
2.7 Sparse Linear Systems 71

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

2.7 Sparse Linear Systems

A system of linear equations is called sparse if only a relatively small number
of its matrix elements aij are nonzero. It is wasteful to use general methods of
linear algebra on such problems, because most of the O(N3) arithmetic operations
devoted to solving the set of equations or inverting the matrix involve zero operands.
Furthermore, you might wish to work problems so large as to tax your available
memory space, and it is wasteful to reserve storage for unfruitful zero elements.
Note that there are two distinct (and not always compatible) goals for any sparse
matrix method: saving time and/or saving space.

We have already considered one archetypal sparse form in §2.4, the band
diagonal matrix. In the tridiagonal case, e.g., we saw that it was possible to save
both time (order N instead of N3) and space (order N instead of N2). The
method of solution was not different in principle from the general method of LU
decomposition; it was just applied cleverly, and with due attention to the bookkeeping
of zero elements. Many practical schemes for dealing with sparse problems have this
same character. They are fundamentally decomposition schemes, or else elimination
schemes akin to Gauss-Jordan, but carefully optimized so as to minimize the number
of so-called fill-ins, initially zero elements which must become nonzero during the
solution process, and for which storage must be reserved.

Direct methods for solving sparse equations, then, depend crucially on the
precise pattern of sparsity of the matrix. Patterns that occur frequently, or that are
useful as way-stations in the reduction of more general forms, already have special
names and special methods of solution. We do not have space here for any detailed
review of these. References listed at the end of this section will furnish you with an
“in” to the specialized literature, and the following list of buzz words (and Figure
2.7.1) will at least let you hold your own at cocktail parties:

• tridiagonal
• band diagonal (or banded) with bandwidth M
• band triangular
• block diagonal
• block tridiagonal
• block triangular
• cyclic banded
• singly (or doubly) bordered block diagonal
• singly (or doubly) bordered block triangular
• singly (or doubly) bordered band diagonal
• singly (or doubly) bordered band triangular
• other (!)

You should also be aware of some of the special sparse forms that occur in the
solution of partial differential equations in two or more dimensions. See Chapter 19.

If your particular pattern of sparsity is not a simple one, then you may wish to
try an analyze/factorize/operate package, which automates the procedure of figuring
out how fill-ins are to be minimized. The analyze stage is done once only for each
pattern of sparsity. The factorize stage is done once for each particular matrix that
fits the pattern. The operate stage is performed once for each right-hand side to

72 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

zeros

zeros

zeros

Figure 2.7.1. Some standard forms for sparse matrices. (a) Band diagonal; (b) block triangular; (c) block
tridiagonal; (d) singly bordered block diagonal; (e) doubly bordered block diagonal; (f) singly bordered
block triangular; (g) bordered band-triangular; (h) and (i) singly and doubly bordered band diagonal; (j)
and (k) other! (after Tewarson) [1].

be used with the particular matrix. Consult [2,3] for references on this. The NAG
library [4] has an analyze/factorize/operate capability. A substantial collection of
routines for sparse matrix calculation is also available from IMSL [5] as the Yale
Sparse Matrix Package [6].

You should be aware that the special order of interchanges and eliminations,

2.7 Sparse Linear Systems 73

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

prescribed by a sparse matrix method so as to minimize fill-ins and arithmetic
operations, generally acts to decrease the method’s numerical stability as compared
to, e.g., regular LU decomposition with pivoting. Scaling your problem so as to
make its nonzero matrix elements have comparable magnitudes (if you can do it)
will sometimes ameliorate this problem.

In the remainder of this section, we present some concepts which are applicable
to some general classes of sparse matrices, and which do not necessarily depend on
details of the pattern of sparsity.

Sherman-Morrison Formula

Suppose that you have already obtained, by herculean effort, the inverse matrix
A−1 of a square matrix A. Now you want to make a “small” change in A, for
example change one element aij , or a few elements, or one row, or one column.
Is there any way of calculating the corresponding change in A−1 without repeating
your difficult labors? Yes, if your change is of the form

A → (A + u ⊗ v) (2.7.1)

for some vectors u and v. If u is a unit vector ei, then (2.7.1) adds the components
of v to the ith row. (Recall that u⊗ v is a matrix whose i, jth element is the product
of the ith component of u and the jth component of v.) If v is a unit vector ej , then
(2.7.1) adds the components of u to the jth column. If both u and v are proportional
to unit vectors ei and ej respectively, then a term is added only to the element aij .

The Sherman-Morrison formula gives the inverse (A + u⊗v)−1, and is derived
briefly as follows:

(A + u⊗ v)−1 = (1 + A−1 · u⊗ v)−1 · A−1

= (1 −A−1 · u⊗ v + A−1 · u ⊗ v · A−1 · u ⊗ v− . . .) ·A−1

= A−1 − A−1 · u⊗ v · A−1 (1− λ+ λ2 − . . .)

= A−1 − (A−1 · u) ⊗ (v · A−1)

1 + λ
(2.7.2)

where

λ ≡ v · A−1 · u (2.7.3)

The second line of (2.7.2) is a formal power series expansion. In the third line, the
associativity of outer and inner products is used to factor out the scalars λ.

The use of (2.7.2) is this: Given A−1 and the vectors u and v, we need only
perform two matrix multiplications and a vector dot product,

z ≡ A−1 · u w ≡ (A−1)T · v λ = v · z (2.7.4)

to get the desired change in the inverse

A−1 → A−1 − z⊗ w
1 + λ

(2.7.5)

74 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

The whole procedure requires only 3N2 multiplies and a like number of adds (an
even smaller number if u or v is a unit vector).

The Sherman-Morrison formula can be directly applied to a class of sparse
problems. If you already have a fast way of calculating the inverse of A (e.g., a
tridiagonal matrix, or some other standard sparse form), then (2.7.4)–(2.7.5) allow
you to build up to your related but more complicated form, adding for example a
row or column at a time. Notice that you can apply the Sherman-Morrison formula
more than once successively, using at each stage the most recent update of A−1

(equation 2.7.5). Of course, if you have to modify every row, then you are back to
an N3 method. The constant in front of the N3 is only a few times worse than the
better direct methods, but you have deprived yourself of the stabilizing advantages
of pivoting — so be careful.

For some other sparse problems, the Sherman-Morrison formula cannot be
directly applied for the simple reason that storage of the whole inverse matrix A−1

is not feasible. If you want to add only a single correction of the form u ⊗ v,
and solve the linear system

(A + u⊗ v) · x = b (2.7.6)

then you proceed as follows. Using the fast method that is presumed available for
the matrix A, solve the two auxiliary problems

A · y = b A · z = u (2.7.7)

for the vectors y and z. In terms of these,

x = y−
[

v · y
1 + (v · z)

]
z (2.7.8)

as we see by multiplying (2.7.2) on the right by b.

Cyclic Tridiagonal Systems

So-called cyclic tridiagonal systems occur quite frequently, and are a good
example of how to use the Sherman-Morrison formula in the manner just described.
The equations have the form

b1 c1 0 · · · β
a2 b2 c2 · · ·

· · ·
· · · aN−1 bN−1 cN−1

α · · · 0 aN bN

 ·


x1

x2

· · ·
xN−1

xN

 =


r1

r2

· · ·
rN−1

rN

 (2.7.9)

This is a tridiagonal system, except for the matrix elements α and β in the corners.
Forms like this are typically generated by finite-differencing differential equations
with periodic boundary conditions (§19.4).

We use the Sherman-Morrison formula, treating the system as tridiagonal plus
a correction. In the notation of equation (2.7.6), define vectors u and v to be

u =


γ
0
...
0
α

 v =


1
0
...
0
β/γ

 (2.7.10)

2.7 Sparse Linear Systems 75

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Here γ is arbitrary for the moment. Then the matrix A is the tridiagonal part of the
matrix in (2.7.9), with two terms modified:

b′1 = b1 − γ, b′N = bN − αβ/γ (2.7.11)

We now solve equations (2.7.7) with the standard tridiagonal algorithm, and then
get the solution from equation (2.7.8).

The routine cyclic below implements this algorithm. We choose the arbitrary
parameter γ = −b1 to avoid loss of precision by subtraction in the first of equations
(2.7.11). In the unlikely event that this causes loss of precision in the second of
these equations, you can make a different choice.

#include "nrutil.h"

void cyclic(float a[], float b[], float c[], float alpha, float beta,
float r[], float x[], unsigned long n)

Solves for a vector x[1..n] the “cyclic” set of linear equations given by equation (2.7.9). a,
b, c, and r are input vectors, all dimensioned as [1..n], while alpha and beta are the corner
entries in the matrix. The input is not modified.
{

void tridag(float a[], float b[], float c[], float r[], float u[],
unsigned long n);

unsigned long i;
float fact,gamma,*bb,*u,*z;

if (n <= 2) nrerror("n too small in cyclic");
bb=vector(1,n);
u=vector(1,n);
z=vector(1,n);
gamma = -b[1]; Avoid subtraction error in forming bb[1].
bb[1]=b[1]-gamma; Set up the diagonal of the modified tridi-

agonal system.bb[n]=b[n]-alpha*beta/gamma;
for (i=2;i<n;i++) bb[i]=b[i];
tridag(a,bb,c,r,x,n); Solve A · x = r.
u[1]=gamma; Set up the vector u.
u[n]=alpha;
for (i=2;i<n;i++) u[i]=0.0;
tridag(a,bb,c,u,z,n); Solve A · z = u.
fact=(x[1]+beta*x[n]/gamma)/ Form v · x/(1 + v · z).

(1.0+z[1]+beta*z[n]/gamma);
for (i=1;i<=n;i++) x[i] -= fact*z[i]; Now get the solution vector x.
free_vector(z,1,n);
free_vector(u,1,n);
free_vector(bb,1,n);

}

Woodbury Formula

If you want to add more than a single correction term, then you cannot use (2.7.8)
repeatedly, since without storing a new A−1 you will not be able to solve the auxiliary
problems (2.7.7) efficiently after the first step. Instead, you need the Woodbury formula,
which is the block-matrix version of the Sherman-Morrison formula,

(A + U · VT)−1

= A−1 −
[
A−1 · U · (1 + VT · A−1 · U)−1 · VT · A−1

] (2.7.12)

76 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Here A is, as usual, an N × N matrix, while U and V are N × P matrices with P < N
and usually P � N . The inner piece of the correction term may become clearer if written
as the tableau,

U


·

1 + VT · A−1 · U


−1

·

 VT

 (2.7.13)

where you can see that the matrix whose inverse is needed is only P × P rather thanN ×N .
The relation between the Woodbury formula and successiveapplications of the Sherman-

Morrison formula is now clarified by noting that, if U is the matrix formed by columns out of the
P vectors u1, . . . , uP , and V is the matrix formed by columns out of theP vectors v1, . . . , vP ,

U ≡

u1

 · · ·
uP

 V ≡

v1

 · · ·
vP

 (2.7.14)

then two ways of expressing the same correction to A are(
A +

P∑
k=1

uk ⊗ vk

)
= (A + U · VT) (2.7.15)

(Note that the subscripts on u and v do not denote components, but rather distinguish the
different column vectors.)

Equation (2.7.15) reveals that, if you have A−1 in storage, then you can either make the
P corrections in one fell swoop by using (2.7.12), inverting a P × P matrix, or else make
them by applying (2.7.5) P successive times.

If you don’t have storage for A−1, then you must use (2.7.12) in the following way:
To solve the linear equation (

A +

P∑
k=1

uk ⊗ vk

)
· x = b (2.7.16)

first solve the P auxiliary problems

A · z1 = u1

A · z2 = u2

· · ·

A · zP = uP

(2.7.17)

and construct the matrix Z by columns from the z’s obtained,

Z ≡

z1

 · · ·
zP

 (2.7.18)

Next, do the P × P matrix inversion

H ≡ (1 + VT · Z)−1 (2.7.19)

2.7 Sparse Linear Systems 77

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Finally, solve the one further auxiliary problem

A · y = b (2.7.20)

In terms of these quantities, the solution is given by

x = y − Z ·
[
H · (VT · y)

]
(2.7.21)

Inversion by Partitioning

Once in a while, you will encounter a matrix (not even necessarily sparse)
that can be inverted efficiently by partitioning. Suppose that the N × N matrix
A is partitioned into

A =

[
P Q
R S

]
(2.7.22)

where P and S are square matrices of size p× p and s× s respectively (p+ s = N).
The matrices Q and R are not necessarily square, and have sizes p × s and s × p,
respectively.

If the inverse of A is partitioned in the same manner,

A−1 =

[
P̃ Q̃

R̃ S̃

]
(2.7.23)

then P̃, Q̃, R̃, S̃, which have the same sizes as P, Q, R, S, respectively, can be
found by either the formulas

P̃ = (P− Q · S−1 · R)−1

Q̃ = −(P−Q · S−1 · R)−1 · (Q · S−1)

R̃ = −(S−1 · R) · (P− Q · S−1 · R)−1

S̃ = S−1 + (S−1 · R) · (P−Q · S−1 · R)−1 · (Q · S−1)

(2.7.24)

or else by the equivalent formulas

P̃ = P−1 + (P−1 ·Q) · (S −R · P−1 ·Q)−1 · (R · P−1)

Q̃ = −(P−1 ·Q) · (S− R · P−1 ·Q)−1

R̃ = −(S −R · P−1 ·Q)−1 · (R · P−1)

S̃ = (S −R · P−1 ·Q)−1

(2.7.25)

The parentheses in equations (2.7.24) and (2.7.25) highlight repeated factors that
you may wish to compute only once. (Of course, by associativity, you can instead
do the matrix multiplications in any order you like.) The choice between using
equation (2.7.24) and (2.7.25) depends on whether you want P̃ or S̃ to have the

78 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

simpler formula; or on whether the repeated expression (S−R ·P−1 ·Q)−1 is easier
to calculate than the expression (P− Q · S−1 · R)−1; or on the relative sizes of P
and S; or on whether P−1 or S−1 is already known.

Another sometimes useful formula is for the determinant of the partitioned
matrix,

det A = det P det(S−R · P−1 ·Q) = det S det(P− Q · S−1 ·R) (2.7.26)

Indexed Storage of Sparse Matrices

We have already seen (§2.4) that tri- or band-diagonalmatrices can be stored in a compact
format that allocates storage only to elements which can be nonzero, plus perhaps a few wasted
locations to make the bookkeeping easier. What about more general sparse matrices? When a
sparse matrix of dimension N ×N contains only a few times N nonzero elements (a typical
case), it is surely inefficient — and often physically impossible — to allocate storage for all
N2 elements. Even if one did allocate such storage, it would be inefficient or prohibitive in
machine time to loop over all of it in search of nonzero elements.

Obviously some kind of indexed storage scheme is required, one that stores only nonzero
matrix elements, along with sufficient auxiliary information to determine where an element
logically belongs and how the various elements can be looped over in common matrix
operations. Unfortunately, there is no one standard scheme in general use. Knuth [7] describes
one method. The Yale Sparse Matrix Package [6] and ITPACK [8] describe several other
methods. For most applications, we favor the storage scheme used by PCGPACK [9], which
is almost the same as that described by Bentley [10], and also similar to one of the Yale Sparse
Matrix Package methods. The advantage of this scheme, which can be called row-indexed
sparse storage mode, is that it requires storage of only about two times the number of nonzero
matrix elements. (Other methods can require as much as three or five times.) For simplicity,
we will treat only the case of square matrices, which occurs most frequently in practice.

To represent a matrix A of dimension N × N , the row-indexed scheme sets up two
one-dimensional arrays, call them sa and ija. The first of these stores matrix element values
in single or double precision as desired; the second stores integer values. The storage rules are:

• The firstN locations of sa store A’s diagonal matrix elements, in order. (Note that
diagonal elements are stored even if they are zero; this is at most a slight storage
inefficiency, since diagonal elements are nonzero in most realistic applications.)
• Each of the first N locations of ija stores the index of the array sa that contains

the first off-diagonal element of the corresponding row of the matrix. (If there are
no off-diagonal elements for that row, it is one greater than the index in sa of the
most recently stored element of a previous row.)
• Location 1 of ija is always equal to N + 2. (It can be read to determine N .)
• LocationN + 1 of ija is one greater than the index in sa of the last off-diagonal

element of the last row. (It can be read to determine the number of nonzero
elements in the matrix, or the number of elements in the arrays sa and ija.)
Location N + 1 of sa is not used and can be set arbitrarily.
• Entries in sa at locations ≥ N + 2 contain A’s off-diagonal values, ordered by

rows and, within each row, ordered by columns.
• Entries in ijaat locations≥ N+2 contain the column number of the corresponding

element in sa.
While these rules seem arbitrary at first sight, they result in a rather elegant storage

scheme. As an example, consider the matrix
3. 0. 1. 0. 0.
0. 4. 0. 0. 0.
0. 7. 5. 9. 0.
0. 0. 0. 0. 2.
0. 0. 0. 6. 5.

 (2.7.27)

2.7 Sparse Linear Systems 79

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

In row-indexed compact storage, matrix (2.7.27) is represented by the two arrays of length
11, as follows

index k 1 2 3 4 5 6 7 8 9 10 11

ija[k] 7 8 8 10 11 12 3 2 4 5 4

sa[k] 3. 4. 5. 0. 5. x 1. 7. 9. 2. 6.
(2.7.28)

Here x is an arbitrary value. Notice that, according to the storage rules, the value of N
(namely 5) is ija[1]-2, and the length of each array is ija[ija[1]-1]-1, namely 11.
The diagonal element in row i is sa[i], and the off-diagonal elements in that row are in
sa[k] where k loops from ija[i] to ija[i+1]-1, if the upper limit is greater or equal to
the lower one (as in C’s for loops).

Here is a routine, sprsin, that converts a matrix from full storage mode into row-indexed
sparse storage mode, throwing away any elements that are less than a specified threshold.
Of course, the principal use of sparse storage mode is for matrices whose full storage mode
won’t fit into your machine at all; then you have to generate them directly into sparse format.
Nevertheless sprsin is useful as a precise algorithmic definition of the storage scheme, for
subscale testing of large problems, and for the case where execution time, rather than storage,
furnishes the impetus to sparse storage.

#include <math.h>

void sprsin(float **a, int n, float thresh, unsigned long nmax, float sa[],
unsigned long ija[])

Converts a square matrix a[1..n][1..n] into row-indexed sparse storage mode. Only ele-
ments of a with magnitude ≥thresh are retained. Output is in two linear arrays with dimen-
sion nmax (an input parameter): sa[1..] contains array values, indexed by ija[1..]. The
number of elements filled of sa and ija on output are both ija[ija[1]-1]-1 (see text).
{

void nrerror(char error_text[]);
int i,j;
unsigned long k;

for (j=1;j<=n;j++) sa[j]=a[j][j]; Store diagonal elements.
ija[1]=n+2; Index to 1st row off-diagonal element, if any.
k=n+1;
for (i=1;i<=n;i++) { Loop over rows.

for (j=1;j<=n;j++) { Loop over columns.
if (fabs(a[i][j]) >= thresh && i != j) {

if (++k > nmax) nrerror("sprsin: nmax too small");
sa[k]=a[i][j]; Store off-diagonal elements and their columns.
ija[k]=j;

}
}
ija[i+1]=k+1; As each row is completed, store index to

next.}
}

The single most important use of a matrix in row-indexed sparse storage mode is to
multiply a vector to its right. In fact, the storage mode is optimized for just this purpose.
The following routine is thus very simple.

void sprsax(float sa[], unsigned long ija[], float x[], float b[],
unsigned long n)

Multiply a matrix in row-index sparse storage arrays sa and ija by a vector x[1..n], giving
a vector b[1..n].
{

void nrerror(char error_text[]);

80 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

unsigned long i,k;

if (ija[1] != n+2) nrerror("sprsax: mismatched vector and matrix");
for (i=1;i<=n;i++) {

b[i]=sa[i]*x[i]; Start with diagonal term.
for (k=ija[i];k<=ija[i+1]-1;k++) Loop over off-diagonal terms.

b[i] += sa[k]*x[ija[k]];

}
}

It is also simple to multiply the transpose of a matrix by a vector to its right. (We will use
this operation later in this section.) Note that the transpose matrix is not actually constructed.

void sprstx(float sa[], unsigned long ija[], float x[], float b[],
unsigned long n)

Multiply the transpose of a matrix in row-index sparse storage arrays sa and ija by a vector
x[1..n], giving a vector b[1..n].
{

void nrerror(char error_text[]);
unsigned long i,j,k;

if (ija[1] != n+2) nrerror("mismatched vector and matrix in sprstx");
for (i=1;i<=n;i++) b[i]=sa[i]*x[i]; Start with diagonal terms.
for (i=1;i<=n;i++) { Loop over off-diagonal terms.

for (k=ija[i];k<=ija[i+1]-1;k++) {
j=ija[k];
b[j] += sa[k]*x[i];

}
}

}

(Double precision versions of sprsax and sprstx, named dsprsax and dsprstx, are used
by the routine atimes later in this section. You can easily make the conversion, or else get
the converted routines from the Numerical Recipes diskettes.)

In fact, because the choice of row-indexed storage treats rows and columns quite
differently, it is quite an involved operation to construct the transpose of a matrix, given the
matrix itself in row-indexed sparse storage mode. When the operation cannot be avoided,
it is done as follows: An index of all off-diagonal elements by their columns is constructed
(see §8.4). The elements are then written to the output array in column order. As each
element is written, its row is determined and stored. Finally, the elements in each column
are sorted by row.

void sprstp(float sa[], unsigned long ija[], float sb[], unsigned long ijb[])
Construct the transpose of a sparse square matrix, from row-index sparse storage arrays sa and
ija into arrays sb and ijb.
{

void iindexx(unsigned long n, long arr[], unsigned long indx[]);
Version of indexx with all float variables changed to long.
unsigned long j,jl,jm,jp,ju,k,m,n2,noff,inc,iv;
float v;

n2=ija[1]; Linear size of matrix plus 2.
for (j=1;j<=n2-2;j++) sb[j]=sa[j]; Diagonal elements.
iindexx(ija[n2-1]-ija[1],(long *)&ija[n2-1],&ijb[n2-1]);
Index all off-diagonal elements by their columns.
jp=0;
for (k=ija[1];k<=ija[n2-1]-1;k++) { Loop over output off-diagonal elements.

m=ijb[k]+n2-1; Use index table to store by (former) columns.
sb[k]=sa[m];
for (j=jp+1;j<=ija[m];j++) ijb[j]=k; Fill in the index to any omitted rows.

2.7 Sparse Linear Systems 81

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

jp=ija[m]; Use bisection to find which row element
m is in and put that into ijb[k].jl=1;

ju=n2-1;
while (ju-jl > 1) {

jm=(ju+jl)/2;
if (ija[jm] > m) ju=jm; else jl=jm;

}
ijb[k]=jl;

}
for (j=jp+1;j<n2;j++) ijb[j]=ija[n2-1];
for (j=1;j<=n2-2;j++) { Make a final pass to sort each row by

Shell sort algorithm.jl=ijb[j+1]-ijb[j];
noff=ijb[j]-1;
inc=1;
do {

inc *= 3;
inc++;

} while (inc <= jl);
do {

inc /= 3;
for (k=noff+inc+1;k<=noff+jl;k++) {

iv=ijb[k];
v=sb[k];
m=k;
while (ijb[m-inc] > iv) {

ijb[m]=ijb[m-inc];
sb[m]=sb[m-inc];
m -= inc;
if (m-noff <= inc) break;

}
ijb[m]=iv;
sb[m]=v;

}
} while (inc > 1);

}
}

The above routine embeds internally a sorting algorithm from §8.1, but calls the external
routine iindexx to construct the initial column index. This routine is identical to indexx,
as listed in §8.4, except that the latter’s two float declarations should be changed to long.
(The Numerical Recipes diskettes include both indexx and iindexx.) In fact, you can
often use indexx without making these changes, since many computers have the property
that numerical values will sort correctly independently of whether they are interpreted as
floating or integer values.

As final examples of the manipulation of sparse matrices, we give two routines for the
multiplication of two sparse matrices. These are useful for techniques to be described in§13.10.

In general, the product of two sparse matrices is not itself sparse. One therefore wants
to limit the size of the product matrix in one of two ways: either compute only those elements
of the product that are specified in advance by a known pattern of sparsity, or else compute all
nonzero elements, but store only those whose magnitude exceeds some threshold value. The
former technique, when it can be used, is quite efficient. The pattern of sparsity is specified
by furnishing an index array in row-index sparse storage format (e.g., ija). The program
then constructs a corresponding value array (e.g., sa). The latter technique runs the danger of
excessive compute times and unknown output sizes, so it must be used cautiously.

With row-index storage, it is much more natural to multiply a matrix (on the left) by
the transpose of a matrix (on the right), so that one is crunching rows on rows, rather than
rows on columns. Our routines therefore calculate A · BT , rather than A · B. This means
that you have to run your right-hand matrix through the transpose routine sprstp before
sending it to the matrix multiply routine.

82 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

The two implementing routines,sprspm for “pattern multiply” andsprstmfor “threshold
multiply” are quite similar in structure. Both are complicated by the logic of the various
combinations of diagonal or off-diagonal elements for the two input streams and output stream.

void sprspm(float sa[], unsigned long ija[], float sb[], unsigned long ijb[],
float sc[], unsigned long ijc[])

Matrix multiply A · BT where A and B are two sparse matrices in row-index storage mode, and
BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the matrix B.
This routine computes only those components of the matrix product that are pre-specified by the
input index array ijc, which is not modified. On output, the arrays sc and ijc give the product
matrix in row-index storage mode. For sparse matrix multiplication, this routine will often be
preceded by a call to sprstp, so as to construct the transpose of a known matrix into sb, ijb.
{

void nrerror(char error_text[]);
unsigned long i,ijma,ijmb,j,m,ma,mb,mbb,mn;
float sum;

if (ija[1] != ijb[1] || ija[1] != ijc[1])
nrerror("sprspm: sizes do not match");

for (i=1;i<=ijc[1]-2;i++) { Loop over rows.
j=m=i; Set up so that first pass through loop does the

diagonal component.mn=ijc[i];
sum=sa[i]*sb[i];
for (;;) { Main loop over each component to be output.

mb=ijb[j];
for (ma=ija[i];ma<=ija[i+1]-1;ma++) {
Loop through elements in A’s row. Convoluted logic, following, accounts for the
various combinations of diagonal and off-diagonal elements.

ijma=ija[ma];
if (ijma == j) sum += sa[ma]*sb[j];
else {

while (mb < ijb[j+1]) {
ijmb=ijb[mb];
if (ijmb == i) {

sum += sa[i]*sb[mb++];
continue;

} else if (ijmb < ijma) {
mb++;
continue;

} else if (ijmb == ijma) {
sum += sa[ma]*sb[mb++];
continue;

}
break;

}
}

}
for (mbb=mb;mbb<=ijb[j+1]-1;mbb++) { Exhaust the remainder of B’s row.

if (ijb[mbb] == i) sum += sa[i]*sb[mbb];
}
sc[m]=sum;
sum=0.0; Reset indices for next pass through loop.
if (mn >= ijc[i+1]) break;
j=ijc[m=mn++];

}
}

}

#include <math.h>

void sprstm(float sa[], unsigned long ija[], float sb[], unsigned long ijb[],
float thresh, unsigned long nmax, float sc[], unsigned long ijc[])

2.7 Sparse Linear Systems 83

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Matrix multiply A · BT where A and B are two sparse matrices in row-index storage mode, and
BT is the transpose of B. Here, sa and ija store the matrix A; sb and ijb store the matrix
B. This routine computes all components of the matrix product (which may be non-sparse!),
but stores only those whose magnitude exceeds thresh. On output, the arrays sc and ijc
(whose maximum size is input as nmax) give the product matrix in row-index storage mode.
For sparse matrix multiplication, this routine will often be preceded by a call to sprstp, so as
to construct the transpose of a known matrix into sb, ijb.
{

void nrerror(char error_text[]);
unsigned long i,ijma,ijmb,j,k,ma,mb,mbb;
float sum;

if (ija[1] != ijb[1]) nrerror("sprstm: sizes do not match");
ijc[1]=k=ija[1];
for (i=1;i<=ija[1]-2;i++) { Loop over rows of A,

for (j=1;j<=ijb[1]-2;j++) { and rows of B.
if (i == j) sum=sa[i]*sb[j]; else sum=0.0e0;
mb=ijb[j];
for (ma=ija[i];ma<=ija[i+1]-1;ma++) {
Loop through elements in A’s row. Convoluted logic, following, accounts for the
various combinations of diagonal and off-diagonal elements.

ijma=ija[ma];
if (ijma == j) sum += sa[ma]*sb[j];
else {

while (mb < ijb[j+1]) {
ijmb=ijb[mb];
if (ijmb == i) {

sum += sa[i]*sb[mb++];
continue;

} else if (ijmb < ijma) {
mb++;
continue;

} else if (ijmb == ijma) {
sum += sa[ma]*sb[mb++];
continue;

}
break;

}
}

}
for (mbb=mb;mbb<=ijb[j+1]-1;mbb++) { Exhaust the remainder of B’s row.

if (ijb[mbb] == i) sum += sa[i]*sb[mbb];
}
if (i == j) sc[i]=sum; Where to put the answer...
else if (fabs(sum) > thresh) {

if (k > nmax) nrerror("sprstm: nmax too small");
sc[k]=sum;
ijc[k++]=j;

}
}
ijc[i+1]=k;

}
}

Conjugate Gradient Method for a Sparse System

So-called conjugate gradient methods provide a quite general means for solving the
N × N linear system

A · x = b (2.7.29)

The attractiveness of these methods for large sparse systems is that they reference A only
through its multiplication of a vector, or the multiplication of its transpose and a vector. As

84 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

we have seen, these operations can be very efficient for a properly stored sparse matrix. You,
the “owner” of the matrix A, can be asked to provide functions that perform these sparse
matrix multiplications as efficiently as possible. We, the “grand strategists” supply the general
routine, linbcg below, that solves the set of linear equations, (2.7.29), using your functions.

The simplest, “ordinary” conjugate gradient algorithm [11-13] solves (2.7.29) only in the
case that A is symmetric and positive definite. It is based on the idea of minimizing the function

f(x) =
1

2
x · A · x− b · x (2.7.30)

This function is minimized when its gradient

∇f = A · x − b (2.7.31)

is zero, which is equivalent to (2.7.29). The minimization is carried out by generating a
succession of search directions pk and improved minimizers xk. At each stage a quantity αk
is found that minimizes f(xk + αkpk), and xk+1 is set equal to the new point xk + αkpk.
The pk and xk are built up in such a way that xk+1 is also the minimizer of f over the whole
vector space of directions already taken, {p1, p2, . . . , pk}. After N iterations you arrive at
the minimizer over the entire vector space, i.e., the solution to (2.7.29).

Later, in §10.6, we will generalize this “ordinary” conjugate gradient algorithm to the
minimization of arbitrary nonlinear functions. Here, where our interest is in solving linear,
but not necessarily positive definite or symmetric, equations, a different generalization is
important, the biconjugate gradient method. This method does not, in general, have a simple
connection with function minimization. It constructs four sequences of vectors, rk, rk, pk,
pk, k = 1, 2, You supply the initial vectors r1 and r1, and set p1 = r1, p1 = r1. Then
you carry out the following recurrence:

αk =
rk · rk

pk · A · pk
rk+1 = rk − αkA · pk
rk+1 = rk − αkAT · pk

βk =
rk+1 · rk+1

rk · rk
pk+1 = rk+1 + βkpk

pk+1 = rk+1 + βkpk

(2.7.32)

This sequence of vectors satisfies the biorthogonality condition

ri · rj = ri · rj = 0, j < i (2.7.33)

and the biconjugacy condition

pi · A · pj = pi · A
T · pj = 0, j < i (2.7.34)

There is also a mutual orthogonality,

ri · pj = ri · pj = 0, j < i (2.7.35)

The proof of these properties proceeds by straightforward induction [14]. As long as the
recurrence does not break down earlier because one of the denominators is zero, it must
terminate after m ≤ N steps with rm+1 = rm+1 = 0. This is basically because after at most
N steps you run out of new orthogonal directions to the vectors you’ve already constructed.

To use the algorithm to solve the system (2.7.29), make an initial guess x1 for the
solution. Choose r1 to be the residual

r1 = b− A · x1 (2.7.36)

and choose r1 = r1. Then form the sequence of improved estimates

xk+1 = xk + αkpk (2.7.37)

2.7 Sparse Linear Systems 85

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

while carrying out the recurrence (2.7.32). Equation (2.7.37) guarantees that rk+1 from the
recurrence is in fact the residual b − A · xk+1 corresponding to xk+1. Since rm+1 = 0,
xm+1 is the solution to equation (2.7.29).

While there is no guarantee that this whole procedure will not break down or become
unstable for general A, in practice this is rare. More importantly, the exact termination in at
most N iterations occurs only with exact arithmetic. Roundoff error means that you should
regard the process as a genuinely iterative procedure, to be halted when some appropriate
error criterion is met.

The ordinary conjugate gradient algorithm is the special case of the biconjugate gradient
algorithm when A is symmetric, and we choose r1 = r1. Then rk = rk and pk = pk for all
k; you can omit computing them and halve the work of the algorithm. This conjugate gradient
version has the interpretation of minimizing equation (2.7.30). If A is positive definite as
well as symmetric, the algorithm cannot break down (in theory!). The routine linbcg below
indeed reduces to the ordinary conjugate gradient method if you input a symmetric A, but
it does all the redundant computations.

Another variant of the general algorithm corresponds to a symmetric but non-positive
definite A, with the choice r1 = A · r1 instead of r1 = r1. In this case rk = A · rk and
pk = A · pk for all k. This algorithm is thus equivalent to the ordinary conjugate gradient
algorithm, but with all dot products a ·b replaced by a ·A ·b. It is called the minimum residual
algorithm, because it corresponds to successive minimizations of the function

Φ(x) =
1

2
r · r =

1

2
|A · x− b|2 (2.7.38)

where the successiveiterates xk minimize Φ over the same set of search directions pk generated
in the conjugate gradient method. This algorithm has been generalized in various ways for
unsymmetric matrices. The generalized minimum residual method (GMRES; see [9,15]) is
probably the most robust of these methods.

Note that equation (2.7.38) gives

∇Φ(x) = AT · (A · x− b) (2.7.39)

For any nonsingular matrix A, AT ·A is symmetric and positive definite. You might therefore
be tempted to solve equation (2.7.29) by applying the ordinary conjugate gradient algorithm
to the problem

(AT · A) · x = AT · b (2.7.40)

Don’t! The condition number of the matrix AT · A is the square of the condition number of
A (see §2.6 for definition of condition number). A large condition number both increases the
number of iterations required, and limits the accuracy to which a solution can be obtained. It
is almost always better to apply the biconjugate gradient method to the original matrix A.

So far we have said nothing about the rate of convergence of these methods. The
ordinary conjugate gradient method works well for matrices that are well-conditioned, i.e.,
“close” to the identity matrix. This suggests applying these methods to the preconditioned
form of equation (2.7.29),

(Ã
−1 · A) · x = Ã

−1 · b (2.7.41)

The idea is that you might already be able to solve your linear system easily for some Ã close
to A, in which case Ã−1 · A ≈ 1, allowing the algorithm to converge in fewer steps. The
matrix Ã is called a preconditioner [11], and the overall scheme given here is known as the
preconditioned biconjugate gradient method or PBCG.

For efficient implementation, the PBCG algorithm introduces an additional set of vectors
zk and zk defined by

Ã · zk = rk and Ã
T · zk = rk (2.7.42)

86 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

and modifies the definitions of αk, βk, pk, and pk in equation (2.7.32):

αk =
rk · zk

pk · A · pk

βk =
rk+1 · zk+1

rk · zk
pk+1 = zk+1 + βkpk

pk+1 = zk+1 + βkpk

(2.7.43)

For linbcg, below, we will ask you to supply routines that solve the auxiliary linear systems
(2.7.42). If you have no idea what to use for the preconditioner Ã, then use the diagonal part
of A, or even the identity matrix, in which case the burden of convergence will be entirely
on the biconjugate gradient method itself.

The routine linbcg, below, is based on a program originally written by Anne Greenbaum.
(See [13] for a different, less sophisticated, implementation.) There are a few wrinkles you
should know about.

What constitutes “good” convergence is rather application dependent. The routine
linbcg therefore provides for four possibilities, selected by setting the flag itol on input.
If itol=1, iteration stops when the quantity |A · x − b|/|b| is less than the input quantity
tol. If itol=2, the required criterion is

|Ã−1 · (A · x− b)|/|Ã−1 · b| < tol (2.7.44)

If itol=3, the routine uses its own estimate of the error in x, and requires its magnitude,
divided by the magnitude of x, to be less than tol. The setting itol=4 is the same as itol=3,
except that the largest (in absolute value) component of the error and largest component of x
are used instead of the vector magnitude (that is, the L∞ norm instead of the L2 norm). You
may need to experiment to find which of these convergence criteria is best for your problem.

On output, err is the tolerance actually achieved. If the returned count iter does
not indicate that the maximum number of allowed iterations itmax was exceeded, then err
should be less than tol. If you want to do further iterations, leave all returned quantities as
they are and call the routine again. The routine loses its memory of the spanned conjugate
gradient subspace between calls, however, so you should not force it to return more often
than about every N iterations.

Finally, note that linbcg is furnished in double precision, since it will be usually be
used when N is quite large.

#include <stdio.h>
#include <math.h>
#include "nrutil.h"
#define EPS 1.0e-14

void linbcg(unsigned long n, double b[], double x[], int itol, double tol,
int itmax, int *iter, double *err)

Solves A · x = b for x[1..n], given b[1..n], by the iterative biconjugate gradient method.
On input x[1..n] should be set to an initial guess of the solution (or all zeros); itol is 1,2,3,
or 4, specifying which convergence test is applied (see text); itmax is the maximum number
of allowed iterations; and tol is the desired convergence tolerance. On output, x[1..n] is
reset to the improved solution, iter is the number of iterations actually taken, and err is the
estimated error. The matrix A is referenced only through the user-supplied routines atimes,
which computes the product of either A or its transpose on a vector; and asolve, which solves

Ã ·x = b or Ã
T ·x = b for some preconditioner matrix Ã (possibly the trivial diagonal part of A).

{
void asolve(unsigned long n, double b[], double x[], int itrnsp);
void atimes(unsigned long n, double x[], double r[], int itrnsp);
double snrm(unsigned long n, double sx[], int itol);
unsigned long j;
double ak,akden,bk,bkden,bknum,bnrm,dxnrm,xnrm,zm1nrm,znrm;
double *p,*pp,*r,*rr,*z,*zz; Double precision is a good idea in this routine.

2.7 Sparse Linear Systems 87

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

p=dvector(1,n);
pp=dvector(1,n);
r=dvector(1,n);
rr=dvector(1,n);
z=dvector(1,n);
zz=dvector(1,n);

Calculate initial residual.
*iter=0;
atimes(n,x,r,0); Input to atimes is x[1..n], output is r[1..n];

the final 0 indicates that the matrix (not its
transpose) is to be used.

for (j=1;j<=n;j++) {
r[j]=b[j]-r[j];
rr[j]=r[j];

}
/* atimes(n,r,rr,0); */ Uncomment this line to get the “minimum resid-

ual” variant of the algorithm.if (itol == 1) {
bnrm=snrm(n,b,itol);
asolve(n,r,z,0); Input to asolve is r[1..n], output is z[1..n];

the final 0 indicates that the matrix Ã (not
its transpose) is to be used.

}
else if (itol == 2) {

asolve(n,b,z,0);
bnrm=snrm(n,z,itol);
asolve(n,r,z,0);

}
else if (itol == 3 || itol == 4) {

asolve(n,b,z,0);
bnrm=snrm(n,z,itol);
asolve(n,r,z,0);
znrm=snrm(n,z,itol);

} else nrerror("illegal itol in linbcg");
while (*iter <= itmax) { Main loop.

++(*iter);

asolve(n,rr,zz,1); Final 1 indicates use of transpose matrix Ã
T

.
for (bknum=0.0,j=1;j<=n;j++) bknum += z[j]*rr[j];
Calculate coefficient bk and direction vectors p and pp.
if (*iter == 1) {

for (j=1;j<=n;j++) {
p[j]=z[j];
pp[j]=zz[j];

}
}
else {

bk=bknum/bkden;
for (j=1;j<=n;j++) {

p[j]=bk*p[j]+z[j];
pp[j]=bk*pp[j]+zz[j];

}
}
bkden=bknum; Calculate coefficient ak, new iterate x, and new

residuals r and rr.atimes(n,p,z,0);
for (akden=0.0,j=1;j<=n;j++) akden += z[j]*pp[j];
ak=bknum/akden;
atimes(n,pp,zz,1);
for (j=1;j<=n;j++) {

x[j] += ak*p[j];
r[j] -= ak*z[j];
rr[j] -= ak*zz[j];

}
asolve(n,r,z,0); Solve Ã · z = r and check stopping criterion.
if (itol == 1)

*err=snrm(n,r,itol)/bnrm;
else if (itol == 2)

*err=snrm(n,z,itol)/bnrm;

88 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

else if (itol == 3 || itol == 4) {
zm1nrm=znrm;
znrm=snrm(n,z,itol);
if (fabs(zm1nrm-znrm) > EPS*znrm) {

dxnrm=fabs(ak)*snrm(n,p,itol);
*err=znrm/fabs(zm1nrm-znrm)*dxnrm;

} else {
*err=znrm/bnrm; Error may not be accurate, so loop again.
continue;

}
xnrm=snrm(n,x,itol);
if (*err <= 0.5*xnrm) *err /= xnrm;
else {

*err=znrm/bnrm; Error may not be accurate, so loop again.
continue;

}
}
printf("iter=%4d err=%12.6f\n",*iter,*err);

if (*err <= tol) break;
}

free_dvector(p,1,n);
free_dvector(pp,1,n);
free_dvector(r,1,n);
free_dvector(rr,1,n);
free_dvector(z,1,n);
free_dvector(zz,1,n);

}

The routine linbcg uses this short utility for computing vector norms:

#include <math.h>

double snrm(unsigned long n, double sx[], int itol)
Compute one of two norms for a vector sx[1..n], as signaled by itol. Used by linbcg.
{

unsigned long i,isamax;
double ans;

if (itol <= 3) {
ans = 0.0;
for (i=1;i<=n;i++) ans += sx[i]*sx[i]; Vector magnitude norm.
return sqrt(ans);

} else {
isamax=1;
for (i=1;i<=n;i++) { Largest component norm.

if (fabs(sx[i]) > fabs(sx[isamax])) isamax=i;
}
return fabs(sx[isamax]);

}
}

So that the specifications for the routines atimes and asolve are clear, we list here
simple versions that assume a matrix A stored somewhere in row-index sparse format.

extern unsigned long ija[];
extern double sa[]; The matrix is stored somewhere.

void atimes(unsigned long n, double x[], double r[], int itrnsp)
{

void dsprsax(double sa[], unsigned long ija[], double x[], double b[],
unsigned long n);

2.7 Sparse Linear Systems 89

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

void dsprstx(double sa[], unsigned long ija[], double x[], double b[],
unsigned long n);

These are double versions of sprsax and sprstx.

if (itrnsp) dsprstx(sa,ija,x,r,n);
else dsprsax(sa,ija,x,r,n);

}

extern unsigned long ija[];
extern double sa[]; The matrix is stored somewhere.

void asolve(unsigned long n, double b[], double x[], int itrnsp)
{

unsigned long i;

for(i=1;i<=n;i++) x[i]=(sa[i] != 0.0 ? b[i]/sa[i] : b[i]);
The matrix Ã is the diagonal part of A, stored in the first n elements of sa. Since the
transpose matrix has the same diagonal, the flag itrnsp is not used.

}

CITED REFERENCES AND FURTHER READING:

Tewarson, R.P. 1973, Sparse Matrices (New York: Academic Press). [1]

Jacobs, D.A.H. (ed.) 1977, The State of the Art in Numerical Analysis (London: Academic
Press), Chapter I.3 (by J.K. Reid). [2]

George, A., and Liu, J.W.H. 1981, Computer Solution of Large Sparse Positive Definite Systems
(Englewood Cliffs, NJ: Prentice-Hall). [3]

NAG Fortran Library (Numerical Algorithms Group, 256 Banbury Road, Oxford OX27DE, U.K.).
[4]

IMSL Math/Library Users Manual (IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042). [5]

Eisenstat, S.C., Gursky, M.C., Schultz, M.H., and Sherman, A.H. 1977, Yale Sparse Matrix Pack-
age, Technical Reports 112 and 114 (Yale University Department of Computer Science). [6]

Knuth, D.E. 1968, Fundamental Algorithms, vol. 1 of The Art of Computer Programming (Reading,
MA: Addison-Wesley), §2.2.6. [7]

Kincaid, D.R., Respess, J.R., Young, D.M., and Grimes, R.G. 1982, ACM Transactions on Math-
ematical Software, vol. 8, pp. 302–322. [8]

PCGPAK User’s Guide (New Haven: Scientific Computing Associates, Inc.). [9]

Bentley, J. 1986, Programming Pearls (Reading, MA: Addison-Wesley), §9. [10]

Golub, G.H., and Van Loan, C.F. 1989, Matrix Computations, 2nd ed. (Baltimore: Johns Hopkins
University Press), Chapters 4 and 10, particularly §§10.2–10.3. [11]

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
Chapter 8. [12]

Baker, L. 1991, More C Tools for Scientists and Engineers (New York: McGraw-Hill). [13]

Fletcher, R. 1976, in Numerical Analysis Dundee 1975, Lecture Notes in Mathematics, vol. 506,
A. Dold and B Eckmann, eds. (Berlin: Springer-Verlag), pp. 73–89. [14]

Saad, Y., and Schulz, M. 1986, SIAM Journal on Scientific and Statistical Computing, vol. 7,
pp. 856–869. [15]

Bunch, J.R., and Rose, D.J. (eds.) 1976, Sparse Matrix Computations (New York: Academic
Press).

Duff, I.S., and Stewart, G.W. (eds.) 1979, Sparse Matrix Proceedings 1978 (Philadelphia:
S.I.A.M.).

90 Chapter 2. Solution of Linear Algebraic Equations

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

2.8 Vandermonde Matrices and Toeplitz
Matrices

In §2.4 the case of a tridiagonal matrix was treated specially, because that
particular type of linear system admits a solution in only of order N operations,
rather than of order N3 for the general linear problem. When such particular types
exist, it is important to know about them. Your computational savings, should you
ever happen to be working on a problem that involves the right kind of particular
type, can be enormous.

This section treats two special types of matrices that can be solved in of order
N2 operations, not as good as tridiagonal, but a lot better than the general case.
(Other than the operations count, these two types having nothing in common.)
Matrices of the first type, termed Vandermonde matrices, occur in some problems
having to do with the fitting of polynomials, the reconstruction of distributions from
their moments, and also other contexts. In this book, for example, a Vandermonde
problem crops up in §3.5. Matrices of the second type, termed Toeplitz matrices,
tend to occur in problems involving deconvolution and signal processing. In this
book, a Toeplitz problem is encountered in §13.7.

These are not the only special types of matrices worth knowing about. The
Hilbert matrices, whose components are of the form aij = 1/(i + j − 1), i, j =
1, . . . , N can be inverted by an exact integer algorithm, and are very difficult to
invert in any other way, since they are notoriously ill-conditioned (see [1] for details).
The Sherman-Morrison and Woodbury formulas, discussed in §2.7, can sometimes
be used to convert new special forms into old ones. Reference [2] gives some other
special forms. We have not found these additional forms to arise as frequently as
the two that we now discuss.

Vandermonde Matrices

A Vandermonde matrix of size N × N is completely determined by N arbitrary
numbers x1, x2, . . . , xN , in terms of which its N2 components are the integer powers
xj−1
i , i, j = 1, . . . , N . Evidently there are two possible such forms, depending on whether

we view the i’s as rows, j’s as columns, or vice versa. In the former case, we get a linear
system of equations that looks like this,

1 x1 x2
1 · · · xN−1

1

1 x2 x2
2 · · · xN−1

2

...
...

...
...

1 xN x2
N · · · xN−1

N

 ·

c1

c2
...
cN

 =


y1

y2

...
yN

 (2.8.1)

Performing the matrix multiplication, you will see that this equation solves for the unknown
coefficients ci which fit a polynomial to the N pairs of abscissas and ordinates (xj , yj).
Precisely this problem will arise in §3.5, and the routine given there will solve (2.8.1) by the
method that we are about to describe.

