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In fact, since the MEM estimate may have very sharp spectral features, one wants to be able to
evaluate it on a very fine mesh near to those features, but perhaps only more coarsely farther
away from them. Here is a function which, given the coefficients already computed, evaluates
(13.7.4) and returns the estimated power spectrum as a function of f∆ (the frequency times
the sampling interval). Of course, f∆ should lie in the Nyquist range between−1/2 and 1/2.

#include <math.h>

float evlmem(float fdt, float d[], int m, float xms)
Given d[1..m], m, xms as returned by memcof, this function returns the power spectrum
estimate P (f) as a function of fdt = f∆.
{

int i;
float sumr=1.0,sumi=0.0;
double wr=1.0,wi=0.0,wpr,wpi,wtemp,theta; Trig. recurrences in double precision.

theta=6.28318530717959*fdt;
wpr=cos(theta); Set up for recurrence relations.
wpi=sin(theta);
for (i=1;i<=m;i++) { Loop over the terms in the sum.

wr=(wtemp=wr)*wpr-wi*wpi;
wi=wi*wpr+wtemp*wpi;
sumr -= d[i]*wr; These accumulate the denominator of (13.7.4).
sumi -= d[i]*wi;

}
return xms/(sumr*sumr+sumi*sumi); Equation (13.7.4).

}

Be sure to evaluate P (f) on a fine enough grid to find any narrow features that may
be there! Such narrow features, if present, can contain virtually all of the power in the data.
You might also wish to know how the P (f) produced by the routines memcof and evlmem is
normalized with respect to the mean square value of the input data vector. The answer is∫ 1/2

−1/2

P (f∆)d(f∆) = 2

∫ 1/2

0

P (f∆)d(f∆) = mean square value of data (13.7.8)

Sample spectra produced by the routines memcofand evlmem are shown in Figure 13.7.1.

CITED REFERENCES AND FURTHER READING:

Childers, D.G. (ed.) 1978, Modern Spectrum Analysis (New York: IEEE Press), Chapter II.

Kay, S.M., and Marple, S.L. 1981, Proceedings of the IEEE, vol. 69, pp. 1380–1419.

13.8 Spectral Analysis of Unevenly Sampled
Data

Thus far, we have been dealing exclusively with evenly sampled data,

hn = h(n∆) n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . (13.8.1)

where ∆ is the sampling interval, whose reciprocal is the sampling rate. Recall also (§12.1)
the significance of the Nyquist critical frequency

fc ≡
1

2∆
(13.8.2)
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Figure 13.7.1. Sample output of maximum entropy spectral estimation. The input signal consists of
512 samples of the sum of two sinusoids of very nearly the same frequency, plus white noise with about
equal power. Shown is an expanded portion of the full Nyquist frequency interval (which would extend
from zero to 0.5). The dashed spectral estimate uses 20 poles; the dotted, 40; the solid, 150. With the
larger number of poles, the method can resolve the distinct sinusoids; but the flat noise background is
beginning to show spurious peaks. (Note logarithmic scale.)

as codified by the sampling theorem: A sampled data set like equation (13.8.1) contains
complete information about all spectral components in a signal h(t) up to the Nyquist
frequency, and scrambled or aliased information about any signal components at frequencies
larger than the Nyquist frequency. The sampling theorem thus defines both the attractiveness,
and the limitation, of any analysis of an evenly spaced data set.

There are situations, however, where evenly spaced data cannot be obtained. A common
case is where instrumental drop-outs occur, so that data is obtained only on a (not consecutive
integer) subset of equation (13.8.1), the so-called missing data problem. Another case,
common in observational sciences like astronomy, is that the observer cannot completely
control the time of the observations, but must simply accept a certain dictated set of ti’s.

There are some obvious ways to get from unevenly spaced ti’s to evenly spaced ones, as
in equation (13.8.1). Interpolation is one way: lay down a grid of evenly spaced times on your
data and interpolate values onto that grid; then use FFT methods. In the missing data problem,
you only have to interpolate on missing data points. If a lot of consecutive points are missing,
you might as well just set them to zero, or perhaps “clamp” the value at the last measured point.
However, the experience of practitioners of such interpolation techniques is not reassuring.
Generally speaking, such techniques perform poorly. Long gaps in the data, for example,
often produce a spurious bulge of power at low frequencies (wavelengths comparable to gaps).

A completely different method of spectral analysis for unevenly sampled data, one that
mitigates these difficulties and has some other very desirable properties, was developed by
Lomb [1], based in part on earlier work by Barning [2] and Vanı́ček [3], and additionally
elaborated by Scargle [4]. The Lomb method (as we will call it) evaluates data, and sines
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and cosines, only at times ti that are actually measured. Suppose that there are N data
points hi ≡ h(ti), i = 1, . . . , N . Then first find the mean and variance of the data by
the usual formulas,

h ≡ 1

N

N∑
1

hi σ2 ≡ 1

N − 1

N∑
1

(hi − h)2 (13.8.3)

Now, the Lomb normalized periodogram (spectral power as a function of angular
frequency ω ≡ 2πf > 0) is defined by

PN(ω) ≡ 1

2σ2


[∑

j(hj − h) cosω(tj − τ)
]2∑

j cos2 ω(tj − τ)
+

[∑
j(hj − h) sinω(tj − τ)

]2
∑
j sin2 ω(tj − τ)


(13.8.4)

Here τ is defined by the relation

tan(2ωτ) =

∑
j sin 2ωtj∑
j cos 2ωtj

(13.8.5)

The constant τ is a kind of offset that makes PN(ω) completely independent of shifting
all the ti’s by any constant. Lomb shows that this particular choice of offset has another,
deeper, effect: It makes equation (13.8.4) identical to the equation that one would obtain if one
estimated the harmonic content of a data set, at a given frequency ω, by linear least-squares
fitting to the model

h(t) = A cosωt +B sinωt (13.8.6)

This fact gives some insight into why the method can give results superior to FFT methods: It
weights the data on a “per point” basis instead of on a “per time interval” basis, when uneven
sampling can render the latter seriously in error.

A very common occurrence is that the measured data points hi are the sum of a periodic
signal and independent (white) Gaussian noise. If we are trying to determine the presence
or absence of such a periodic signal, we want to be able to give a quantitative answer to
the question, “How significant is a peak in the spectrum PN (ω)?” In this question, the null
hypothesis is that the data values are independent Gaussian random values. A very nice
property of the Lomb normalized periodogram is that the viability of the null hypothesis can
be tested fairly rigorously, as we now discuss.

The word “normalized” refers to the factor σ2 in the denominator of equation (13.8.4).
Scargle [4] shows that with this normalization, at any particular ω and in the case of the null
hypothesis,PN (ω) has an exponential probability distribution with unit mean. In other words,
the probability that PN(ω) will be between some positive z and z + dz is exp(−z)dz. It
readily follows that, if we scan some M independent frequencies, the probability that none
give values larger than z is (1 − e−z)M . So

P (> z) ≡ 1− (1− e−z)M (13.8.7)

is the false-alarm probability of the null hypothesis, that is, the significance level of any peak
in PN (ω) that we do see. A small value for the false-alarm probability indicates a highly
significant periodic signal.

To evaluate this significance, we need to know M . After all, the more frequencies we
look at, the less significant is some one modest bump in the spectrum. (Look long enough,
find anything!) A typical procedure will be to plot PN(ω) as a function of many closely
spaced frequencies in some large frequency range. How many of these are independent?

Before answering, let us first see how accurately we need to know M . The interesting
region is where the significance is a small (significant) number,� 1. There, equation (13.8.7)
can be series expanded to give

P (> z) ≈Me−z (13.8.8)
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Figure 13.8.1. Example of the Lomb algorithm in action. The 100 data points (upper figure) are at
random times between 0 and 100. Their sinusoidal component is readily uncovered (lower figure) by
the algorithm, at a significance level better than 0.001. If the 100 data points had been evenly spaced at
unit interval, the Nyquist critical frequency would have been 0.5. Note that, for these unevenly spaced
points, there is no visible aliasing into the Nyquist range.

We see that the significance scales linearly with M . Practical significance levels are numbers
like 0.05, 0.01, 0.001, etc. An error of even ±50% in the estimated significance is often
tolerable, since quoted significance levels are typically spaced apart by factors of 5 or 10. So
our estimate of M need not be very accurate.

Horne and Baliunas [5] give results from extensive Monte Carlo experiments for
determining M in various cases. In general M depends on the number of frequencies
sampled, the number of data points N , and their detailed spacing. It turns out that M is
very nearly equal to N when the data points are approximately equally spaced, and when the
sampled frequencies “fill” (oversample) the frequency range from 0 to the Nyquist frequency
fc (equation 13.8.2). Further, the value of M is not importantly different for random
spacing of the data points than for equal spacing. When a larger frequency range than the
Nyquist range is sampled, M increases proportionally. About the only case where M differs
significantly from the case of evenly spaced points is when the points are closely clumped,
say into groups of 3; then (as one would expect) the number of independent frequencies is
reduced by a factor of about 3.

The program period, below, calculates an effective value for M based on the above
rough-and-ready rules and assumes that there is no important clumping. This will be adequate
for most purposes. In any particular case, if it really matters, it is not too difficult to compute
a better value ofM by simple Monte Carlo: Holding fixed the number of data points and their
locations ti, generate synthetic data sets of Gaussian (normal) deviates, find the largest values
of PN(ω) for each such data set (using the accompanying program), and fit the resulting
distribution for M in equation (13.8.7).
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Figure 13.8.1 shows the results of applying the method as discussed so far. In the
upper figure, the data points are plotted against time. Their number is N = 100, and their
distribution in t is Poisson random. There is certainly no sinusoidal signal evident to the eye.
The lower figure plots PN(ω) against frequency f = ω/2π. The Nyquist critical frequency
that would obtain if the points were evenly spaced is at f = fc = 0.5. Since we have searched
up to about twice that frequency, and oversampled the f ’s to the point where successivevalues
of PN(ω) vary smoothly, we take M = 2N . The horizontal dashed and dotted lines are
(respectively from bottom to top) significance levels 0.5, 0.1, 0.05, 0.01, 0.005, and 0.001.
One sees a highly significant peak at a frequency of 0.81. That is in fact the frequency of the
sine wave that is present in the data. (You will have to take our word for this!)

Note that two other peaks approach, but do not exceed the 50% significance level; that
is about what one might expect by chance. It is also worth commenting on the fact that the
significant peak was found (correctly) above the Nyquist frequency and without any significant
aliasing down into the Nyquist interval! That would not be possible for evenly spaced data. It
is possible here because the randomly spaced data has some points spaced much closer than
the “average” sampling rate, and these remove ambiguity from any aliasing.

Implementation of the normalized periodogram in code is straightforward,with, however,
a few points to be kept in mind. We are dealing with a slow algorithm. Typically, for N data
points, we may wish to examine on the order of 2N or 4N frequencies. Each combination
of frequency and data point has, in equations (13.8.4) and (13.8.5), not just a few adds or
multiplies, but four calls to trigonometric functions; the operations count can easily reach
several hundred times N2. It is highly desirable — in fact results in a factor 4 speedup —
to replace these trigonometric calls by recurrences. That is possible only if the sequence of
frequencies examined is a linear sequence. Since such a sequence is probably what most users
would want anyway, we have built this into the implementation.

At the end of this section we describe a way to evaluate equations (13.8.4) and (13.8.5)
— approximately, but to any desired degree of approximation — by a fast method [6] whose
operation count goes only asN logN . This faster method should be used for long data sets.

The lowest independent frequency f to be examined is the inverse of the span of the
input data, maxi(ti)−mini(ti) ≡ T . This is the frequency such that the data can include one
complete cycle. In subtracting off the data’s mean, equation (13.8.4) already assumed that you
are not interested in the data’s zero-frequency piece — which is just that mean value. In an
FFT method, higher independent frequencies would be integer multiples of 1/T . Because we
are interested in the statistical significance of any peak that may occur, however, we had better
(over-) sample more finely than at interval 1/T , so that sample points lie close to the top of
any peak. Thus, the accompanying program includes an oversampling parameter, called ofac;
a value ofac >∼ 4 might be typical in use. We also want to specify how high in frequency
to go, say fhi. One guide to choosing fhi is to compare it with the Nyquist frequency fc
which would obtain if the N data points were evenly spaced over the same span T , that is
fc = N/(2T ). The accompanying program includes an input parameter hifac, defined as
fhi/fc. The number of different frequenciesNP returned by the program is then given by

NP =
ofac× hifac

2
N (13.8.9)

(You have to remember to dimension the output arrays to at least this size.)
The code does the trigonometric recurrences in double precision and embodies a few

tricks with trigonometric identities, to decrease roundoff errors. If you are an aficionado of
such things you can puzzle it out. A final detail is that equation (13.8.7) will fail because of
roundoff error if z is too large; but equation (13.8.8) is fine in this regime.

#include <math.h>
#include "nrutil.h"
#define TWOPID 6.2831853071795865

void period(float x[], float y[], int n, float ofac, float hifac, float px[],
float py[], int np, int *nout, int *jmax, float *prob)

Given n data points with abscissas x[1..n] (which need not be equally spaced) and ordinates
y[1..n], and given a desired oversampling factor ofac (a typical value being 4 or larger),
this routine fills array px[1..np] with an increasing sequence of frequencies (not angular
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frequencies) up to hifac times the “average” Nyquist frequency, and fills array py[1..np]
with the values of the Lomb normalized periodogram at those frequencies. The arrays x and y
are not altered. np, the dimension of px and py, must be large enough to contain the output,
or an error results. The routine also returns jmax such that py[jmax] is the maximum element
in py, and prob, an estimate of the significance of that maximum against the hypothesis of
random noise. A small value of prob indicates that a significant periodic signal is present.
{

void avevar(float data[], unsigned long n, float *ave, float *var);
int i,j;
float ave,c,cc,cwtau,effm,expy,pnow,pymax,s,ss,sumc,sumcy,sums,sumsh,

sumsy,swtau,var,wtau,xave,xdif,xmax,xmin,yy;
double arg,wtemp,*wi,*wpi,*wpr,*wr;

wi=dvector(1,n);
wpi=dvector(1,n);
wpr=dvector(1,n);
wr=dvector(1,n);
*nout=0.5*ofac*hifac*n;
if (*nout > np) nrerror("output arrays too short in period");
avevar(y,n,&ave,&var); Get mean and variance of the input data.
xmax=xmin=x[1]; Go through data to get the range of abscis-

sas.for (j=1;j<=n;j++) {
if (x[j] > xmax) xmax=x[j];
if (x[j] < xmin) xmin=x[j];

}
xdif=xmax-xmin;
xave=0.5*(xmax+xmin);
pymax=0.0;
pnow=1.0/(xdif*ofac); Starting frequency.
for (j=1;j<=n;j++) { Initialize values for the trigonometric recur-

rences at each data point. The recur-
rences are done in double precision.

arg=TWOPID*((x[j]-xave)*pnow);
wpr[j] = -2.0*SQR(sin(0.5*arg));
wpi[j]=sin(arg);
wr[j]=cos(arg);
wi[j]=wpi[j];

}
for (i=1;i<=(*nout);i++) { Main loop over the frequencies to be evalu-

ated.px[i]=pnow;
sumsh=sumc=0.0; First, loop over the data to get τ and related

quantities.for (j=1;j<=n;j++) {
c=wr[j];
s=wi[j];
sumsh += s*c;
sumc += (c-s)*(c+s);

}
wtau=0.5*atan2(2.0*sumsh,sumc);
swtau=sin(wtau);
cwtau=cos(wtau);
sums=sumc=sumsy=sumcy=0.0; Then, loop over the data again to get the

periodogram value.for (j=1;j<=n;j++) {
s=wi[j];
c=wr[j];
ss=s*cwtau-c*swtau;
cc=c*cwtau+s*swtau;
sums += ss*ss;
sumc += cc*cc;
yy=y[j]-ave;
sumsy += yy*ss;
sumcy += yy*cc;
wr[j]=((wtemp=wr[j])*wpr[j]-wi[j]*wpi[j])+wr[j]; Update the trigono-

metric recurrences.wi[j]=(wi[j]*wpr[j]+wtemp*wpi[j])+wi[j];
}
py[i]=0.5*(sumcy*sumcy/sumc+sumsy*sumsy/sums)/var;
if (py[i] >= pymax) pymax=py[(*jmax=i)];
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pnow += 1.0/(ofac*xdif); The next frequency.
}
expy=exp(-pymax); Evaluate statistical significance of the max-

imum.effm=2.0*(*nout)/ofac;
*prob=effm*expy;
if (*prob > 0.01) *prob=1.0-pow(1.0-expy,effm);
free_dvector(wr,1,n);
free_dvector(wpr,1,n);
free_dvector(wpi,1,n);
free_dvector(wi,1,n);

}

Fast Computation of the Lomb Periodogram

We here show how equations (13.8.4) and (13.8.5) can be calculated — approximately,
but to any desired precision — with an operation count only of order NP logNP . The
method uses the FFT, but it is in no sense an FFT periodogram of the data. It is an actual
evaluation of equations (13.8.4) and (13.8.5), the Lomb normalized periodogram, with exactly
that method’s strengths and weaknesses. This fast algorithm, due to Press and Rybicki [6],
makes feasible the application of the Lomb method to data sets at least as large as 106 points;
it is already faster than straightforward evaluation of equations (13.8.4) and (13.8.5) for data
sets as small as 60 or 100 points.

Notice that the trigonometric sums that occur in equations (13.8.5) and (13.8.4) can be
reduced to four simpler sums. If we define

Sh ≡
N∑
j=1

(hj − h̄) sin(ωtj) Ch ≡
N∑
j=1

(hj − h̄) cos(ωtj) (13.8.10)

and

S2 ≡
N∑
j=1

sin(2ωtj) C2 ≡
N∑
j=1

cos(2ωtj) (13.8.11)

then
N∑
j=1

(hj − h̄) cosω(tj − τ) = Ch cosωτ + Sh sinωτ

N∑
j=1

(hj − h̄) sinω(tj − τ) = Sh cosωτ −Ch sinωτ

N∑
j=1

cos2 ω(tj − τ) =
N

2
+

1

2
C2 cos(2ωτ) +

1

2
S2 sin(2ωτ)

N∑
j=1

sin2 ω(tj − τ) =
N

2
− 1

2
C2 cos(2ωτ) − 1

2
S2 sin(2ωτ)

(13.8.12)

Now notice that if the tjs were evenly spaced, then the four quantitiesSh ,Ch ,S2, andC2 could
be evaluated by two complex FFTs, and the results could then be substituted back through
equation (13.8.12) to evaluate equations (13.8.5) and (13.8.4). The problem is therefore only
to evaluate equations (13.8.10) and (13.8.11) for unevenly spaced data.

Interpolation, or rather reverse interpolation — we will here call it extirpolation —
provides the key. Interpolation, as classically understood, uses several function values on a
regular mesh to construct an accurate approximation at an arbitrary point. Extirpolation, just
the opposite, replaces a function value at an arbitrary point by several function values on a
regular mesh, doing this in such a way that sums over the mesh are an accurate approximation
to sums over the original arbitrary point.

It is not hard to see that the weight functions for extirpolation are identical to those for
interpolation. Suppose that the function h(t) to be extirpolated is known only at the discrete
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(unevenly spaced) points h(ti) ≡ hi, and that the function g(t) (which will be, e.g., cosωt)
can be evaluated anywhere. Let t̂k be a sequence of evenly spaced points on a regular mesh.
Then Lagrange interpolation (§3.1) gives an approximation of the form

g(t) ≈
∑
k

wk(t)g(t̂k) (13.8.13)

where wk(t) are interpolation weights. Now let us evaluate a sum of interest by the following
scheme:

N∑
j=1

hjg(tj) ≈
N∑
j=1

hj

[∑
k

wk(tj)g(t̂k)

]
=
∑
k

[
N∑
j=1

hjwk(tj)

]
g(t̂k) ≡

∑
k

ĥk g(t̂k)

(13.8.14)

Here ĥk ≡
∑
j hjwk(tj). Notice that equation (13.8.14) replaces the original sum by one

on the regular mesh. Notice also that the accuracy of equation (13.8.13) depends only on the
fineness of the mesh with respect to the function g and has nothing to do with the spacing of the
points tj or the function h; therefore the accuracy of equation (13.8.14) also has this property.

The general outline of the fast evaluation method is therefore this: (i) Choose a mesh
size large enough to accommodate some desired oversampling factor, and large enough to
have several extirpolation points per half-wavelength of the highest frequency of interest. (ii)
Extirpolate the values hi onto the mesh and take the FFT; this gives Sh and Ch in equation
(13.8.10). (iii) Extirpolate the constant values 1 onto another mesh, and take its FFT; this,
with some manipulation, gives S2 and C2 in equation (13.8.11). (iv) Evaluate equations
(13.8.12), (13.8.5), and (13.8.4), in that order.

There are several other tricks involved in implementing this algorithm efficiently. You
can figure most out from the code, but we will mention the following points: (a) A nice way
to get transform values at frequencies 2ω instead of ω is to stretch the time-domain data by a
factor 2, and then wrap it to double-cover the original length. (This trick goes back to Tukey.)
In the program, this appears as a modulo function. (b) Trigonometric identities are used to
get from the left-hand side of equation (13.8.5) to the various needed trigonometric functions
of ωτ . C identifiers like (e.g.) cwt and hs2wt represent quantities like (e.g.) cosωτ and
1
2 sin(2ωτ). (c) The function spread does extirpolation onto the M most nearly centered
mesh points around an arbitrary point; its turgid code evaluates coefficients of the Lagrange
interpolating polynomials, in an efficient manner.

#include <math.h>
#include "nrutil.h"
#define MOD(a,b) while(a >= b) a -= b; Positive numbers only.
#define MACC 4 Number of interpolation points per 1/4

cycle of highest frequency.
void fasper(float x[], float y[], unsigned long n, float ofac, float hifac,

float wk1[], float wk2[], unsigned long nwk, unsigned long *nout,
unsigned long *jmax, float *prob)

Given n data points with abscissas x[1..n] (which need not be equally spaced) and ordinates
y[1..n], and given a desired oversampling factor ofac (a typical value being 4 or larger), this
routine fills array wk1[1..nwk] with a sequence of nout increasing frequencies (not angular
frequencies) up to hifac times the “average” Nyquist frequency, and fills array wk2[1..nwk]
with the values of the Lomb normalized periodogram at those frequencies. The arrays x and
y are not altered. nwk, the dimension of wk1 and wk2, must be large enough for intermediate
work space, or an error results. The routine also returns jmax such that wk2[jmax] is the
maximum element in wk2, and prob, an estimate of the significance of that maximum against
the hypothesis of random noise. A small value of prob indicates that a significant periodic
signal is present.
{

void avevar(float data[], unsigned long n, float *ave, float *var);
void realft(float data[], unsigned long n, int isign);
void spread(float y, float yy[], unsigned long n, float x, int m);
unsigned long j,k,ndim,nfreq,nfreqt;
float ave,ck,ckk,cterm,cwt,den,df,effm,expy,fac,fndim,hc2wt;
float hs2wt,hypo,pmax,sterm,swt,var,xdif,xmax,xmin;
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*nout=0.5*ofac*hifac*n;
nfreqt=ofac*hifac*n*MACC; Size the FFT as next power of 2 above

nfreqt.nfreq=64;
while (nfreq < nfreqt) nfreq <<= 1;
ndim=nfreq << 1;
if (ndim > nwk) nrerror("workspaces too small in fasper");
avevar(y,n,&ave,&var); Compute the mean, variance, and range

of the data.xmin=x[1];
xmax=xmin;
for (j=2;j<=n;j++) {

if (x[j] < xmin) xmin=x[j];
if (x[j] > xmax) xmax=x[j];

}
xdif=xmax-xmin;
for (j=1;j<=ndim;j++) wk1[j]=wk2[j]=0.0; Zero the workspaces.
fac=ndim/(xdif*ofac);
fndim=ndim;
for (j=1;j<=n;j++) { Extirpolate the data into the workspaces.

ck=(x[j]-xmin)*fac;
MOD(ck,fndim)
ckk=2.0*(ck++);
MOD(ckk,fndim)
++ckk;
spread(y[j]-ave,wk1,ndim,ck,MACC);
spread(1.0,wk2,ndim,ckk,MACC);

}
realft(wk1,ndim,1); Take the Fast Fourier Transforms.
realft(wk2,ndim,1);
df=1.0/(xdif*ofac);
pmax = -1.0;
for (k=3,j=1;j<=(*nout);j++,k+=2) { Compute the Lomb value for each fre-

quency.hypo=sqrt(wk2[k]*wk2[k]+wk2[k+1]*wk2[k+1]);
hc2wt=0.5*wk2[k]/hypo;
hs2wt=0.5*wk2[k+1]/hypo;
cwt=sqrt(0.5+hc2wt);
swt=SIGN(sqrt(0.5-hc2wt),hs2wt);
den=0.5*n+hc2wt*wk2[k]+hs2wt*wk2[k+1];
cterm=SQR(cwt*wk1[k]+swt*wk1[k+1])/den;
sterm=SQR(cwt*wk1[k+1]-swt*wk1[k])/(n-den);
wk1[j]=j*df;
wk2[j]=(cterm+sterm)/(2.0*var);
if (wk2[j] > pmax) pmax=wk2[(*jmax=j)];

}
expy=exp(-pmax); Estimate significance of largest peak value.
effm=2.0*(*nout)/ofac;
*prob=effm*expy;
if (*prob > 0.01) *prob=1.0-pow(1.0-expy,effm);

}

#include "nrutil.h"

void spread(float y, float yy[], unsigned long n, float x, int m)
Given an array yy[1..n], extirpolate (spread) a value y into m actual array elements that best
approximate the “fictional” (i.e., possibly noninteger) array element number x. The weights
used are coefficients of the Lagrange interpolating polynomial.
{

int ihi,ilo,ix,j,nden;
static long nfac[11]={0,1,1,2,6,24,120,720,5040,40320,362880};
float fac;

if (m > 10) nrerror("factorial table too small in spread");
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ix=(int)x;
if (x == (float)ix) yy[ix] += y;
else {

ilo=LMIN(LMAX((long)(x-0.5*m+1.0),1),n-m+1);
ihi=ilo+m-1;
nden=nfac[m];
fac=x-ilo;
for (j=ilo+1;j<=ihi;j++) fac *= (x-j);
yy[ihi] += y*fac/(nden*(x-ihi));
for (j=ihi-1;j>=ilo;j--) {

nden=(nden/(j+1-ilo))*(j-ihi);
yy[j] += y*fac/(nden*(x-j));

}
}

}
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13.9 Computing Fourier Integrals Using the FFT

Not uncommonly, one wants to calculate accurate numerical values for integrals of
the form

I =

∫ b

a

eiωth(t)dt , (13.9.1)

or the equivalent real and imaginary parts

Ic =

∫ b

a

cos(ωt)h(t)dt Is =

∫ b

a

sin(ωt)h(t)dt , (13.9.2)

and one wants to evaluate this integral for many different values ofω. In cases of interest, h(t)
is often a smooth function, but it is not necessarily periodic in [a, b], nor does it necessarily
go to zero at a or b. While it seems intuitively obvious that the force majeure of the FFT
ought to be applicable to this problem, doing so turns out to be a surprisingly subtle matter,
as we will now see.

Let us first approach the problem naively, to see where the difficulty lies. Divide the
interval [a, b] into M subintervals, where M is a large integer, and define

∆ ≡ b− a
M

, tj ≡ a+ j∆ , hj ≡ h(tj) , j = 0, . . . ,M (13.9.3)

Notice that h0 = h(a) and hM = h(b), and that there are M + 1 values hj . We can
approximate the integral I by a sum,

I ≈ ∆

M−1∑
j=0

hj exp(iωtj) (13.9.4)


