
772 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

for (j=jz1;j<=jz2;j++) { Loop over columns to be zeroed.
for (l=jm1;l<=jm2;l++) { Loop over columns altered.

vx=c[ic][l+loff][kc];
for (i=iz1;i<=iz2;i++) s[i][l] -= s[i][j]*vx; Loop over rows.

}
vx=c[ic][jcf][kc];
for (i=iz1;i<=iz2;i++) s[i][jmf] -= s[i][j]*vx; Plus final element.
ic += 1;

}
}

“Algebraically Difficult” Sets of Differential Equations

Relaxation methods allow you to take advantage of an additional opportunity that, while
not obvious, can speed up some calculations enormously. It is not necessary that the set
of variables yj,k correspond exactly with the dependent variables of the original differential
equations. They can be related to those variables through algebraic equations. Obviously, it
is necessary only that the solution variables allow us to evaluate the functions y, g,B,C that
are used to construct the FDEs from the ODEs. In some problems g depends on functions of
y that are known only implicitly, so that iterative solutions are necessary to evaluate functions
in the ODEs. Often one can dispense with this “internal” nonlinear problem by defining
a new set of variables from which both y, g and the boundary conditions can be obtained
directly. A typical example occurs in physical problems where the equations require solution
of a complex equation of state that can be expressed in more convenient terms using variables
other than the original dependent variables in the ODE. While this approach is analogous to
performing an analytic change of variables directly on the original ODEs, such an analytic
transformation might be prohibitively complicated. The change of variables in the relaxation
method is easy and requires no analytic manipulations.

CITED REFERENCES AND FURTHER READING:

Eggleton, P.P. 1971, Monthly Notices of the Royal Astronomical Society, vol. 151, pp. 351–364.
[1]

Keller, H.B. 1968, Numerical Methods for Two-Point Boundary-Value Problems (Waltham, MA:
Blaisdell).

Kippenhan, R., Weigert, A., and Hofmeister, E. 1968, in Methods in Computational Physics,
vol. 7 (New York: Academic Press), pp. 129ff.

17.4 A Worked Example: Spheroidal Harmonics

The best way to understand the algorithms of the previous sections is to see
them employed to solve an actual problem. As a sample problem, we have selected
the computation of spheroidal harmonics. (The more common name is spheroidal
angle functions, but we prefer the explicit reminder of the kinship with spherical
harmonics.) We will show how to find spheroidal harmonics, first by the method
of relaxation (§17.3), and then by the methods of shooting (§17.1) and shooting
to a fitting point (§17.2).

Spheroidal harmonics typically arise when certain partial differential
equations are solved by separation of variables in spheroidal coordinates. They
satisfy the following differential equation on the interval −1 ≤ x ≤ 1:

d

dx

[
(1− x2)

dS

dx

]
+

(
λ− c2x2 − m2

1− x2

)
S = 0 (17.4.1)

17.4 A Worked Example: Spheroidal Harmonics 773

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Herem is an integer, c is the “oblateness parameter,” and λ is the eigenvalue. Despite
the notation, c2 can be positive or negative. For c2 > 0 the functions are called
“prolate,” while if c2 < 0 they are called “oblate.” The equation has singular points
at x = ±1 and is to be solved subject to the boundary conditions that the solution be
regular at x = ±1. Only for certain values ofλ, the eigenvalues, will this be possible.

If we consider first the spherical case, where c = 0, we recognize the differential
equation for Legendre functions Pmn (x). In this case the eigenvalues are λmn =
n(n + 1), n = m,m + 1, The integer n labels successive eigenvalues for
fixed m: When n = m we have the lowest eigenvalue, and the corresponding
eigenfunction has no nodes in the interval −1 < x < 1; when n = m+ 1 we have
the next eigenvalue, and the eigenfunction has one node inside (−1, 1); and so on.

A similar situation holds for the general case c2 6= 0. We write the eigenvalues
of (17.4.1) as λmn(c) and the eigenfunctions as Smn(x; c). For fixed m, n =
m,m + 1, . . . labels the successive eigenvalues.

The computation of λmn(c) and Smn(x; c) traditionally has been quite difficult.
Complicated recurrence relations, power series expansions, etc., can be found
in references [1-3]. Cheap computing makes evaluation by direct solution of the
differential equation quite feasible.

The first step is to investigate the behavior of the solution near the singular
points x = ±1. Substituting a power series expansion of the form

S = (1± x)α
∞∑
k=0

ak(1± x)k (17.4.2)

in equation (17.4.1), we find that the regular solution has α = m/2. (Without loss
of generality we can take m ≥ 0 since m → −m is a symmetry of the equation.)
We get an equation that is numerically more tractable if we factor out this behavior.
Accordingly we set

S = (1 − x2)m/2y (17.4.3)

We then find from (17.4.1) that y satisfies the equation

(1− x2)
d2y

dx2
− 2(m+ 1)x

dy

dx
+ (µ− c2x2)y = 0 (17.4.4)

where

µ ≡ λ−m(m+ 1) (17.4.5)

Both equations (17.4.1) and (17.4.4) are invariant under the replacement
x→ −x. Thus the functions S and y must also be invariant, except possibly for an
overall scale factor. (Since the equations are linear, a constant multiple of a solution
is also a solution.) Because the solutions will be normalized, the scale factor can
only be±1. If n−m is odd, there are an odd number of zeros in the interval (−1, 1).
Thus we must choose the antisymmetric solution y(−x) = −y(x) which has a zero
at x = 0. Conversely, if n−m is even we must have the symmetric solution. Thus

ymn(−x) = (−1)n−mymn(x) (17.4.6)

774 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

and similarly for Smn.
The boundary conditions on (17.4.4) require that y be regular at x = ±1. In

other words, near the endpoints the solution takes the form

y = a0 + a1(1− x2) + a2(1− x2)2 + . . . (17.4.7)

Substituting this expansion in equation (17.4.4) and letting x→ 1, we find that

a1 = − µ− c2
4(m+ 1)

a0 (17.4.8)

Equivalently,

y′(1) =
µ− c2

2(m+ 1)
y(1) (17.4.9)

A similar equation holds at x = −1 with a minus sign on the right-hand side.
The irregular solution has a different relation between function and derivative at
the endpoints.

Instead of integrating the equation from −1 to 1, we can exploit the symmetry
(17.4.6) to integrate from 0 to 1. The boundary condition at x = 0 is

y(0) = 0, n−m odd

y′(0) = 0, n−m even
(17.4.10)

A third boundary condition comes from the fact that any constant multiple
of a solution y is a solution. We can thus normalize the solution. We adopt the
normalization that the function Smn has the same limiting behavior as Pmn at x = 1:

lim
x→1

(1− x2)−m/2Smn(x; c) = lim
x→1

(1− x2)−m/2Pmn (x) (17.4.11)

Various normalization conventions in the literature are tabulated by Flammer [1].
Imposing three boundary conditions for the second-order equation (17.4.4)

turns it into an eigenvalue problem for λ or equivalently for µ. We write it in the
standard form by setting

y1 = y (17.4.12)

y2 = y′ (17.4.13)

y3 = µ (17.4.14)

Then

y′1 = y2 (17.4.15)

y′2 =
1

1− x2

[
2x(m+ 1)y2 − (y3 − c2x2)y1

]
(17.4.16)

y′3 = 0 (17.4.17)

17.4 A Worked Example: Spheroidal Harmonics 775

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

The boundary condition at x = 0 in this notation is

y1 = 0, n−m odd

y2 = 0, n−m even
(17.4.18)

At x = 1 we have two conditions:

y2 =
y3 − c2

2(m+ 1)
y1 (17.4.19)

y1 = lim
x→1

(1− x2)−m/2Pmn (x) =
(−1)m(n+ m)!

2mm!(n−m)!
≡ γ (17.4.20)

We are now ready to illustrate the use of the methods of previous sections
on this problem.

Relaxation

If we just want a few isolated values of λ or S, shooting is probably the quickest
method. However, if we want values for a large sequence of values of c, relaxation
is better. Relaxation rewards a good initial guess with rapid convergence, and the
previous solution should be a good initial guess if c is changed only slightly.

For simplicity, we choose a uniform grid on the interval 0 ≤ x ≤ 1. For a
total of M mesh points, we have

h =
1

M − 1
(17.4.21)

xk = (k − 1)h, k = 1, 2, . . . ,M (17.4.22)

At interior points k = 2, 3, . . . ,M , equation (17.4.15) gives

E1,k = y1,k − y1,k−1 −
h

2
(y2,k + y2,k−1) (17.4.23)

Equation (17.4.16) gives

E2,k = y2,k − y2,k−1 − βk

×
[

(xk + xk−1)(m+ 1)(y2,k + y2,k−1)

2
− αk

(y1,k + y1,k−1)

2

] (17.4.24)

where

αk =
y3,k + y3,k−1

2
− c2(xk + xk−1)2

4
(17.4.25)

βk =
h

1− 1
4 (xk + xk−1)2

(17.4.26)

Finally, equation (17.4.17) gives

E3,k = y3,k − y3,k−1 (17.4.27)

776 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

Now recall that the matrix of partial derivatives Si,j of equation (17.3.8) is
defined so that i labels the equation and j the variable. In our case, j runs from 1 to
3 for yj at k − 1 and from 4 to 6 for yj at k. Thus equation (17.4.23) gives

S1,1 = −1, S1,2 = −h
2
, S1,3 = 0

S1,4 = 1, S1,5 = −h
2
, S1,6 = 0

(17.4.28)

Similarly equation (17.4.24) yields

S2,1 = αkβk/2, S2,2 = −1− βk(xk + xk−1)(m+ 1)/2,

S2,3 = βk(y1,k + y1,k−1)/4 S2,4 = S2,1,

S2,5 = 2 + S2,2, S2,6 = S2,3

(17.4.29)
while from equation (17.4.27) we find

S3,1 = 0, S3,2 = 0, S3,3 = −1

S3,4 = 0, S3,5 = 0, S3,6 = 1
(17.4.30)

At x = 0 we have the boundary condition

E3,1 =

{
y1,1, n−m odd

y2,1, n−m even
(17.4.31)

Recall the convention adopted in the solvde routine that for one boundary condition
at k = 1 only S3,j can be nonzero. Also, j takes on the values 4 to 6 since the
boundary condition involves only yk , not yk−1. Accordingly, the only nonzero
values of S3,j at x = 0 are

S3,4 = 1, n−m odd

S3,5 = 1, n−m even
(17.4.32)

At x = 1 we have

E1,M+1 = y2,M −
y3,M − c2
2(m+ 1)

y1,M (17.4.33)

E2,M+1 = y1,M − γ (17.4.34)

Thus

S1,4 = −y3,M − c2
2(m+ 1)

, S1,5 = 1, S1,6 = − y1,M

2(m+ 1)
(17.4.35)

S2,4 = 1, S2,5 = 0, S2,6 = 0 (17.4.36)

Here now is the sample program that implements the above algorithm. We
need a main program, sfroid, that calls the routine solvde, and we must supply
the function difeq called by solvde. For simplicity we choose an equally spaced

17.4 A Worked Example: Spheroidal Harmonics 777

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

mesh of m = 41 points, that is, h = .025. As we shall see, this gives good accuracy
for the eigenvalues up to moderate values of n −m.

Since the boundary condition at x = 0 does not involve y1 if n −m is even,
we have to use the indexv feature of solvde. Recall that the value of indexv[j]
describes which column of s[i][j] the variable y[j] has been put in. If n −m
is even, we need to interchange the columns for y1 and y2 so that there is not a
zero pivot element in s[i][j].

The program prompts for values of m and n. It then computes an initial guess
for y based on the Legendre function Pmn . It next prompts for c2, solves for y,
prompts for c2, solves for y using the previous values as an initial guess, and so on.

#include <stdio.h>
#include <math.h>
#include "nrutil.h"
#define NE 3
#define M 41
#define NB 1
#define NSI NE
#define NYJ NE
#define NYK M
#define NCI NE
#define NCJ (NE-NB+1)
#define NCK (M+1)
#define NSJ (2*NE+1)

int mm,n,mpt=M;
float h,c2=0.0,anorm,x[M+1];
Global variables communicating with difeq.

int main(void) /* Program sfroid */
Sample program using solvde. Computes eigenvalues of spheroidal harmonics Smn(x; c) for
m ≥ 0 and n ≥ m. In the program, m is mm, c2 is c2, and γ of equation (17.4.20) is anorm.
{

float plgndr(int l, int m, float x);
void solvde(int itmax, float conv, float slowc, float scalv[],

int indexv[], int ne, int nb, int m, float **y, float ***c, float **s);
int i,itmax,k,indexv[NE+1];
float conv,deriv,fac1,fac2,q1,slowc,scalv[NE+1];
float **y,**s,***c;

y=matrix(1,NYJ,1,NYK);
s=matrix(1,NSI,1,NSJ);
c=f3tensor(1,NCI,1,NCJ,1,NCK);
itmax=100;
conv=5.0e-6;
slowc=1.0;
h=1.0/(M-1);
printf("\nenter m n\n");
scanf("%d %d",&mm,&n);
if (n+mm & 1) { No interchanges necessary.

indexv[1]=1;
indexv[2]=2;
indexv[3]=3;

} else { Interchange y1 and y2.
indexv[1]=2;
indexv[2]=1;
indexv[3]=3;

}
anorm=1.0; Compute γ.
if (mm) {

q1=n;

778 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

for (i=1;i<=mm;i++) anorm = -0.5*anorm*(n+i)*(q1--/i);
}
for (k=1;k<=(M-1);k++) { Initial guess.

x[k]=(k-1)*h;
fac1=1.0-x[k]*x[k];
fac2=exp((-mm/2.0)*log(fac1));
y[1][k]=plgndr(n,mm,x[k])*fac2; Pmn from §6.8.
deriv = -((n-mm+1)*plgndr(n+1,mm,x[k])- Derivative of Pmn from a recur-

rence relation.(n+1)*x[k]*plgndr(n,mm,x[k]))/fac1;
y[2][k]=mm*x[k]*y[1][k]/fac1+deriv*fac2;
y[3][k]=n*(n+1)-mm*(mm+1);

}
x[M]=1.0; Initial guess at x = 1 done sep-

arately.y[1][M]=anorm;
y[3][M]=n*(n+1)-mm*(mm+1);
y[2][M]=(y[3][M]-c2)*y[1][M]/(2.0*(mm+1.0));
scalv[1]=fabs(anorm);
scalv[2]=(y[2][M] > scalv[1] ? y[2][M] : scalv[1]);
scalv[3]=(y[3][M] > 1.0 ? y[3][M] : 1.0);
for (;;) {

printf("\nEnter c**2 or 999 to end.\n");
scanf("%f",&c2);
if (c2 == 999) {

free_f3tensor(c,1,NCI,1,NCJ,1,NCK);
free_matrix(s,1,NSI,1,NSJ);
free_matrix(y,1,NYJ,1,NYK);
return 0;

}
solvde(itmax,conv,slowc,scalv,indexv,NE,NB,M,y,c,s);
printf("\n %s %2d %s %2d %s %7.3f %s %10.6f\n",

"m =",mm," n =",n," c**2 =",c2,
" lamda =",y[3][1]+mm*(mm+1));

} Return for another value of c2.
}

extern int mm,n,mpt; Defined in sfroid.
extern float h,c2,anorm,x[];

void difeq(int k, int k1, int k2, int jsf, int is1, int isf, int indexv[],
int ne, float **s, float **y)

Returns matrix s for solvde.
{

float temp,temp1,temp2;

if (k == k1) { Boundary condition at first point.
if (n+mm & 1) {

s[3][3+indexv[1]]=1.0; Equation (17.4.32).
s[3][3+indexv[2]]=0.0;
s[3][3+indexv[3]]=0.0;
s[3][jsf]=y[1][1]; Equation (17.4.31).

} else {
s[3][3+indexv[1]]=0.0; Equation (17.4.32).
s[3][3+indexv[2]]=1.0;
s[3][3+indexv[3]]=0.0;
s[3][jsf]=y[2][1]; Equation (17.4.31).

}
} else if (k > k2) { Boundary conditions at last point.

s[1][3+indexv[1]] = -(y[3][mpt]-c2)/(2.0*(mm+1.0)); (17.4.35).
s[1][3+indexv[2]]=1.0;
s[1][3+indexv[3]] = -y[1][mpt]/(2.0*(mm+1.0));
s[1][jsf]=y[2][mpt]-(y[3][mpt]-c2)*y[1][mpt]/(2.0*(mm+1.0)); (17.4.33).
s[2][3+indexv[1]]=1.0; Equation (17.4.36).

17.4 A Worked Example: Spheroidal Harmonics 779

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

s[2][3+indexv[2]]=0.0;
s[2][3+indexv[3]]=0.0;
s[2][jsf]=y[1][mpt]-anorm; Equation (17.4.34).

} else { Interior point.
s[1][indexv[1]] = -1.0; Equation (17.4.28).
s[1][indexv[2]] = -0.5*h;
s[1][indexv[3]]=0.0;
s[1][3+indexv[1]]=1.0;
s[1][3+indexv[2]] = -0.5*h;
s[1][3+indexv[3]]=0.0;
temp1=x[k]+x[k-1];
temp=h/(1.0-temp1*temp1*0.25);
temp2=0.5*(y[3][k]+y[3][k-1])-c2*0.25*temp1*temp1;
s[2][indexv[1]]=temp*temp2*0.5; Equation (17.4.29).
s[2][indexv[2]] = -1.0-0.5*temp*(mm+1.0)*temp1;
s[2][indexv[3]]=0.25*temp*(y[1][k]+y[1][k-1]);
s[2][3+indexv[1]]=s[2][indexv[1]];
s[2][3+indexv[2]]=2.0+s[2][indexv[2]];
s[2][3+indexv[3]]=s[2][indexv[3]];
s[3][indexv[1]]=0.0; Equation (17.4.30).
s[3][indexv[2]]=0.0;
s[3][indexv[3]] = -1.0;
s[3][3+indexv[1]]=0.0;
s[3][3+indexv[2]]=0.0;
s[3][3+indexv[3]]=1.0;
s[1][jsf]=y[1][k]-y[1][k-1]-0.5*h*(y[2][k]+y[2][k-1]); (17.4.23).
s[2][jsf]=y[2][k]-y[2][k-1]-temp*((x[k]+x[k-1]) (17.4.24).

0.5(mm+1.0)*(y[2][k]+y[2][k-1])-temp2
0.5(y[1][k]+y[1][k-1]));

s[3][jsf]=y[3][k]-y[3][k-1]; Equation (17.4.27).
}

}

You can run the program and check it against values of λmn(c) given in
the tables at the back of Flammer’s book [1] or in Table 21.1 of Abramowitz and
Stegun [2]. Typically it converges in about 3 iterations. The table below gives
a few comparisons.

Selected Output of sfroid

m n c2 λexact λsfroid

2 2 0.1 6.01427 6.01427
1.0 6.14095 6.14095
4.0 6.54250 6.54253

2 5 1.0 30.4361 30.4372
16.0 36.9963 37.0135

4 11 −1.0 131.560 131.554

Shooting
To solve the same problem via shooting (§17.1), we supply a function derivs

that implements equations (17.4.15)–(17.4.17). We will integrate the equations over
the range −1 ≤ x ≤ 0. We provide the function load which sets the eigenvalue
y3 to its current best estimate, v[1]. It also sets the boundary values of y1 and
y2 using equations (17.4.20) and (17.4.19) (with a minus sign corresponding to

780 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

x = −1). Note that the boundary condition is actually applied a distance dx from
the boundary to avoid having to evaluate y′2 right on the boundary. The function
score follows from equation (17.4.18).

#include <stdio.h>
#include "nrutil.h"
#define N2 1

int m,n; Communicates with load, score, and derivs.
float c2,dx,gmma;

int nvar; Communicates with shoot.
float x1,x2;

int main(void) /* Program sphoot */
Sample program using shoot. Computes eigenvalues of spheroidal harmonics Smn(x; c) for
m ≥ 0 and n ≥ m. Note how the routine vecfunc for newt is provided by shoot (§17.1).
{

void newt(float x[], int n, int *check,
void (*vecfunc)(int, float [], float []));

void shoot(int n, float v[], float f[]);
int check,i;
float q1,*v;

v=vector(1,N2);
dx=1.0e-4; Avoid evaluating derivatives exactly at x = −1.
nvar=3; Number of equations.
for (;;) {

printf("input m,n,c-squared\n");
if (scanf("%d %d %f",&m,&n,&c2) == EOF) break;
if (n < m || m < 0) continue;
gmma=1.0; Compute γ of equation (17.4.20).
q1=n;
for (i=1;i<=m;i++) gmma *= -0.5*(n+i)*(q1--/i);
v[1]=n*(n+1)-m*(m+1)+c2/2.0; Initial guess for eigenvalue.
x1 = -1.0+dx; Set range of integration.
x2=0.0;
newt(v,N2,&check,shoot); Find v that zeros function f in score.
if (check) {

printf("shoot failed; bad initial guess\n");
} else {

printf("\tmu(m,n)\n");
printf("%12.6f\n",v[1]);

}
}
free_vector(v,1,N2);
return 0;

}

void load(float x1, float v[], float y[])
Supplies starting values for integration at x = −1 + dx.
{

float y1 = (n-m & 1 ? -gmma : gmma);
y[3]=v[1];
y[2] = -(y[3]-c2)*y1/(2*(m+1));
y[1]=y1+y[2]*dx;

}

void score(float xf, float y[], float f[])
Tests whether boundary condition at x = 0 is satisfied.
{

f[1]=(n-m & 1 ? y[1] : y[2]);
}

17.4 A Worked Example: Spheroidal Harmonics 781

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

void derivs(float x, float y[], float dydx[])
Evaluates derivatives for odeint.
{

dydx[1]=y[2];
dydx[2]=(2.0*x*(m+1.0)*y[2]-(y[3]-c2*x*x)*y[1])/(1.0-x*x);
dydx[3]=0.0;

}

Shooting to a Fitting Point

For variety we illustrate shootf from §17.2 by integrating over the whole
range −1 + dx ≤ x ≤ 1 − dx, with the fitting point chosen to be at x = 0. The
routine derivs is identical to the one for shoot. Now, however, there are two load
routines. The routine load1 for x = −1 is essentially identical to load above. At
x = 1, load2 sets the function value y1 and the eigenvalue y3 to their best current
estimates, v2[1] and v2[2], respectively. If you quite sensibly make your initial
guess of the eigenvalue the same in the two intervals, then v1[1] will stay equal
to v2[2] during the iteration. The function score simply checks whether all three
function values match at the fitting point.

#include <stdio.h>
#include <math.h>
#include "nrutil.h"
#define N1 2
#define N2 1
#define NTOT (N1+N2)
#define DXX 1.0e-4

int m,n; Communicates with load1, load2, score,
and derivs.float c2,dx,gmma;

int nn2,nvar; Communicates with shootf.
float x1,x2,xf;

int main(void) /* Program sphfpt */
Sample program using shootf. Computes eigenvalues of spheroidal harmonics Smn(x; c) for
m ≥ 0 and n ≥ m. Note how the routine vecfunc for newt is provided by shootf (§17.2).
The routine derivs is the same as for sphoot.
{

void newt(float x[], int n, int *check,
void (*vecfunc)(int, float [], float []));

void shootf(int n, float v[], float f[]);
int check,i;
float q1,*v1,*v2,*v;

v=vector(1,NTOT);
v1=v;
v2 = &v[N2];
nvar=NTOT; Number of equations.
nn2=N2;
dx=DXX; Avoid evaluating derivatives exactly at x =

±1.for (;;) {
printf("input m,n,c-squared\n");
if (scanf("%d %d %f",&m,&n,&c2) == EOF) break;
if (n < m || m < 0) continue;
gmma=1.0; Compute γ of equation (17.4.20).
q1=n;

782 Chapter 17. Two Point Boundary Value Problems

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

for (i=1;i<=m;i++) gmma *= -0.5*(n+i)*(q1--/i);
v1[1]=n*(n+1)-m*(m+1)+c2/2.0; Initial guess for eigenvalue and function value.
v2[2]=v1[1];
v2[1]=gmma*(1.0-(v2[2]-c2)*dx/(2*(m+1)));
x1 = -1.0+dx; Set range of integration.
x2=1.0-dx;
xf=0.0; Fitting point.
newt(v,NTOT,&check,shootf); Find v that zeros function f in score.
if (check) {

printf("shootf failed; bad initial guess\n");
} else {

printf("\tmu(m,n)\n");
printf("%12.6f\n",v[1]);

}
}
free_vector(v,1,NTOT);
return 0;

}

void load1(float x1, float v1[], float y[])
Supplies starting values for integration at x = −1 + dx.
{

float y1 = (n-m & 1 ? -gmma : gmma);
y[3]=v1[1];
y[2] = -(y[3]-c2)*y1/(2*(m+1));
y[1]=y1+y[2]*dx;

}

void load2(float x2, float v2[], float y[])
Supplies starting values for integration at x = 1 − dx.
{

y[3]=v2[2];
y[1]=v2[1];
y[2]=(y[3]-c2)*y[1]/(2*(m+1));

}

void score(float xf, float y[], float f[])
Tests whether solutions match at fitting point x = 0.
{

int i;

for (i=1;i<=3;i++) f[i]=y[i];
}

CITED REFERENCES AND FURTHER READING:

Flammer, C. 1957, Spheroidal Wave Functions (Stanford, CA: Stanford University Press). [1]

Abramowitz, M., and Stegun, I.A. 1964, Handbook of Mathematical Functions, Applied Mathe-
matics Series, Volume 55 (Washington: National Bureau of Standards; reprinted 1968 by
Dover Publications, New York), §21. [2]

Morse, P.M., and Feshbach, H. 1953, Methods of Theoretical Physics, Part II (New York: McGraw-
Hill), pp. 1502ff. [3]

17.5 Automated Allocation of Mesh Points 783

S
am

ple page from
 N

U
M

E
R

IC
A

L R
E

C
IP

E
S

 IN
 C

: T
H

E
 A

R
T

 O
F

 S
C

IE
N

T
IF

IC
 C

O
M

P
U

T
IN

G
 (IS

B
N

 0-521-43108-5)
C

opyright (C
) 1988-1992 by C

am
bridge U

niversity P
ress.
P

rogram
s C

opyright (C
) 1988-1992 by N

um
erical R

ecipes S
oftw

are.
P

erm
ission is granted for internet users to m

ake one paper copy for their ow
n personal use. F

urther reproduction, or any copying of m
achine-

readable files (including this one) to any server
com
puter, is strictly prohibited. T

o order N
um

erical R
ecipes books,
diskettes, or C

D
R

O
M

s
visit w

ebsite http://w
w

w
.nr.com

 or call 1-800-872-7423 (N
orth A

m
erica only),
or send em

ail to trade@
cup.cam

.ac.uk (outside N
orth A

m
erica).

17.5 Automated Allocation of Mesh Points

In relaxation problems, you have to choose values for the independent variable at the
mesh points. This is called allocating the grid or mesh. The usual procedure is to pick
a plausible set of values and, if it works, to be content. If it doesn’t work, increasing the
number of points usually cures the problem.

If we know ahead of time where our solutions will be rapidly varying, we can put more
grid points there and less elsewhere. Alternatively, we can solve the problem first on a uniform
mesh and then examine the solution to see where we should add more points. We then repeat
the solution with the improved grid. The object of the exercise is to allocate points in such
a way as to represent the solution accurately.

It is also possible to automate the allocation of mesh points, so that it is done
“dynamically” during the relaxation process. This powerful technique not only improves
the accuracy of the relaxation method, but also (as we will see in the next section) allows
internal singularities to be handled in quite a neat way. Here we learn how to accomplish
the automatic allocation.

We want to focus attention on the independent variable x, and consider two alternative
reparametrizations of it. The first, we term q; this is just the coordinate corresponding to the
mesh points themselves, so that q = 1 at k = 1, q = 2 at k = 2, and so on. Between any two
mesh points we have ∆q = 1. In the change of independent variable in the ODEs from x to q,

dy
dx

= g (17.5.1)

becomes
dy
dq

= g
dx

dq
(17.5.2)

In terms of q, equation (17.5.2) as an FDE might be written

yk − yk−1 − 1
2

[(
g
dx

dq

)
k

+

(
g
dx

dq

)
k−1

]
= 0 (17.5.3)

or some related version. Note that dx/dq should accompany g. The transformation between
x and q depends only on the Jacobian dx/dq. Its reciprocal dq/dx is proportional to the
density of mesh points.

Now, given the function y(x), or its approximation at the current stage of relaxation,
we are supposed to have some idea of how we want to specify the density of mesh points.
For example, we might want dq/dx to be larger where y is changing rapidly, or near to the
boundaries, or both. In fact, we can probably make up a formula for what we would like
dq/dx to be proportional to. The problem is that we do not know the proportionality constant.
That is, the formula that we might invent would not have the correct integral over the whole
range of x so as to make q vary from 1 to M , according to its definition. To solve this problem
we introduce a second reparametrization Q(q), where Q is a new independent variable. The
relation between Q and q is taken to be linear, so that a mesh spacing formula for dQ/dx
differs only in its unknown proportionality constant. A linear relation implies

d2Q

dq2
= 0 (17.5.4)

or, expressed in the usual manner as coupled first-order equations,

dQ(x)

dq
= ψ

dψ

dq
= 0 (17.5.5)

where ψ is a new intermediate variable. We add these two equations to the set of ODEs
being solved.

Completing the prescription, we add a third ODE that is just our desired mesh-density
function, namely

φ(x) =
dQ

dx
=
dQ

dq

dq

dx
(17.5.6)

