90 Chapter 2. Solution of Linear Algebraic Equations

2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specialy, because that
particular type of linear system admits a solution in only of order N operations,
rather than of order V3 for the general linear problem. When such particular types
exigt, it isimportant to know about them. Your computational savings, should you
ever happen to be working on a problem that involves the right kind of particular
type, can be enormous.

This section treats two specia types of matrices that can be solved in of order
N? operations, not as good as tridiagonal, but a lot better than the general case.
(Other than the operations count, these two types having nothing in common.)
Matrices of the first type, termed Vandermonde matrices, occur in some problems
having to do with thefitting of polynomials, the reconstruction of distributionsfrom
their moments, and also other contexts. In thisbook, for example, a Vandermonde
problem crops up in §3.5. Matrices of the second type, termed Toeplitz matrices,
tend to occur in problems involving deconvolution and signa processing. In this
book, a Toeplitz problem is encountered in §13.7.

These are not the only special types of matrices worth knowing about. The
Hilbert matrices, whose components are of the form a;; = 1/(i+j — 1), 4,5 =
1,..., N can be inverted by an exact integer algorithm, and are very difficult to
invert in any other way, sincethey are notoriously ill-conditioned (see [1] for details).
The Sherman-Morrison and Woodbury formulas, discussed in §2.7, can sometimes
be used to convert new specia formsinto old ones. Reference[2] gives some other
special forms. We have not found these additional forms to arise as frequently as
the two that we now discuss.

Vandermonde Matrices

A Vandermonde matrix of size N x N is completely determined by N arbitrary
numbers x1, x2,...,zN, in terms of which its N? components are the integer powers
mg—l, i,7 =1,..., N. Evidently there are two possible such forms, depending on whether

we view the i's as rows, j's as columns, or vice versa. In the former case, we get a linear
system of equations that looks like this,

2 N-—-1
1 =z 2z -+ z3 c1 Y1
1 2 N-—-1
T2 T2 o Xy S| = | Y (2.8.1)
1 zn 22 x%_l CN YN

Performing the matrix multiplication, you will see that this equation solves for the unknown
coefficients ¢; which fit a polynomial to the NV pairs of abscissas and ordinates (z;, y;).
Precisely this problem will arise in §3.5, and the routine given there will solve (2.8.1) by the
method that we are about to describe.
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2.8 Vandermonde Matrices and Toeplitz Matrices 91

The alternative identification of rows and columns leads to the set of equations

1 1 e 1 w1 q1
:E% Ig . Ié\r w2 q2
sy x5 - oz | |ws | =] g (28.2)
N-1 N-1 N-1
xy Ty o Ty wN gN

Write this out and you will see that it relates to the problem of moments: Given the values
of N points z;, find the unknown weights w;, assigned so as to match the given values
g; of the first N moments. (For more on this problem, consult [3].) The routine given in
this section solves (2.8.2).

The method of solution of both (2.8.1) and (2.8.2) is closely related to Lagrange's
polynomial interpolation formula, which we will not formally meet until §3.1 below. Notwith-
standing, the following derivation should be comprehensible:

Let P;(x) be the polynomial of degree N — 1 defined by

N N
r — Tn —
oz M=t

Here the meaning of the last equality is to define the components of the matrix A;; as the
coefficients that arise when the product is multiplied out and like terms collected.

The polynomial P;(z) is a function of x generally. But you will notice that it is
specifically designed so that it takes on a value of zero at all x; with ¢ # 7, and has a value
of unity at « = x;. In other words,

N
Pi(m:) =65 = ) Ay ! (2.8.4)
k=1

But (2.8.4) saysthat A, isexactly theinverse of the matrix of componentsz*~*, which
appears in (2.8.2), with the subscript as the column index. Therefore the solution of (2.8.2)
is just that matrix inverse times the right-hand side,

N
wy =3 Ajua (2.85)
k=1

Asfor thetranspose problem (2.8.1), we can use the fact that the inverse of the transpose
is the transpose of the inverse, so

N
¢ =3 Anyyn (2.8.6)
k=1

The routine in §3.5 implements this.

It remains to find a good way of multiplying out the monomial termsin (2.8.3), in order
to get the componentsof A;. Thisis essentially abookkeeping problem, and we will let you
read the routine itself to see how it can be solved. Onetrick is to define a master P(x) by

N
P() =[] (@—=n) (2.8.7)
n=1
work out its coefficients, and then obtain the numerators and denominators of the specific
Pj’s via synthetic division by the one supernumerary term. (See §5.3 for more on synthetic
division.) Since each such division is only a process of order N, the total procedure is
of order N2.

You should be warned that Vandermonde systems are notoriously ill-conditioned, by
their very nature. (As an aside anticipating §5.8, the reason is the same as that which makes
Chebyshev fitting so impressively accurate: there exist high-order polynomials that are very
good uniform fits to zero. Hence roundoff error can introduce rather substantial coefficients
of the leading terms of these polynomials.) It is agood idea alwaysto compute Vandermonde
problems in double precision.
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92 Chapter 2.
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The routine for (2.8.2) which follows is due to G.B. Rybicki.

#include "nrutil.h"

void vander(double x[], double w[], double q[], int n)

Solves the Vandermonde linear system Zfil :E?_lwi =qr (k=1,...,N).

the vectors x[1..n] and q[1..n]; the vector w[1. .n] is output.
{

int i,j,k;

double b,s,t,xx;

double *c;

c=dvector(1l,n);
if (n == 1) wl1l=ql[1];

else {
for (i=1;i<=n;i++) c[i]=0.0; Initialize array.
c[n] = -x[1]; Coefficients of the master polynomial are found
for (i=2;i<=n;i++) { by recursion.
xx = -x[i];
for (j=(n+1-i);j<=(n-1);j++) c[jl += xx*c[j+1];
c[n] += xx;
}
for (i=1;i<=n;i++) { Each subfactor in turn
xx=x[i];
t=b=1.0;
s=q[n];
for (k=n;k>=2;k--) { is synthetically divided,
b=c [k]+xx*b;
s += ql[k-1]*b; matrix-multiplied by the right-hand side,
t=xx*t+b;
}
wlil=s/t; and supplied with a denominator.
}
}

free_dvector(c,1,n);

Toeplitz Matrices

Input consists of

An N x N Toeplitz matrix is specified by giving 2N — 1 numbers R, k = —N +

(2.8.8)

(2.8.9)

1,...,-1,0,1,..., N — 1. Those numbers are then emplaced as matrix elements constant
along the (upper-left to lower-right) diagonals of the matrix:
Ro R.1 R_» R_(n_2y R_(n-1
Ry Ry R_1 R_(n_3y R_(n-2
R R Ro R_(n-4y R_(n-3)
Ry-2 Ry-3 Ry-4 --- Ro R_1
Rny-1 Rn-2 Rn-3 --- Ry Ry
The linear Toeplitz problem can thus be written as
N
ZRi_]’Ij:yi (Z:L,N)
j=1
where the z;'s, j = 1,..., N, are the unknowns to be solved for.

The Toeplitz matrix is symmetric if R, = R_j for al k. Levinson [4] developed an
algorithm for fast solution of the symmetric Toeplitz problem, by abordering method, that is,
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2.8 Vandermonde Matrices and Toeplitz Matrices 93

a recursive procedure that solves the M -dimensional Toeplitz problem

M
SR =y (i=1,...,M) (2.8.10)
j=1

inturnfor M = 1,2,... until M = N, thedesired result, isfinally reached. Thevector mg.M)

is the result at the Mth stage, and becomesthe desired answer only when N is reached.
Levinson’s method is well documented in standard texts (e.g., [5]). The useful fact that
the method generalizes to the nonsymmetric case seemsto be less well known. At some risk
of excessive detail, we therefore give a derivation here, due to G.B. Rybicki.
In following arecursion from step M to step M + 1 wefind that our developing solution
z™) changes in this way:

M
SRia™M=y  i=1,...,M (2.8.11)
j=1
becomes
M
Z Ri—jxg'MH) + Rz‘—(M+1)$§»]Iv{¢-+11) =Yi i=1,...,M+1 (28.12)
j=1
By eliminating y; we find
M m(M) _ o (M+1)
> R, (%) =Ri_(uyy i=1,...,M (2.8.13)
j=1 Taraa
orby letting: - M +1—diandj — M +1—j,
M
SR G =R (28.14)
j=1
where
o) I(IM) _I(IM+1)
M) _ YMy1—j M+1—j
G = 7T (2.8.15)
Trm+1
To put this another way,
M+41 M M+41 M .
et =0 — Ve =1, M (2.8.16)

Thus, if we can use recursion to find the order M/ quantities (™ and G*) and the single

order M + 1 quantity ={;}", then all of the other """ will follow. Fortunately, the
quantity x%}ﬁl) follows from equation (2.8.12) with i = M + 1,

M
> Bargryag T 4 RoafiEY = yar (28.17)
j=1

(M+1)

For the unknown order M + 1 quantities x;

quantities in G since

we can substitute the previous order

(M) _ (M+1)

(M) _% J
Ghrrfi—j = RETESY (2.8.18)
M+1

The result of this operation is

M (M)
— Ryvpi—jxl —ym
xﬂf’ln = 2371 Bl yrre (2.8.19)

M
Zfi1 RM+1—J'GSM421—]' — Ro
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94 Chapter 2. Solution of Linear Algebraic Equations

The only remaining problem is to develop a recursion relation for G. Before we do
that, however, we should point out that there are actually two distinct sets of solutions to the
original linear problem for a nonsymmetric matrix, namely right-hand solutions (which we
have been discussing) and left-hand solutions z;. The formalism for the left-hand solutions
differs only in that we deal with the equations

M
SR =y i=1,...M (2.8.20)
Jj=1
Then, the same sequence of operations on this set leads to
M
S Ri;HM =R (2.8.21)
j=1
where
) Z(M) o Z(M+1)
M) _ "M+1—j MA41—j
H;" = ](M+1) J (2.8.22)
ZM+1

(compare with 2.8.14 — 2.8.15). The reason for mentioning the left-hand solutions now is
that, by equation (2.8.21), the H; satisfy exactly the same equation as the x; except for
the substitution y; — R; on the right-hand side. Therefore we can quickly deduce from
equation (2.8.19) that

M
MY _ Zﬁl RM“—J'Hy(' '~ R
M+1 - M M
Zj:l RM+1—J'GSM421—]' —Ro

By the sametoken, G satisfies the same equation as z, except for the substitution y; — R_;.
This gives

(2.8.23)

M
GO _ M R GSM — R
M+1 M
Zfil Rj—M—lHJ(vu-)1—j — Ro
Thesame" morphism” also turns equation (2.8.16), andits partner for z, into thefinal equations

(M+1) _ ~(M) (M41) 77(M)
Gj - Gj - GM+1 HM+1—]'

(2.8.24)

M+1 M M+1 M

Now, starting with the initial values
eV =y /R0 GY=R_,/Ry HY =Ri/Ro (2.8.26)
we can recurse away. At each stage M we use equations (2.8.23) and (2.8.24) to find

H D G Y and then equation (2.8.25) tofind theother components of H M+, G+,

From there the vectors z(** 1 andfor 2™+ are easily calculated.
The program below doesthis. It incorporates the second equationin (2.8.25) in the form

M+1 M MA+1) ~(M
H1(M+1—)j = HJ(M+)1—j - H1(u+1 )G§- ) (28.27)

so that the computation can be done “in place.”

Notice that the above algorithm fails if Ry = 0. In fact, because the bordering method
does not alow pivoting, the algorithm will fail if any of the diagonal principal minors of the
original Toeplitz matrix vanish. (Compare with discussion of the tridiagonal agorithm in
§2.4.) If the algorithm fails, your matrix is not necessarily singular — you might just have
to solve your problem by a slower and more general algorithm such as LU decomposition
with pivoting.

The routine that implements equations (2.8.23)—(2.8.27) is also due to Rybicki. Note
that the routine’s r [n+j] is equal to R; above, so that subscripts on the r array vary from
1to 2N — 1.
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2.8 Vandermonde Matrices and Toeplitz Matrices

#include "nrutil.h"
#define FREERETURN {free_vector(h,1,n);free_vector(g,1,n);return;’}

void toeplz(float r[], float x[], float y[], int n)

Solves the Toeplitz system Z;V:1 R(Nti—jyzj =yi (i=1,...,N). The Toeplitz matrix need
not be symmetric. y[1..n] and r[1..2%n-1] are input arrays; x[1. .n] is the output array.

{
int j,k,m,ml,m2;
float pp,ptl,pt2,qq,qtl,qt2,sd,sgd,sgn,shn,sxn;
float *g,*h;

if (r[n] == 0.0) nrerror("toeplz-1 singular principal minor");
g=vector(l,n);
h=vector(1,n);
x[1]1=y[1]1/r[n];
if (n == 1) FREERETURN
gl1]l=r[n-1]/r[n]l;
h[1]l=r[n+1]/r[nl;
for (m=1;m<=n;m++) {
ml=m+1;
sxn = -y[mi]; Compute numerator and denominator for z,
sd = -r[n];
for (j=1;j<=m;j++) {
sxn += r[n+mi1-jl*x[j];
sd += r[n+mi-jl*glm-j+1];

Initialize for the recursion.

Main loop over the recursion.

}

if (sd == 0.0) nrerror("toeplz-2 singular principal minor");

x[m1]=sxn/sd; whence z.

for (j=1;j<=m;j++) x[j] -= x[m1l*glm-j+1];

if (m1 == n) FREERETURN

sgn = -r[n-mi];

shn = -r[n+mi];

sgd = -r[n];

for (j=1;j<=m;j++) {
sgn += rn+j-m1]l*g[j];
shn += r[n+m1-jl*h[j];
sgd += r[n+j-m1]*h[m-j+1];

}

if (sd == 0.0 || sgd == 0.0) nrerror("toeplz-3 singular principal minor");

glm1]l=sgn/sgd; whence G and H.
h[mi1]=shn/sd;
k=m;
m2=(m+1) >> 1;
pp=g[mi];
qq=h[mi1];
for (j=1;j<=m2;j++) {
pti=gljl;
pt2=glk];
qt1=h[jl;
qt2=h[k];
gljl=pt1-pp*qt2;
glkl=pt2-pp*qti;
h[jl=qt1-qq*pt2;
h[k--]=qt2-qq*pt1;
}
} Back for another recurrence.
nrerror ("toeplz - should not arrive here!");

If you arein the businessof solving verylarge Toeplitz systems, you shouldfind out about
so-called “new, fast” algorithms, which require only on the order of N (log N)? operations,
compared to N2 for Levinson’s method. These methods are too complicated to include here.

Compute numerator and denominator for G and H,
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96 Chapter 2. Solution of Linear Algebraic Equations

Papers by Bunch [6] and de Hoog [7] will give entry to the literature.
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2.9 Cholesky Decomposition

If a sguare matrix A happens to be symmetric and positive definite, then it has a
special, more efficient, triangular decomposition. Symmetric means that a;; = aj; for
i,7 = 1,..., N, while positive definite means that

v-A-v>0 forall vectorsv (29.1)

(In Chapter 11 we will seethat positive definite has the equivalent interpretation that A has
all positive eigenvalues.) While symmetric, positive definite matrices are rather special, they
occur quite frequently in some applications, so their special factorization, called Cholesky
decomposition, isgood to know about. When you can useit, Cholesky decompositionis about
a factor of two faster than alternative methods for solving linear equations.

Instead of seeking arbitrary lower and upper triangular factors L and U, Cholesky
decomposition constructs alower triangular matrix L whosetranspose LT can itself serve as
the upper triangular part. In other words we replace equation (2.3.1) by

L-LT=A (29.2)

This factorization is sometimes referred to as “taking the square root” of the matrix A. The
components of LT are of course related to those of L by

Ll =Lji (2.9.3)

Writing out equation (2.9.2) in components, one readily obtains the analogs of equations
(2.3.12)2.3.13),

i—1 1/2
Ly = (aii - Z L?k) (29.4)
k=1

and
i—1

Lj; = Llﬂ <aij—ZLiijk> j=i+1,i4+2,...,N (2.9.5)
7 k 1
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