather than local to the computer running the database server. Table 16.7
shows the local large object commands supported.

184 CHAPTER 16. DATABASE QUERY TOOLS

Large Objects ‘ Command ‘ Argument

Import \lo_import | file
Export \lo_export | oid file
Unlink \lo_unlink | oid
List \lo_list

Table 16.7: psql’s large object commands

Psql Command-line Arguments and Start-up File

You can change the behavior of psql when starting a new session. Psql is normally started from
the command line by typing psql followed by the database name. However, psql accepts extra
arguments between psql and the database name, which modify psql’s behavior. For example, psq1
-f file test will read commands from file, rather than from the keyboard. Table 16.8 summarizes
psql’s command-line options. Consult the psql manual page for more detailed information.
Another way to change the behavior of psql on start-up is to create a file called .psqlrc in your
home directory. Each time psql starts, it executes any backslash or SQL commands in that file.

16.2 Pgaccess

Pgaccess is a graphical database tool that is used for accessing tables, queries, views, sequences,
functions, reports, forms, scripts, users, and schemas. It is written using the POSTGRESQL TCL/TK
interface. Its source code appears in pgsql/src/bin/pgaccess.

Figure 16.3 shows the opening window of pgaccess. The tabs on the left show the items that
can be accessed. The menu at the top permits database actions, table import/export, and object
creation, deletion, and renaming.

Figure 16.4 shows the fable window. This window allows table rows to be viewed and modified.

The pgaccess manual page and help screens cover its capabilities in more detail.

16.3 Summary

This chapter covered psql and pgaccess, the most popular POSTGRESQL query tools. They are
valuable tools for accessing POSTGRESQL.

16.3. SUMMARY 185

Option ‘ Capability ‘ Argument ‘ Additional Argument
Connection Database (optional) -d database
Host name -h hostname
Port -p port
User -U user
Force password prompt -W
Version -V
Controlling Output | Field alignment -A
Field separator -F separator
Record separator -R separator
Rows only -t
Extended output format -X
Echo \d* queries -E
Quiet mode -q
HTML output -H
HTML table tags -T tags
Set \pset options -P option or option=value
List databases -1
Disable readline -n
Automation Echo all queries from scripts | -a
Echo queries -e
Execute query -C query
Get queries from file -f file
Output to file -0 file
Single-step mode -s
Single-line mode -S
Suppress reading ~/.psqirc | -X
Set variable -v var or var=value

Table 16.8: psql’s command-line arguments

186

CHAPTER 16. DATABASE QUERY TOOLS

PostgreS0QL access

Database Ohject

Tahles
Queries

Wiews

Sequences

Functions

Reports

Forms

Scripts

Users

Schema

Mews

account
aggtest
alltypes
alterdemo
array_test
child_test
copytest
customer
defertest
duptest
employee
foreigntest
foreigntest2
friend
friendz

fruit
grandchild_test

matchte st

localhost

Figure 16.3: Pgaccess’s opening window

Sort field

Filter conditions

Reload | Close |

firstname
Hike
Hark
Jack

*

lastname city

Nichals
Middleton

Bur ger
*

Tampa
Indignopolis

*

state
24

27

*

Figure 16.4: Pgaccess’s table window

Chapter 17

Programming Interfaces

Psql is ideal for interactively entering SQL commands and for running automated scripts, but it is
not ideal for writing applications. Fortunately, POSTGRESQL has interfaces for many programming
languages. Programming languages include variables, functions, conditional evaluation, looping,
and complex input/output routines, all of which are required for writing good applications.

Table 17.1 shows the supported programming interfaces. These language interfaces allow
applications to pass queries to POSTGRESQL and receive results. The compiled languages execute
more quickly, but are more difficult to program than the interpreted ones.

This chapter will show the same application using each of the interfaces listed in Figure 17.1.
The application is a very simple one that prompts the user for a United States state code and
outputs the state name that goes with the code. Figure 17.1 shows the sample application being
run. For clarity, the text typed by the user appears in bold. The program displays a prompt, the
user types AL, and the program displays Alabama. Although state codes are unique, the application
is written to allow multiple query return values. The application uses the statename table, which
is recreated in Figure 17.2.

Additional information about POSTGRESQL interfaces is available in the Programmer’s Manual
mentioned in Appendix A.2.

Enter a state code: AL
Alabama

Figure 17.1: Sample application being run

187

188

test=>
test(>

CHAPTER 17. PROGRAMMING INTERFACES

Interface | Language | Processing Advantages
LIBPQ C compiled native interface
LIBPGEASY | C compiled simplified C

ECPG C compiled ANSI embedded SQL C
LIBPQ++ | C++ compiled object-oriented C
ODBC ODBC compiled application connectivity
JDBC Java both portability

PERL Perl interpreted | text processing
PGTCLSH | TCL/TK interpreted | interfacing, windowing
PYTHON Python interpreted | object-oriented

PHP HTML interpreted | dynamic Web pages

Table 17.1: Interface summary

CREATE TABLE statename (code CHAR(2) PRIMARY KEY,

test(>);

CREATE

name CHAR(30)

test=> INSERT INTO statename VALUES ('AL', 'Alabama');

INSERT

18934 1

test=> INSERT INTO statename VALUES ('AK', 'Alaska');

INSERT

18934 1

Figure 17.2: Statename table

17.1.

C LANGUAGE INTERFACE (LIBPQ) 189
User
Terminal

Application Database
Code

PostgreSQL

Server

LIBPQ

Queries —=

=— Results

Figure 17.3: LIBPQ data flow

17.1 C Language Interface (LIBPQ)

LIBPQ is the native C interface to POSTGRESQL. Psq1 and most other interfaces use it internally
for database access.

Figure 17.3 shows how LIBPQ is used. The application code communicates with the user’s
terminal and uses LIBPQ for database access. It turn, LIBPQ sends queries to the database server
and retrieves results.

Figure 17.4 shows the sample program using LIBPQ to access POSTGRESQL. The sample pro-
gram performs the following tasks:

Establish a database connection
Prompt for and read the state code
Form an appropriate SQL query

Pass the SQL query to LIBPQ

Have POSTGRESQL execute the query
Retrieve the query results from LIBPQ
Display the results to the user

Terminate the database connection

All interactions with the database are accomplished via LIBPQ functions. The following LIBPQ
functions are called by the sample program:

190 CHAPTER 17. PROGRAMMING INTERFACES

/*
* 1ibpg sample program
*/
#include <stdio.h>
#include <stdlib.h>

#include "Tibpg-fe.h" /* libpq header file */

int

main()

{
char state_code[3]; /* holds state code entered by user */
char query_string[256]; /* holds constructed SQL query */
PGconn *conn; /* holds database connection */
PGresult *res; /* holds query result */
int i
conn = PQconnectdb("dbname=test"); /* connect to the database */
if (PQstatus(conn) == CONNECTION_BAD) /* did the database connection fail? */
{

fprintf(stderr, "Connection to database failed.\n");
fprintf(stderr, "%s", PQerrorMessage(conn));
exit(1);

}

printf("Enter a state code: "); /* prompt user for a state code */
scanf("%2s", state_code);

sprintf(query_string, /* create an SQL query string */
"SELECT name \
FROM statename \
WHERE code = '%s'", state code);

res = PQexec(conn, query string); /* send the query */
if (PQresultStatus(res) != PGRES_TUPLES_OK) /* did the query fail? */
{

fprintf(stderr, "SELECT query failed.\n");
PQclear(res);

PQfinish(conn);
exit(1);
}
for (i = 0; i < PQntuples(res); i++) /* loop through all rows returned */
printf("%s\n", PQgetvalue(res, i, 0)); /* print the value returned */
PQclear(res); /* free result */
PQfinish(conn); /* disconnect from the database */
return 0;

Figure 17.4: LIBPQ sample program

17.2. PGEASY (LIBPGEASY) 191

PQconnectdb() Connect to the database.

PQexec() Send the query to the database.

PQntuples() Return the number of rows (tuples) in the result.
PQgetvalue() Return a specific row and column of the result.
PQclear() Free resources used by the result.

PQfinish() Close the database connection.

These functions are the most common LIBPQ functions. The Programmer’s Manual covers all of
this interface’s functions and shows additional examples.

17.2 Pgeasy (LIBPGEASY)

LIBPGEASY is a simplified C interface that hides some of the complexity of LIBPQ. Figure 17.5
shows a LIBPGEASY version of our state code application. No error checking is required because
LIBPGEASY automatically terminates the program if an error occurs. You can change this default
using on_error_continue().

17.3 Embedded C (ECPG)

Rather than using function calls to perform SQL queries, ECPG allows SQL commands to be embedded
in a C program. The ECPG preprocessor converts lines marked by EXEC SQL to native SQL calls.
The resulting file is then compiled as a C program.

Figure 17.6 shows an ECPG version of our application. The interface implements the ANSI
embedded SQL C standard, which is supported by many database systems.

174 C++ (LIBPQ++)

LiBPQ+ + 1s POSTGRESQL’s C+ + interface. Figure 17.7 shows our application using this interface.
LIBPQ+ + allows database access using object methods rather than function calls.

17.5 Compiling Programs

The interfaces discussed so far have been based on C or C++. Each interface requires certain
wnclude and library files to generate an executable version of the program.

192 CHAPTER 17. PROGRAMMING INTERFACES

/*
* 1ibpgeasy sample program

*/

#include <stdio.h>
#include <libpg-fe.h>

#include <libpgeasy.h> /* libpgeasy header file */

int

main()

{
char state_code[3]; /* holds state code entered by user */
char query_string[256]; /* holds constructed SQL query */
char state_name[31]; /* holds returned state name */
connectdb("dbname=test"); /* connect to the database */
printf("Enter a state code: "); /* prompt user for a state code */

scanf("%2s", state_code);

sprintf(query string, /* create an SQL query string */
"SELECT name \
FROM statename \
WHERE code = '%s'", state code);

doquery(query_string); /* send the query */

while (fetch(state_name) != END_OF TUPLES) /* loop through all rows returned */
printf("%s\n", state_name); /* print the value returned */

disconnectdb(); /* disconnect from the database */

return 0;

Figure 17.5: LIBPGEASY sample program

17.5. COMPILING PROGRAMS

/*
* ecpg sample program
*/

#include <stdio.h>

EXEC SQL INCLUDE sqlca;

EXEC SQL WHENEVER SQLERROR sqlprint

int

main()

{

EXEC SQL BEGIN DECLARE SECTION;
char state_code[3];
char *state_name = NULL;
char query_string[256];

EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO test;

printf("Enter a state code: ");

scanf("%2s", state_code);

sprintf(query_string,
"SELECT name \
FROM statename \
WHERE code = '%s'"

EXEC SQL PREPARE s_statename FROM :query_string;

, state_code);

/*

/*

/*

/*
/*

ecpg header file */

holds state code entered by user */
holds value returned by query */
holds constructed SQL query */

connect to the database */

prompt user for a state code */

create an SQL query string */

EXEC SQL DECLARE c_statename CURSOR FOR s_statename;/* DECLARE a cursor */

EXEC SQL OPEN c_statename;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{

EXEC SQL FETCH IN c_statename INTO :state_name;

printf("%s\n", state_name);
state_name = NULL;
}
free(state_name);
EXEC SQL CLOSE c_statename;
EXEC SQL COMMIT;

EXEC SQL DISCONNECT;

return 0;

/*

/*

/*

/*

/*

send the query */

Toop through all rows returned */

print the value returned */

free result */

CLOSE the cursor */

disconnect from the database */

Figure 17.6: ECPG sample program

193

194

CHAPTER 17. PROGRAMMING INTERFACES

/*

* 1ibpg++ sample program

*/

#include <iostream.h>

#include <libpg++.h> // 1ibpg++ header file

int main()

{
char state_code[3]; // holds state code entered by user
char query_string[256]; // holds constructed SQL query
PgDatabase data("dbname=test"); // connects to the database
if (data.ConnectionBad()) // did the database connection fail?

{
cerr << "Connection to database failed." << end]l
<< "Error returned: " << data.ErrorMessage() << endl;
exit(1);

cout << "Enter a state code: "; // prompt user for a state code
cin.get(state_code, 3, '\n');

sprintf(query_string, // create an SQL query string
"SELECT name \
FROM statename \
WHERE code = '%s'", state_code);

if (!data.ExecTuplesOk(query string)) // send the query

{
cerr << "SELECT query failed." << endl;

exit(1);
}
for (int i=0; i < data.Tuples(); i++) // loop through all rows returned
cout << data.GetValue(i,0) << endl; // print the value returned
return 0;

Figure 17.7: LIBPQ+ + sample program

17.6. ASSIGNMENT TO PROGRAM VARIABLES 195

Interface include files are typically installed in /usr/local/pgsql/include. The compiler flag
-I is needed to ensure that the compiler searches the specified directory for include files—for
example, -I/usr/Tocal/pgsql/include.

Interface libraries are typically installed in /usr/local/pgsql/1ib. The compiler flag -L is
needed to ensure that the compiler searches the directory for library files—for example, -
L/usr/Tocal/pgsql/1ib.

The compiler flag -/ is needed for the compiler to link to a specific library file. To link to Tibpg.a
or 1ibpg.so, the flag -1pq is needed. Because the -/ flag knows that the file begins with /zb, -11ibpq
is not correct—just -1pq.

The commands to compile myapp for various interfaces are listed below:

LIBPQ cc -I/usr/local/pgsql/include -o myapp myapp.c -L/usr/Tocal/pgsql/1ib -1pq
LIBPGEASY cc -I/usr/Tocal/pgsql/include -o myapp myapp.c -L/usr/local/pgsql/1ib -1pgeasy

ECPG ecpg myapp.pgc
cc -I/usr/local/pgsql/include -o myapp myapp.c -L/usr/local/pgsql/1ib -lecpg

LIBPQ++ cc++ -I/usr/local/pgsql/include -o myapp myapp.cpp -L/usr/local/pgsql/1ib -Tpg++

Notice that each interface has its own library. ECPG requires the ecpg preprocessor to be run
before compilation. LIBPQ+ + requires the use of a different compiler.

17.6 Assignment to Program Variables

POSTGRESQL is a network-capable database. That is, the database server and user application
can be run on different computers. Because character strings have the same representation on
all computers, they are used for communication between the user program and database server.
Queries are submitted as character strings, and results are passed back as character strings.
This approach provides reliable communication even when the two computers involved are quite
different.

The sample programs in this chapter perform SELECTs on a CHAR(30) column. Because query
results are returned as character strings, returned values can be assigned directly to program
variables. In contrast, noncharacter string columns, like INTEGER and FLOAT, cannot be assigned
directly to integer or floating-point variables. A conversion might be required instea