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2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specially, because that
particular type of linear system admits a solution in only of order N operations,
rather than of order N3 for the general linear problem. When such particular types
exist, it is important to know about them. Your computational savings, should you
ever happen to be working on a problem that involves the right kind of particular
type, can be enormous.

This section treats two special types of matrices that can be solved in of order
N2 operations, not as good as tridiagonal, but a lot better than the general case.
(Other than the operations count, these two types having nothing in common.)
Matrices of the first type, termed Vandermonde matrices, occur in some problems
having to do with the fitting of polynomials, the reconstruction of distributions from
their moments, and also other contexts. In this book, for example, a Vandermonde
problem crops up in §3.5. Matrices of the second type, termed Toeplitz matrices,
tend to occur in problems involving deconvolution and signal processing. In this
book, a Toeplitz problem is encountered in §13.7.

These are not the only special types of matrices worth knowing about. The
Hilbert matrices, whose components are of the form aij = 1/(i + j − 1), i, j =
1, . . . , N can be inverted by an exact integer algorithm, and are very difficult to
invert in any other way, since they are notoriously ill-conditioned (see [1] for details).
The Sherman-Morrison and Woodbury formulas, discussed in §2.7, can sometimes
be used to convert new special forms into old ones. Reference [2] gives some other
special forms. We have not found these additional forms to arise as frequently as
the two that we now discuss.

Vandermonde Matrices

A Vandermonde matrix of size N × N is completely determined by N arbitrary
numbers x1, x2, . . . , xN , in terms of which its N2 components are the integer powers
xj−1
i , i, j = 1, . . . , N . Evidently there are two possible such forms, depending on whether

we view the i’s as rows, j’s as columns, or vice versa. In the former case, we get a linear
system of equations that looks like this,

1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2

...
...

...
...

1 xN x2
N · · · xN−1

N

 ·

c1

c2
...
cN

 =


y1

y2

...
yN

 (2.8.1)

Performing the matrix multiplication, you will see that this equation solves for the unknown
coefficients ci which fit a polynomial to the N pairs of abscissas and ordinates (xj , yj).
Precisely this problem will arise in §3.5, and the routine given there will solve (2.8.1) by the
method that we are about to describe.
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The alternative identification of rows and columns leads to the set of equations
1 1 · · · 1
x1 x2 · · · xN
x2

1 x2
2 · · · x2

N

· · ·
xN−1

1 xN−1
2 · · · xN−1

N

 ·

w1

w2

w3

· · ·
wN

 =


q1
q2
q3
· · ·
qN

 (2.8.2)

Write this out and you will see that it relates to the problem of moments: Given the values
of N points xi, find the unknown weights wi, assigned so as to match the given values
qj of the first N moments. (For more on this problem, consult [3].) The routine given in
this section solves (2.8.2).

The method of solution of both (2.8.1) and (2.8.2) is closely related to Lagrange’s
polynomial interpolation formula, which we will not formally meet until §3.1 below. Notwith-
standing, the following derivation should be comprehensible:

Let Pj(x) be the polynomial of degree N − 1 defined by

Pj(x) =
N∏
n=1

(n6=j)

x− xn
xj − xn

=
N∑
k=1

Ajkx
k−1 (2.8.3)

Here the meaning of the last equality is to define the components of the matrix Aij as the
coefficients that arise when the product is multiplied out and like terms collected.

The polynomial Pj(x) is a function of x generally. But you will notice that it is
specifically designed so that it takes on a value of zero at all xi with i 6= j, and has a value
of unity at x = xj . In other words,

Pj(xi) = δij =

N∑
k=1

Ajkx
k−1
i (2.8.4)

But (2.8.4) says thatAjk is exactly the inverse of the matrix of componentsxk−1
i , which

appears in (2.8.2), with the subscript as the column index. Therefore the solution of (2.8.2)
is just that matrix inverse times the right-hand side,

wj =

N∑
k=1

Ajkqk (2.8.5)

As for the transpose problem (2.8.1), we can use the fact that the inverse of the transpose
is the transpose of the inverse, so

cj =
N∑
k=1

Akjyk (2.8.6)

The routine in §3.5 implements this.
It remains to find a good way of multiplying out the monomial terms in (2.8.3), in order

to get the components ofAjk . This is essentially a bookkeeping problem, and we will let you
read the routine itself to see how it can be solved. One trick is to define a master P (x) by

P (x) ≡
N∏
n=1

(x− xn) (2.8.7)

work out its coefficients, and then obtain the numerators and denominators of the specific
Pj’s via synthetic division by the one supernumerary term. (See §5.3 for more on synthetic
division.) Since each such division is only a process of order N , the total procedure is
of order N2.

You should be warned that Vandermonde systems are notoriously ill-conditioned, by
their very nature. (As an aside anticipating §5.8, the reason is the same as that which makes
Chebyshev fitting so impressively accurate: there exist high-order polynomials that are very
good uniform fits to zero. Hence roundoff error can introduce rather substantial coefficients
of the leading terms of these polynomials.) It is a good idea always to compute Vandermonde
problems in double precision.
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The routine for (2.8.2) which follows is due to G.B. Rybicki.

#include "nrutil.h"

void vander(double x[], double w[], double q[], int n)

Solves the Vandermonde linear system
∑N
i=1 x

k−1
i wi = qk (k = 1, . . . ,N). Input consists of

the vectors x[1..n] and q[1..n]; the vector w[1..n] is output.
{

int i,j,k;
double b,s,t,xx;
double *c;

c=dvector(1,n);
if (n == 1) w[1]=q[1];
else {

for (i=1;i<=n;i++) c[i]=0.0; Initialize array.
c[n] = -x[1]; Coefficients of the master polynomial are found

by recursion.for (i=2;i<=n;i++) {
xx = -x[i];
for (j=(n+1-i);j<=(n-1);j++) c[j] += xx*c[j+1];
c[n] += xx;

}
for (i=1;i<=n;i++) { Each subfactor in turn

xx=x[i];
t=b=1.0;
s=q[n];
for (k=n;k>=2;k--) { is synthetically divided,

b=c[k]+xx*b;
s += q[k-1]*b; matrix-multiplied by the right-hand side,
t=xx*t+b;

}
w[i]=s/t; and supplied with a denominator.

}
}
free_dvector(c,1,n);

}

Toeplitz Matrices

An N ×N Toeplitz matrix is specified by giving 2N − 1 numbers Rk , k = −N +
1, . . . ,−1, 0, 1, . . . , N − 1. Those numbers are then emplaced as matrix elements constant
along the (upper-left to lower-right) diagonals of the matrix:

R0 R−1 R−2 · · · R−(N−2) R−(N−1)

R1 R0 R−1 · · · R−(N−3) R−(N−2)

R2 R1 R0 · · · R−(N−4) R−(N−3)

· · · · · ·
RN−2 RN−3 RN−4 · · · R0 R−1

RN−1 RN−2 RN−3 · · · R1 R0

 (2.8.8)

The linear Toeplitz problem can thus be written as

N∑
j=1

Ri−jxj = yi (i = 1, . . . , N) (2.8.9)

where the xj’s, j = 1, . . . , N , are the unknowns to be solved for.
The Toeplitz matrix is symmetric if Rk = R−k for all k. Levinson [4] developed an

algorithm for fast solution of the symmetric Toeplitz problem, by a bordering method, that is,
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a recursive procedure that solves the M -dimensional Toeplitz problem

M∑
j=1

Ri−jx
(M)
j = yi (i = 1, . . . ,M) (2.8.10)

in turn forM = 1, 2, . . . untilM = N , the desired result, is finally reached. The vector x(M)
j

is the result at the M th stage, and becomes the desired answer only whenN is reached.
Levinson’s method is well documented in standard texts (e.g., [5]). The useful fact that

the method generalizes to the nonsymmetric case seems to be less well known. At some risk
of excessive detail, we therefore give a derivation here, due to G.B. Rybicki.

In following a recursion from stepM to stepM + 1 we find that our developing solution
x(M) changes in this way:

M∑
j=1

Ri−jx
(M)
j = yi i = 1, . . . ,M (2.8.11)

becomes
M∑
j=1

Ri−jx
(M+1)
j +Ri−(M+1)x

(M+1)
M+1 = yi i = 1, . . . , M + 1 (2.8.12)

By eliminating yi we find

M∑
j=1

Ri−j

(
x

(M)
j − x(M+1)

j

x
(M+1)
M+1

)
= Ri−(M+1) i = 1, . . . ,M (2.8.13)

or by letting i → M + 1 − i and j → M + 1 − j,

M∑
j=1

Rj−iG
(M)
j = R−i (2.8.14)

where

G
(M)
j ≡

x
(M)
M+1−j − x

(M+1)
M+1−j

x
(M+1)
M+1

(2.8.15)

To put this another way,

x
(M+1)
M+1−j = x

(M)
M+1−j − x

(M+1)
M+1 G

(M)
j j = 1, . . . ,M (2.8.16)

Thus, if we can use recursion to find the order M quantities x(M) and G(M) and the single
order M + 1 quantity x(M+1)

M+1 , then all of the other x(M+1)
j will follow. Fortunately, the

quantity x(M+1)
M+1 follows from equation (2.8.12) with i = M + 1,

M∑
j=1

RM+1−jx
(M+1)
j +R0x

(M+1)
M+1 = yM+1 (2.8.17)

For the unknown order M + 1 quantities x(M+1)
j we can substitute the previous order

quantities in G since

G
(M)
M+1−j =

x
(M)
j − x(M+1)

j

x
(M+1)
M+1

(2.8.18)

The result of this operation is

x
(M+1)
M+1 =

∑M
j=1 RM+1−jx

(M)
j − yM+1∑M

j=1 RM+1−jG
(M)
M+1−j −R0

(2.8.19)
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The only remaining problem is to develop a recursion relation for G. Before we do
that, however, we should point out that there are actually two distinct sets of solutions to the
original linear problem for a nonsymmetric matrix, namely right-hand solutions (which we
have been discussing) and left-hand solutions zi. The formalism for the left-hand solutions
differs only in that we deal with the equations

M∑
j=1

Rj−iz
(M)
j = yi i = 1, . . . ,M (2.8.20)

Then, the same sequence of operations on this set leads to

M∑
j=1

Ri−jH
(M)
j = Ri (2.8.21)

where

H
(M)
j ≡

z
(M)
M+1−j − z

(M+1)
M+1−j

z
(M+1)
M+1

(2.8.22)

(compare with 2.8.14 – 2.8.15). The reason for mentioning the left-hand solutions now is
that, by equation (2.8.21), the Hj satisfy exactly the same equation as the xj except for
the substitution yi → Ri on the right-hand side. Therefore we can quickly deduce from
equation (2.8.19) that

H
(M+1)
M+1 =

∑M
j=1 RM+1−jH

(M)
j − RM+1∑M

j=1 RM+1−jG
(M)
M+1−j −R0

(2.8.23)

By the same token, G satisfies the same equation as z, except for the substitution yi → R−i.
This gives

G
(M+1)
M+1 =

∑M
j=1 Rj−M−1G

(M)
j − R−M−1∑M

j=1 Rj−M−1H
(M)
M+1−j − R0

(2.8.24)

The same “morphism” also turns equation (2.8.16), and its partner for z, into the final equations

G
(M+1)
j = G

(M)
j − G(M+1)

M+1 H
(M)
M+1−j

H
(M+1)
j = H

(M)
j −H(M+1)

M+1 G
(M)
M+1−j

(2.8.25)

Now, starting with the initial values

x
(1)
1 = y1/R0 G

(1)
1 = R−1/R0 H

(1)
1 = R1/R0 (2.8.26)

we can recurse away. At each stage M we use equations (2.8.23) and (2.8.24) to find
H

(M+1)
M+1 , G

(M+1)
M+1 , and then equation (2.8.25) to find the other components ofH(M+1), G(M+1) .

From there the vectors x(M+1) and/or z(M+1) are easily calculated.
The program below does this. It incorporates the second equation in (2.8.25) in the form

H
(M+1)
M+1−j = H

(M)
M+1−j −H

(M+1)
M+1 G

(M)
j (2.8.27)

so that the computation can be done “in place.”
Notice that the above algorithm fails if R0 = 0. In fact, because the bordering method

does not allow pivoting, the algorithm will fail if any of the diagonal principal minors of the
original Toeplitz matrix vanish. (Compare with discussion of the tridiagonal algorithm in
§2.4.) If the algorithm fails, your matrix is not necessarily singular — you might just have
to solve your problem by a slower and more general algorithm such as LU decomposition
with pivoting.

The routine that implements equations (2.8.23)–(2.8.27) is also due to Rybicki. Note
that the routine’s r[n+j] is equal to Rj above, so that subscripts on the r array vary from
1 to 2N − 1.
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#include "nrutil.h"
#define FREERETURN {free_vector(h,1,n);free_vector(g,1,n);return;}

void toeplz(float r[], float x[], float y[], int n)

Solves the Toeplitz system
∑N
j=1 R(N+i−j)xj = yi (i = 1, . . . , N). The Toeplitz matrix need

not be symmetric. y[1..n] and r[1..2*n-1] are input arrays; x[1..n] is the output array.
{

int j,k,m,m1,m2;
float pp,pt1,pt2,qq,qt1,qt2,sd,sgd,sgn,shn,sxn;
float *g,*h;

if (r[n] == 0.0) nrerror("toeplz-1 singular principal minor");
g=vector(1,n);
h=vector(1,n);
x[1]=y[1]/r[n]; Initialize for the recursion.
if (n == 1) FREERETURN
g[1]=r[n-1]/r[n];
h[1]=r[n+1]/r[n];
for (m=1;m<=n;m++) { Main loop over the recursion.

m1=m+1;
sxn = -y[m1]; Compute numerator and denominator for x,
sd = -r[n];
for (j=1;j<=m;j++) {

sxn += r[n+m1-j]*x[j];
sd += r[n+m1-j]*g[m-j+1];

}
if (sd == 0.0) nrerror("toeplz-2 singular principal minor");
x[m1]=sxn/sd; whence x.
for (j=1;j<=m;j++) x[j] -= x[m1]*g[m-j+1];
if (m1 == n) FREERETURN
sgn = -r[n-m1]; Compute numerator and denominator for G and H ,
shn = -r[n+m1];
sgd = -r[n];
for (j=1;j<=m;j++) {

sgn += r[n+j-m1]*g[j];
shn += r[n+m1-j]*h[j];
sgd += r[n+j-m1]*h[m-j+1];

}
if (sd == 0.0 || sgd == 0.0) nrerror("toeplz-3 singular principal minor");
g[m1]=sgn/sgd; whence G and H .
h[m1]=shn/sd;
k=m;
m2=(m+1) >> 1;
pp=g[m1];
qq=h[m1];
for (j=1;j<=m2;j++) {

pt1=g[j];
pt2=g[k];
qt1=h[j];
qt2=h[k];
g[j]=pt1-pp*qt2;
g[k]=pt2-pp*qt1;
h[j]=qt1-qq*pt2;
h[k--]=qt2-qq*pt1;

}
} Back for another recurrence.
nrerror("toeplz - should not arrive here!");

}

If you are in the businessof solving very large Toeplitz systems, you should find out about
so-called “new, fast” algorithms, which require only on the order of N(logN)2 operations,
compared to N2 for Levinson’s method. These methods are too complicated to include here.
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CITED REFERENCES AND FURTHER READING:

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapter 5 [also treats some other special forms].

Forsythe, G.E., and Moler, C.B. 1967, Computer Solution of Linear Algebraic Systems (Engle-
wood Cliffs, NJ: Prentice-Hall), §19. [1]

Westlake, J.R. 1968, A Handbook of Numerical Matrix Inversion and Solution of Linear Equations
(New York: Wiley). [2]

von Mises, R. 1964, Mathematical Theory of Probability and Statistics (New York: Academic
Press), pp. 394ff. [3]

Levinson, N., Appendix B of N. Wiener, 1949, Extrapolation, Interpolation and Smoothing of
Stationary Time Series (New York: Wiley). [4]

Robinson, E.A., and Treitel, S. 1980, Geophysical Signal Analysis (Englewood Cliffs, NJ: Prentice-
Hall), pp. 163ff. [5]

Bunch, J.R. 1985, SIAM Journal on Scientific and Statistical Computing, vol. 6, pp. 349–364. [6]

de Hoog, F. 1987, Linear Algebra and Its Applications, vol. 88/89, pp. 123–138. [7]

2.9 Cholesky Decomposition

If a square matrix A happens to be symmetric and positive definite, then it has a
special, more efficient, triangular decomposition. Symmetric means that aij = aji for
i, j = 1, . . . , N , while positive definite means that

v · A · v > 0 for all vectors v (2.9.1)

(In Chapter 11 we will see that positive definite has the equivalent interpretation that A has
all positive eigenvalues.) While symmetric, positive definite matrices are rather special, they
occur quite frequently in some applications, so their special factorization, called Cholesky
decomposition, is good to know about. When you can use it, Cholesky decomposition is about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factors L and U, Cholesky
decomposition constructs a lower triangular matrix L whose transpose LT can itself serve as
the upper triangular part. In other words we replace equation (2.3.1) by

L · LT = A (2.9.2)

This factorization is sometimes referred to as “taking the square root” of the matrix A. The
components of LT are of course related to those of L by

LTij = Lji (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12)–(2.3.13),

Lii =

(
aii −

i−1∑
k=1

L2
ik

)1/2

(2.9.4)

and

Lji =
1

Lii

(
aij −

i−1∑
k=1

LikLjk

)
j = i+ 1, i+ 2, . . . , N (2.9.5)


