Chapter 18. Integral Equations
and Inverse Theory

18.0 Introduction

Many people, otherwise numerically knowledgable, imagine that the numerical
solution of integral equations must be an extremely arcanetopic, since, until recently,
it was amost never treated in numerical analysis textbooks. Actualy there is a
large and growing literature on the numerical solution of integral equations; severa
monographs have by now appeared [1-3]. One reason for the sheer volume of this
activity isthat there are many different kinds of equations, each with many different
possible pitfalls; often many different agorithms have been proposed to deal with
a single case.

Thereisaclose correspondence between linear integral equati ons, which specify
linear, integral relations among functionsin an infinite-dimensional function space,
and plain old linear equations, which specify analogous relations among vectors
in a finite-dimensional vector space. Because this correspondence lies at the heart
of most computational algorithms, it is worth making it explicit as we recall how
integral equations are classified.

Fredholm equationsinvolvedefiniteintegral swith fixed upper and lower limits.
An inhomogeneous Fredholm equation of the first kind has the form

b
g@%:/)K@JV@ﬁh (18.0.1)

Here f(t) istheunknownfunctionto be solved for, whileg(t¢) isaknown“right-hand
side” (Inintegral equations, for some odd reason, the familiar “right-hand side” is
conventionally written on the left!) The function of two variables, K (¢, s) is called
the kernel. Equation (18.0.1) is analogous to the matrix eguation

K-f=g (18.0.2)

whose solution isf = K~=! - g, where K™! is the matrix inverse. Like equation
(18.0.2), equation (18.0.1) has a unique solution whenever g is nonzero (the
homogeneous case with g = 0 isamost never useful) and K isinvertible. However,
as we shall see, thislatter condition is as often the exception as the rule.

The analog of the finite-dimensiona eigenvalue problem

(K—ol) - f=g (18.0.3)
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is caled a Fredholm equation of the second kind, usualy written

b
FE) = A / K(t, 5)f(s)ds + g(t) (18.0.4)

Again, the notational conventions do not exactly correspond: A in equation (18.0.4)
is1/c in (18.0.3), whileg is —g/\. If g (or g) is zero, then the equation is said
to be homogeneous. If the kernel K (¢, s) is bounded, then, like equation (18.0.3),
equation (18.0.4) has the property that its homogeneous form has solutions for
at most a denumerably infiniteset A = A\, n = 1,2,..., the eigenvalues. The
corresponding solutions f,,(t) are the eigenfunctions. The eigenvalues are red if
the kernel is symmetric.

In the inhomogeneous case of nonzero g (or g), equations (18.0.3) and (18.0.4)
are soluble except when A (or o) is an eigenvalue — because the integral operator
(or matrix) is singular then. In integra equations this dichotomy is caled the
Fredholm alternative.

Fredholm equations of the first kind are often extremely ill-conditioned. Ap-
plying the kernel to a function is generally a smoothing operation, so the solution,
which requires inverting the operator, will be extremely sensitive to small changes
or errorsin the input. Smoothing often actually loses information, and there is no
way to get it back in an inverse operation. Specialized methods have been devel oped
for such equations, which are often caled inverse problems. In general, a method
must augment the information given with some prior knowledge of the nature of the
solution. This prior knowledge is then used, in one way or another, to restore lost
information. We will introduce such techniquesin §18.4.

Inhomogeneous Fredholm equations of the second kind are much less often
ill-conditioned. Equation (18.0.4) can be rewritten as

b
/ (K (t, 5) — 06(t — 5)|f(5) ds = —og(t) (18.05)

where (¢t — s) is aDirac deltafunction (and where we have changed from X to its
reciprocal o for clarity). If o islarge enough in magnitude, then equation (18.0.5)
is, in effect, diagonally dominant and thus well-conditioned. Only if ¢ is small do
we go back to the ill-conditioned case.

Homogeneous Fredholm eguations of the second kind are likewise not partic-
ularly ill-posed. If K isasmoothing operator, then it will map many f’s to zero,
or near-zero; there will thus be a large number of degenerate or nearly degenerate
eigenvaues around o = 0 (A — o0), but thiswill cause no particular computational
difficulties. In fact, we can now see that the magnitude of o needed to rescue the
inhomogeneous equation (18.0.5) from an ill-conditioned fate is generally much less
than that required for diagonal dominance. Since the o term shifts all eigenvalues,
it is enough that it be large enough to shift a smoothing operator’s forest of near-
zero eigenvalues away from zero, so that the resulting operator becomes invertible
(except, of course, at the discrete eigenvalues).

\blterra equations are a special case of Fredholm equations with K (¢,s) = 0
for s > t. Chopping off theunnecessary part of theintegration, Volterraequationsare
written in aform where the upper limit of integration is the independent variablet.
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790 Chapter 18.  Integral Equations and Inverse Theory

The \olterra eguation of the first kind

t
o) = [ K(t.5)5(s)ds (18.06)
has as its analog the matrix eguation (now written out in components)
k
> Kiifi = gx (18.0.7)
j=1

Comparing with equation (18.0.2), we see that the Volterra equation corresponds to
amatrix K that is lower (i.e., left) triangular, with zero entries above the diagonal .
Aswe know from Chapter 2, such matrix equations are trivially soluble by forward
substitution. Techniquesfor solving Volterraequationsare similarly straightforward.
When experimental measurement noise does not dominate, Volterraequations of the
first kind tend not to be ill-conditioned; the upper limit to the integral introduces a
sharp step that conveniently spoils any smoothing properties of the kernel.
The Volterra equation of the second kind is written

F(t) = / K(t,5)f(s) ds + g(1) (1808)
whose matrix analog is the equation
(K-1)-f=g (18.0.9)

with K lower triangular. The reason there isno A in these equationsis that (i) in
the inhomogeneous case (nonzero g) it can be absorbed into K, while (ii) in the
homogeneous case (¢ = 0), itisatheorem that Volterraequations of the second kind
with bounded kernels have no eigenval ues with sguare-integrabl e eigenfunctions.

We have speciaized our definitions to the case of linear integral equations.
The integrand in a nonlinear version of equation (18.0.1) or (18.0.6) would be
K(t,s, f(s)) instead of K(t,s)f(s); anonlinear version of equation (18.0.4) or
(18.0.8) would havean integrand K (¢, s, f(t), f(s)). Nonlinear Fredholm equations
are considerably more complicated than their linear counterparts. Fortunately, they
do not occur as frequently in practice and we shall by and large ignore them in this
chapter. By contrast, solving nonlinear Volterra equations usually involves only a
slight modification of the algorithm for linear equations, as we shall see.

Almost al methods for solving integral equations numerically make use of
quadrature rules, frequently Gaussian quadratures. This would be a good time
for you to go back and review §4.5, especidly the advanced materia towards the
end of that section.

In the sections that follow, we first discuss Fredholm eguations of the second
kind with smooth kernels (§18.1). Nontrivial quadrature rules come into the
discussion, but we will be dealing with well-conditioned systems of equations. We
then return to Volterra equations (§18.2), and find that simple and straightforward
methods are generally satisfactory for these equations.

In §18.3 we discuss how to proceed in the case of singular kernels, focusing
largely on Fredholm equations (both first and second kinds). Singularities require
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18.1 Fredholm Equations of the Second Kind 791

special quadraturerules, but they are a so sometimes blessingsin disguise, since they
can spoil a kernel’s smoothing and make problems well-conditioned.

In §518.4-18.7 we face up to the issues of inverse problems. §18.4 is an
introduction to this large subject.

We should note here that wavelet transforms, aready discussed in §13.10, are
applicable not only to data compression and signal processing, but can also be used
to transform some classes of integral equationsinto sparse linear problemsthat allow
fast solution. You may wish to review §13.10 as part of reading this chapter.

Some subjects, such as integro-differential equations, we must simply declare
to be beyond our scope. For areview of methods for integro-differential equations,
see Brunner [4].

It should go without saying that this one short chapter can only barely touch on
afew of the most basic methods involved in this complicated subject.
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18.1 Fredholm Equations of the Second Kind

We desire a numerical solution for f(¢) in the equation

b
f@) = )\/ K(t,s)f(s)ds + g(t) (18.1.1)

The method we describe, avery basic one, is caled the Nystrom method. It requires
the choice of some approximate quadrature rule:

b N
/ y(s)ds = ijy(sj) (18.1.2)

Here the set {w;} are the weights of the quadrature rule, while the N points {s; }
are the abscissas.

What quadrature rule should we use? It is certainly possible to solve integral
equationswith low-order quadrature ruleslike the repested trapezoidal or Simpson’'s
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