
S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Chapter 8. Sorting

8.0 Introduction

This chapter almost doesn’t belong in a book on numerical methods. However,
some practical knowledge of techniques for sorting is an indispensable part of any
good programmer’s expertise. We would not want you to consider yourself expert in
numerical techniques while remaining ignorant of so basic a subject.

In conjunction with numerical work, sorting is frequently necessary when data
(either experimental or numerically generated) are being handled. One has tables
or lists of numbers, representing one or more independent (or “control”) variables,
and one or more dependent (or “measured”) variables. One may wish to arrange
these data, in various circumstances, in order by one or another of these variables.
Alternatively, one may simply wish to identify the “median” value, or the “upper
quartile” value of one of the lists of values. This task, closely related to sorting,
is called selection.

Here, more specifically, are the tasks that this chapter will deal with:
• Sort, i.e., rearrange, an array of numbers into numerical order.
• Rearrange an array into numerical order while performing the corre-

sponding rearrangement of one or more additional arrays, so that the
correspondence between elements in all arrays is maintained.

• Given an array, prepare an index table for it, i.e., a table of pointers
telling which number array element comes first in numerical order, which
second, and so on.

• Given an array, prepare a rank table for it, i.e., a table telling what is
the numerical rank of the first array element, the second array element,
and so on.

• Select the M th largest element from an array.

For the basic task of sorting N elements, the best algorithms require on the
order of several times N log2N operations. The algorithm inventor tries to reduce
the constant in front of this estimate to as small a value as possible. Two of the
best algorithms are Quicksort (§8.2), invented by the inimitable C.A.R. Hoare, and
Heapsort (§8.3), invented by J.W.J. Williams.

For large N (say > 1000), Quicksort is faster, on most machines, by a factor of
1.5 or 2; it requires a bit of extra memory, however, and is a moderately complicated
program. Heapsort is a true “sort in place,” and is somewhat more compact to
program and therefore a bit easier to modify for special purposes. On balance, we
recommend Quicksort because of its speed, but we implement both routines.

329



330 Chapter 8. Sorting

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are. 
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

For small N one does better to use an algorithm whose operation count goes
as a higher, i.e., poorer, power of N , if the constant in front is small enough. For
N < 20, roughly, the method of straight insertion (§8.1) is concise and fast enough.
We include it with some trepidation: It is an N2 algorithm, whose potential for
misuse (by using it for too large an N ) is great. The resultant waste of computer
time is so awesome, that we were tempted not to include any N2 routine at all. We
will draw the line, however, at the inefficient N2 algorithm, beloved of elementary
computer science texts, called bubble sort. If you know what bubble sort is, wipe it
from your mind; if you don’t know, make a point of never finding out!

For N < 50, roughly, Shell’s method (§8.1), only slightly more complicated to
program than straight insertion, is competitive with the more complicated Quicksort
on many machines. This method goes asN3/2 in the worst case, but is usually faster.

See references [1,2] for further information on the subject of sorting, and for
detailed references to the literature.

CITED REFERENCES AND FURTHER READING:

Knuth, D.E. 1973, Sorting and Searching, vol. 3 of The Art of Computer Programming (Reading,
MA: Addison-Wesley). [1]

Sedgewick, R. 1988, Algorithms, 2nd ed. (Reading, MA: Addison-Wesley), Chapters 8–13. [2]

8.1 Straight Insertion and Shell’s Method

Straight insertion is an N2 routine, and should be used only for small N ,
say < 20.

The technique is exactly the one used by experienced card players to sort their
cards: Pick out the second card and put it in order with respect to the first; then pick
out the third card and insert it into the sequence among the first two; and so on until
the last card has been picked out and inserted.

void piksrt(int n, float arr[])
Sorts an array arr[1..n] into ascending numerical order, by straight insertion. n is input; arr
is replaced on output by its sorted rearrangement.
{

int i,j;
float a;

for (j=2;j<=n;j++) { Pick out each element in turn.
a=arr[j];
i=j-1;
while (i > 0 && arr[i] > a) { Look for the place to insert it.

arr[i+1]=arr[i];
i--;

}
arr[i+1]=a; Insert it.

}
}

What if you also want to rearrange an array brr at the same time as you sort
arr? Simply move an element of brr whenever you move an element of arr:


