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which contain no singularities, and where the endpointsare al so nonsingul ar. gromb,
in such circumstances, takes many, many fewer function evaluations than either of
the routines in §4.2. For example, the integral

2
/ ztlog(z + a2 + 1)dx
0

converges (with parameters as shown above) on the very first extrapolation, after
just 5 callsto trapzd, while gsimp requires 8 calls (8 times as many eval uations of
the integrand) and qtrap requires 13 calls (making 256 times as many evaluations
of the integrand).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
§63.4-3.5.

Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§87.4.1-7.4.2.

Ralston, A., and Rabinowitz, P. 1978, A First Course in Numerical Analysis, 2nd ed. (New York:
McGraw-Hill), §4.10-2.

4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

e itsintegrand goesto afinitelimiting value at finite upper and lower limits,

but cannot be evaluated right on one of thoselimits(e.g., sinz/z ax = 0)

e itsupper limitis oo , or its lower limit is —oco

e it has an integrable singularity at either limit (e.g., z~'/% a = = 0)

e it has an integrable singularity at a known place between its upper and

lower limits

e it has an integrable singularity at an unknown place between its upper

and lower limits

If an integral isinfinite (eg., [~ z~'dz), or does not exist in alimiting sense
(eq., ffooo cos zdx), we do not call it improper; wecall it impossible. No amount of
clever algorithmics will return a meaningful answer to an ill-posed problem.

In this section we will generalize the techniques of the preceding two sections
to cover the first four problems on the above list. A more advanced discussion of
quadrature with integrable singularities occurs in Chapter 18, notably §18.3. The
fifth problem, singularity at unknown location, can redly only be handled by the
use of avariable stepsize differential equation integration routine, as will be given
in Chapter 16.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), but
onewhich isan open formulain the sense of §4.1, i.e., does not require theintegrand
to be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is
the best choice. The reason isthat (4.1.19) shares with (4.1.11) the “deep” property
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142 Chapter 4.  Integration of Functions

of having an error series that isentirely even in h. Indeed there isaformula, not as
well known asit ought to be, called the Second Euler-Maclaurin summation formula,

/ ’ f(x)dx = h[fs/o+ fs)2 + fr2 + -+ fn—3/2 + fn—1/2]

Byh?

+ 24 (fn=f)+- (44.1)
By h?* _ - -

" (22k)!_(1—2 (Y — ) 4

This equation can be derived by writing out (4.2.1) with stepsize h, then writing it
out again with stepsize h /2, then subtracting the first from twice the second.

It is not possible to double the number of steps in the extended midpoint rule
and still have the benefit of previous function evaluations (try it!). However, it is
possible to triple the number of steps and do so. Shall we do this, or double and
accept the loss? On the average, tripling does a factor /3 of unnecessary work,
since the “right” number of steps for a desired accuracy criterion may in fact fall
anywhere in the logarithmic interval implied by tripling. For doubling, the factor
isonly v/2, but we lose an extra factor of 2 in being unable to use all the previous
evaluations. Since 1.732 < 2 x 1.414, it is better to triple.

Here is the resulting routine, which is directly comparable to trapzd.

#define FUNC(x) ((*func) (x))

float midpnt(float (*func) (float), float a, float b, int n)
This routine computes the nth stage of refinement of an extended midpoint rule. func is input
as a pointer to the function to be integrated between limits a and b, also input. When called with

n=1, the routine returns the crudest estimate of ff f(x)dz. Subsequent calls with n=2,3,...

(in that sequential order) will improve the accuracy of s by adding (2/3) X 301 additional
interior points. s should not be modified between sequential calls.
{

float x,tnm,sum,del,ddel;

static float s;

int it,j;

if (n==1) {
return (s=(b-a)*FUNC(0.5*(a+b)));
} else {
for(it=1,j=1;j<n-1;j++) it *= 3;
tnm=it;
del=(b-a)/(3.0*tnm) ;
ddel=del+del; The added points alternate in spacing between
x=a+0.5*del; del and ddel
sum=0.0;
for (j=1;j<=it;j++) {
sum += FUNC(x);

x += ddel;

sum += FUNC(x);

x += del;
}
s=(s+(b-a)*sum/tnm)/3.0; The new sum is combined with the old integral
return s; to give a refined integral.
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4.4 Improper Integrals 143

The routinemidpnt can exactly replace trapzd in adriver routinelike qtrap
(84.2); one simply changes trapzd (func,a,b, j) tomidpnt (func,a,b, j), and
perhaps also decreases the parameter JMAX since 3JMAX-1 (from step tripling) isa
much larger number than 29MAX=1 (step doubling).

The open formulaimplementation analogous to Simpson’srule (qsimp in §4.2)
substitutesmidpnt for trapzd and decreases JMAX as above, but now also changes
the extrapolation step to be

s=(9.0*st-0st)/8.0;

since, when the number of stepsistripled, the error decreases to 1/9th its size, not
1/4th as with step doubling.

Either the modified qtrap or the modified qsimp will fix the first problem
on the list at the beginning of this section. Yet more sophisticated is to generalize
Romberg integration in like manner:

#include <math.h>
#define EPS 1.0e-6
#define JMAX 14
#define JMAXP (JMAX+1)
#define K 5

float qromo(float (*func)(float), float a, float b,

float (*choose) (float(*) (float), float, float, int))
Romberg integration on an open interval. Returns the integral of the function func from a to b,
using any specified integrating function choose and Romberg’'s method. Normally choose will
be an open formula, not evaluating the function at the endpoints. It is assumed that choose
triples the number of steps on each call, and that its error series contains only even powers of
the number of steps. The routines midpnt, midinf, midsql, midsqu, midexp, are possible
choices for choose. The parameters have the same meaning as in gromb.
{

void polint(float xal[]l, float yall, int n, float x, float *y, float *dy);

void nrerror(char error_text[]);

int j;

float ss,dss,h[JMAXP+1],s[JMAXP];

hl1]=1.0;
for (j=1;j<=JMAX;j++) {
s[j]=(*choose) (func,a,b,j);
if (§ >=K) {
polint (&h[j-K],&s[j-K],K,0.0,&ss,&dss);
if (fabs(dss) <= EPS*fabs(ss)) return ss;

}

h[j+1]1=h[j1/9.0; This is where the assumption of step tripling and an even
} error series is used.
nrerror ("Too many steps in routing qromo");
return 0.0; Never get here.

Don’t be put off by qromo’s complicated ANSI declaration. A typical invocation
(integrating the Bessel function Yy(x) from O to 2) is simply

#include "nr.h"
float answer;

answer=qromo (bessy0,0.0,2.0,midpnt) ;
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144 Chapter 4.  Integration of Functions

The differences between qromo and qromb (§4.3) are so dight that it is perhaps
gratuitousto list gromo infull. It, however, isan excellent driver routinefor solving
all the other problems of improper integralsin our first list (except the intractable
fifth), as we shall now see.

The basic trick for improper integrals is to make a change of variables to
eliminate the singularity, or to map an infinite range of integration to a finite one.
For example, the identity

b 1/a 1 1
/a f(x)dz :/1/b t—zf(¥> At ab>0 (4.4.2)

can be used with either b — oo and a positive, or witha — —oo and b negative, and
works for any function which decreases towards infinity faster than 1/22.

You can make the change of variable implied by (4.4.2) either analytically and
then use (e9.) qromo and midpnt to do the numerical evaluation, or you can let
the numerical agorithm make the change of variable for you. We prefer the latter
method as being more transparent to the user. To implement equation (4.4.2) we
simply write a modified version of midpnt, called midinf, which alows b to be
infinite (or, more precisely, a very large number on your particular machine, such
as 1 x 10%%), or a to be negative and infinite.

#define FUNC(x) ((*funk) (1.0/(x))/((x)*(x))) Effects the change of variable.

float midinf (float (*funk) (float), float aa, float bb, int n)
This routine is an exact replacement for midpnt, i.e., returns the nth stage of refinement of
the integral of funk from aa to bb, except that the function is evaluated at evenly spaced
points in 1/x rather than in z. This allows the upper limit bb to be as large and positive as
the computer allows, or the lower limit aa to be as large and negative, but not both. aa and
bb must have the same sign.
{

float x,tnm,sum,del,ddel,b,a;

static float s;

int it,j;
b=1.0/aa; These two statements change the limits of integration.
a=1.0/bb;
if (n ==1) { From this point on, the routine is identical to midpnt.
return (s=(b-a)*FUNC(0.5*(a+b)));
} else {
for(it=1,j=1;j<n-1;j++) it *= 3;
tnm=it;

del=(b-a)/(3.0*tnm) ;
ddel=del+del;
x=a+0.5*del;
sum=0.0;
for (j=1;j<=it;j++) {
sum += FUNC(x);
X += ddel;
sum += FUNC(x);
X += del;
}

return (s=(s+(b-a)*sum/tnm)/3.0);
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4.4 Improper Integrals 145

If you need to integrate from a negative lower limit to positive infinity, you do
this by breaking the integral into two pieces at some positive vaue, for example,

answer=qromo (funk,-5.0,2.0,midpnt)+qromo (funk,2.0,1.0e30,midinf) ;

Where should you choose the breakpoint? At a sufficiently large positive value so
that the function funk is at least beginning to approach its asymptotic decrease to
zero value at infinity. The polynomial extrapolation implicit in the second cal to
gromo deals with a polynomia in 1/x, not in x.

To deal with an integrd that has an integrable power-law singularity at itslower
limit, one also makes a change of variable. If the integrand diverges as (x — a)”,
0 <~ <1, near x = a, use the identity

b RGOl ,
/ fla)de = 1 TE TS a)dt (b>a)  (443)
a —7Jo
If the singularity is at the upper limit, use the identity
b R ol R .
/ f(z)dx = i tT= f(b—tT=7)dt (b>a) (4.4.4)
a - 0

If there is a singularity at both limits, divide the integral at an interior breakpoint
as in the example above.

Equations (4.4.3) and (4.4.4) are particularly smple in the case of inverse
sguare-root singularities, a case that occurs frequently in practice:

b Vb—a
/ f(z)dx = / 2t f(a + t*)dt (b>a) (4.4.5)
a 0

for a singularity at a, and

b Vbh—a
/ f(z)dx = / 2tf(b—tHdt (b > a) (4.4.6)
a 0

for a singularity at b. Once again, we can implement these changes of variable
transparently to the user by defining substitute routines for midpnt which make the
change of variable automatically:

#include <math.h>
#define FUNC(x) (2.0%(x)*(*funk) (aa+(x)*(x)))

float midsql(float (*funk) (float), float aa, float bb, int n)
This routine is an exact replacement for midpnt, except that it allows for an inverse square-root
singularity in the integrand at the lower limit aa.
{
float x,tnm,sum,del,ddel,a,b;
static float s;
int it,j;

b=sqrt (bb-aa) ;
a=0.0;
if (n==1) {
The rest of the routine is exactly like midpnt and is omitted.
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146 Chapter 4.  Integration of Functions

Similarly,
#include <math.h>

#define FUNC(x) (2.0%(x)*(*funk) (bb-(x)*(x)))

float midsqu(float (*funk) (float), float aa, float bb, int n)
This routine is an exact replacement for midpnt, except that it allows for an inverse square-root
singularity in the integrand at the upper limit bb.
{
float x,tnm,sum,del,ddel,a,b;
static float s;
int it,j;

b=sqrt (bb-aa) ;
a=0.0;
if (n==1) {
The rest of the routine is exactly like midpnt and is omitted.

One last example should suffice to show how these formulas are derived in
genera. Suppose the upper limit of integration isinfinite, and the integrand falls off
exponentialy. Then we want a change of variablethat mapse™*dx into (£)dt (with
the sign chosen to keep the upper limit of the new variable larger than the lower
l[imit). Doing the integration gives by inspection

t=e" or x = —logt (4.4.7)

S0 that

—a

/ o f(z)dx = /t B f(—loglt)ﬁ (4.4.8)

=a -0 t
The user-transparent implementation would be

#include <math.h>
#define FUNC(x) ((*funk) (-log(x))/(x))

float midexp(float (*funk) (float), float aa, float bb, int n)
This routine is an exact replacement for midpnt, except that bb is assumed to be infinite
(value passed not actually used). It is assumed that the function funk decreases exponentially
rapidly at infinity.
{

float x,tnm,sum,del,ddel,a,b;

static float s;

int it,j;

b=exp(-aa);

a=0.0;

if (n==1) {
The rest of the routine is exactly like midpnt and is omitted.

CITED REFERENCES AND FURTHER READING:

Acton, F.S. 1970, Numerical Methods That Work; 1990, corrected edition (Washington: Mathe-
matical Association of America), Chapter 4.
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Dahlquist, G., and Bjorck, A. 1974, Numerical Methods (Englewood Cliffs, NJ: Prentice-Hall),
§7.4.3, p. 294.

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
83.7, p. 152.

4.5 Gaussian Quadratures and Orthogonal
Polynomials

In theformulas of §4.1, the integral of afunctionwas approximated by the sum
of itsfunctional values at a set of equally spaced points, multiplied by certain aptly
chosen weighting coefficients. We saw that as we allowed ourselves more freedom
in choosing the coefficients, we could achieve integration formulas of higher and
higher order. The idea of Gaussian quadraturesisto give ourselves the freedom to
choose not only the weighting coefficients, but aso the location of the abscissas at
which the function is to be evaluated: They will no longer be equally spaced. Thus,
we will have twice the number of degrees of freedom at our disposal; it will turn out
that we can achieve Gaussian quadrature formulas whose order is, essentially, twice
that of the Newton-Cotes formulawith the same number of function evaluations.

Does this sound too good to be true? Well, in a sense it is. The catch is a
familiar one, which cannot be overemphasized: High order is not the same as high
accuracy. High order trandates to high accuracy only when the integrand is very
smooth, in the sense of being “well-approximated by a polynomial.”

There is, however, one additional festure of Gaussian quadrature formulas that
addsto their usefulness: We can arrange the choice of weights and abscissas to make
theintegral exact for a class of integrands“ polynomial s times some known function
W (x)" rather than for the usual class of integrands “polynomials.” The function
W (x) can then be chosen to removeintegrablesingularitiesfrom thedesired integral.
Given W (x), in other words, and given an integer N, we can find a set of weights
w; and abscissas x; such that the approximation

b N
/ W (z)f(z)de ~ Z w; f(z;) (45.1)

isexact if f(x) isapolynomia. For example, to do the integra

b exp(— cos? x)

—1 \/1—[52

(not avery naturd lookingintegral, it must be admitted), we might well beinterested
in a Gaussian quadrature formula based on the choice

da (45.2)

1
W(z) = — 453
(1) = o= (453)
intheinterval (—1, 1). (Thisparticular choiceiscalled Gauss-Chebyshevintegration,
for reasons that will become clear shortly.)
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