
CHAPTER FIVE

ENHANCED CHAR
DRIVER OPERATIONS

In Chapter 3, we built a complete device driver that the user can write to and read
fr om. But a real device usually offers more functionality than synchronous read
and write. Now that we’re equipped with debugging tools should something go
awry, we can safely go ahead and implement new operations.

What is normally needed, in addition to reading and writing the device, is the abil-
ity to perfor m various types of hardware contr ol via the device driver. Contr ol
operations are usually supported via the ioctl method. The alternative is to look at
the data flow being written to the device and use special sequences as control
commands. This latter technique should be avoided because it requir es reserving
some characters for controlling purposes; thus, the data flow can’t contain those
characters. Moreover, this technique turns out to be more complex to handle than
ioctl. Nonetheless, sometimes it’s a useful approach to device control and is used
by tty’s and other devices. We’ll describe it later in this chapter in ‘‘Device Control
Without ioctl.’’

As we suggested in the previous chapter, the ioctl system call offers a device spe-
cific entry point for the driver to handle ‘‘commands.’’ ioctl is device specific in
that, unlike read and other methods, it allows applications to access features
unique to the hardware being driven, such as configuring the device and entering
or exiting operating modes. These control operations are usually not available
thr ough the read/write file abstraction. For example, everything you write to a
serial port is used as communication data, and you cannot change the baud rate
by writing to the device. That is what ioctl is for: controlling the I/O channel.

Another important feature of real devices (unlike scull ) is that data being read or
written is exchanged with other hardware, and some synchronization is needed.
The concepts of blocking I/O and asynchronous notification fill the gap and are
intr oduced in this chapter by means of a modified scull device. The driver uses
interaction between differ ent pr ocesses to create asynchronous events. As with the
original scull, you don’t need special hardware to test the driver’s workings. We
will definitely deal with real hardware, but not until Chapter 8.

128

22 June 2001 16:36



ioctl
The ioctl function call in user space corresponds to the following prototype:

int ioctl(int fd, int cmd, ...);

The prototype stands out in the list of Unix system calls because of the dots,
which usually repr esent not a variable number of arguments. In a real system,
however, a system call can’t actually have a variable number of arguments. System
calls must have a well-defined number of arguments because user programs can
access them only through hardware ‘‘gates,’’ as outlined in ‘‘User Space and Kernel
Space’’ in Chapter 2. Therefor e, the dots in the prototype repr esent not a variable
number of arguments but a single optional argument, traditionally identified as
char *argp. The dots are simply there to prevent type checking during compila-
tion. The actual nature of the third argument depends on the specific control com-
mand being issued (the second argument). Some commands take no arguments,
some take an integer value, and some take a pointer to other data. Using a pointer
is the way to pass arbitrary data to the ioctl call; the device will then be able to
exchange any amount of data with user space.

The ioctl driver method, on the other hand, receives its arguments according to
this declaration:

int (*ioctl) (struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg);

The inode and filp pointers are the values corresponding to the file descriptor
fd passed on by the application and are the same parameters passed to the open
method. The cmd argument is passed from the user unchanged, and the optional
arg argument is passed in the form of an unsigned long, regardless of
whether it was given by the user as an integer or a pointer. If the invoking pro-
gram doesn’t pass a third argument, the arg value received by the driver opera-
tion has no meaningful value.

Because type checking is disabled on the extra argument, the compiler can’t warn
you if an invalid argument is passed to ioctl, and the programmer won’t notice the
err or until runtime. This lack of checking can be seen as a minor problem with the
ioctl definition, but it is a necessary price for the general functionality that ioctl
pr ovides.

As you might imagine, most ioctl implementations consist of a switch statement
that selects the correct behavior according to the cmd argument. Differ ent com-
mands have differ ent numeric values, which are usually given symbolic names to
simplify coding. The symbolic name is assigned by a prepr ocessor definition. Cus-
tom drivers usually declare such symbols in their header files; scull.h declar es
them for scull. User programs must, of course, include that header file as well to
have access to those symbols.

ioctl
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Chapter 5: Enhanced Char Driver Operations

Choosing the ioctl Commands
Befor e writing the code for ioctl, you need to choose the numbers that correspond
to commands. Unfortunately, the simple choice of using small numbers starting
fr om 1 and going up doesn’t work well.

The command numbers should be unique across the system in order to prevent
err ors caused by issuing the right command to the wrong device. Such a mismatch
is not unlikely to happen, and a program might find itself trying to change the
baud rate of a non-serial-port input stream, such as a FIFO or an audio device. If
each ioctl number is unique, then the application will get an EINVAL err or rather
than succeeding in doing something unintended.

To help programmers create unique ioctl command codes, these codes have been
split up into several bitfields. The first versions of Linux used 16-bit numbers: the
top eight were the ‘‘magic’’ number associated with the device, and the bottom
eight were a sequential number, unique within the device. This happened because
Linus was ‘‘clueless’’ (his own word); a better division of bitfields was conceived
only later. Unfortunately, quite a few drivers still use the old convention. They
have to: changing the command codes would break no end of binary programs. In
our sources, however, we will use the new command code convention exclu-
sively.

To choose ioctl numbers for your driver according to the new convention, you
should first check include/asm/ioctl.h and Documentation/ioctl-number.txt. The
header defines the bitfields you will be using: type (magic number), ordinal num-
ber, dir ection of transfer, and size of argument. The ioctl-number.txt file lists the
magic numbers used throughout the kernel, so you’ll be able to choose your own
magic number and avoid overlaps. The text file also lists the reasons why the con-
vention should be used.

The old, and now deprecated, way of choosing an ioctl number was easy: authors
chose a magic eight-bit number, such as ‘‘k’’ (hex 0x6b), and added an ordinal
number, like this:

#define SCULL_IOCTL1 0x6b01
#define SCULL_IOCTL2 0x6b02
/* .... */

If both the application and the driver agreed on the numbers, you only needed to
implement the switch statement in your driver. However, this way of defining
ioctl numbers, which had its foundations in Unix tradition, shouldn’t be used any
mor e. We’ve only shown the old way to give you a taste of what ioctl numbers
look like.

The new way to define numbers uses four bitfields, which have the following
meanings. Any new symbols we introduce in the following list are defined in
<linux/ioctl.h>.
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type
The magic number. Just choose one number (after consulting ioctl-number.txt)
and use it throughout the driver. This field is eight bits wide
(_IOC_TYPEBITS).

number
The ordinal (sequential) number. It’s eight bits (_IOC_NRBITS) wide.

direction
The direction of data transfer, if the particular command involves a data trans-
fer. The possible values are _IOC_NONE (no data transfer), _IOC_READ,
_IOC_WRITE, and _IOC_READ | _IOC_WRITE (data is transferred both
ways). Data transfer is seen from the application’s point of view; _IOC_READ
means reading fr om the device, so the driver must write to user space. Note
that the field is a bit mask, so _IOC_READ and _IOC_WRITE can be extracted
using a logical AND operation.

size
The size of user data involved. The width of this field is architectur e depen-
dent and currently ranges from 8 to 14 bits. You can find its value for your
specific architectur e in the macro _IOC_SIZEBITS. If you intend your driver
to be portable, however, you can only count on a size up to 255. It’s not
mandatory that you use the size field. If you need larger data structures, you
can just ignore it. We’ll see soon how this field is used.

The header file <asm/ioctl.h>, which is included by <linux/ioctl.h>,
defines macros that help set up the command numbers as follows:
_IO(type,nr), _IOR(type,nr,dataitem), _IOW(type,nr,dataitem),
and _IOWR(type,nr,dataitem). Each macro corr esponds to one of the possi-
ble values for the direction of the transfer. The type and number fields are
passed as arguments, and the size field is derived by applying sizeof to the
dataitem argument. The header also defines macros to decode the numbers:
_IOC_DIR(nr), _IOC_TYPE(nr), _IOC_NR(nr), and _IOC_SIZE(nr). We
won’t go into any more detail about these macros because the header file is clear,
and sample code is shown later in this section.

Her e is how some ioctl commands are defined in scull. In particular, these com-
mands set and get the driver’s configurable parameters.

/* Use ’k’ as magic number */
#define SCULL_IOC_MAGIC ’k’

#define SCULL_IOCRESET _IO(SCULL_IOC_MAGIC, 0)

/*
* S means "Set" through a ptr
* T means "Tell" directly with the argument value
* G means "Get": reply by setting through a pointer
* Q means "Query": response is on the return value

ioctl
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* X means "eXchange": G and S atomically
* H means "sHift": T and Q atomically
*/

#define SCULL_IOCSQUANTUM _IOW(SCULL_IOC_MAGIC, 1, scull_quantum)
#define SCULL_IOCSQSET _IOW(SCULL_IOC_MAGIC, 2, scull_qset)
#define SCULL_IOCTQUANTUM _IO(SCULL_IOC_MAGIC, 3)
#define SCULL_IOCTQSET _IO(SCULL_IOC_MAGIC, 4)
#define SCULL_IOCGQUANTUM _IOR(SCULL_IOC_MAGIC, 5, scull_quantum)
#define SCULL_IOCGQSET _IOR(SCULL_IOC_MAGIC, 6, scull_qset)
#define SCULL_IOCQQUANTUM _IO(SCULL_IOC_MAGIC, 7)
#define SCULL_IOCQQSET _IO(SCULL_IOC_MAGIC, 8)
#define SCULL_IOCXQUANTUM _IOWR(SCULL_IOC_MAGIC, 9, scull_quantum)
#define SCULL_IOCXQSET _IOWR(SCULL_IOC_MAGIC,10, scull_qset)
#define SCULL_IOCHQUANTUM _IO(SCULL_IOC_MAGIC, 11)
#define SCULL_IOCHQSET _IO(SCULL_IOC_MAGIC, 12)
#define SCULL_IOCHARDRESET _IO(SCULL_IOC_MAGIC, 15) /* debugging tool */

#define SCULL_IOC_MAXNR 15

The last command, HARDRESET, is used to reset the module’s usage count to 0 so
that the module can be unloaded should something go wrong with the counter.
The actual source file also defines all the commands between IOCHQSET and
HARDRESET, although they’re not shown here.

We chose to implement both ways of passing integer arguments — by pointer and
by explicit value, although by an established convention ioctl should exchange
values by pointer. Similarly, both ways are used to retur n an integer number: by
pointer or by setting the retur n value. This works as long as the retur n value is a
positive integer; on retur n fr om any system call, a positive value is preserved (as
we saw for read and write), while a negative value is considered an error and is
used to set errno in user space.

The ‘‘exchange’’ and ‘‘shift’’ operations are not particularly useful for scull. We
implemented ‘‘exchange’’ to show how the driver can combine separate operations
into a single atomic one, and ‘‘shift’’ to pair ‘‘tell’’ and ‘‘query.’’ There are times
when atomic* test-and-set operations like these are needed, in particular, when
applications need to set or release locks.

The explicit ordinal number of the command has no specific meaning. It is used
only to tell the commands apart. Actually, you could even use the same ordinal
number for a read command and a write command, since the actual ioctl number
is differ ent in the ‘‘direction’’ bits, but there is no reason why you would want to
do so. We chose not to use the ordinal number of the command anywhere but in
the declaration, so we didn’t assign a symbolic value to it. That’s why explicit

* A fragment of program code is said to be atomic when it will always be executed as
though it were a single instruction, without the possibility of the processor being inter-
rupted and something happening in between (such as somebody else’s code running).
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numbers appear in the definition given previously. The example shows one way
to use the command numbers, but you are free to do it dif ferently.

The value of the ioctl cmd argument is not currently used by the kernel, and it’s
quite unlikely it will be in the future. Therefor e, you could, if you were feeling
lazy, avoid the complex declarations shown earlier and explicitly declare a set of
scalar numbers. On the other hand, if you did, you wouldn’t benefit from using
the bitfields. The header <linux/kd.h> is an example of this old-fashioned
appr oach, using 16-bit scalar values to define the ioctl commands. That source file
relied on scalar numbers because it used the technology then available, not out of
laziness. Changing it now would be a gratuitous incompatibility.

The Retur n Value
The implementation of ioctl is usually a switch statement based on the command
number. But what should the default selection be when the command number
doesn’t match a valid operation? The question is controversial. Several kernel func-
tions retur n -EINVAL (‘‘Invalid argument’’), which makes sense because the com-
mand argument is indeed not a valid one. The POSIX standard, however, states
that if an inappropriate ioctl command has been issued, then -ENOTTY should be
retur ned. The string associated with that value used to be ‘‘Not a typewriter’’ under
all libraries up to and including libc5. Only libc6 changed the message to ‘‘Inap-
pr opriate ioctl for device,’’ which looks more to the point. Because most recent
Linux system are libc6 based, we’ll stick to the standard and retur n -ENOTTY. It’s
still pretty common, though, to retur n -EINVAL in response to an invalid ioctl
command.

The Predefined Commands
Though the ioctl system call is most often used to act on devices, a few commands
ar e recognized by the kernel. Note that these commands, when applied to your
device, are decoded befor e your own file operations are called. Thus, if you
choose the same number for one of your ioctl commands, you won’t ever see any
request for that command, and the application will get something unexpected
because of the conflict between the ioctl numbers.

The predefined commands are divided into three groups:

• Those that can be issued on any file (regular, device, FIFO, or socket)

• Those that are issued only on regular files

• Those specific to the filesystem type

Commands in the last group are executed by the implementation of the hosting
filesystem (see the chattr command). Device driver writers are inter ested only in
the first group of commands, whose magic number is ‘‘T.’’ Looking at the workings
of the other groups is left to the reader as an exercise; ext2_ioctl is a most

ioctl
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inter esting function (though easier than you may expect), because it implements
the append-only flag and the immutable flag.

The following ioctl commands are predefined for any file:

FIOCLEX
Set the close-on-exec flag (File IOctl CLose on EXec). Setting this flag will
cause the file descriptor to be closed when the calling process executes a new
pr ogram.

FIONCLEX
Clear the close-on-exec flag.

FIOASYNC
Set or reset asynchronous notification for the file (as discussed in “Asyn-
chr onous Notification” later in this chapter). Note that kernel versions up to
Linux 2.2.4 incorrectly used this command to modify the O_SYNC flag. Since
both actions can be accomplished in other ways, nobody actually uses the
FIOASYNC command, which is reported here only for completeness.

FIONBIO
‘‘File IOctl Non-Blocking I/O’’ (described later in this chapter in “Blocking and
Nonblocking Operations”). This call modifies the O_NONBLOCK flag in
filp->f_flags. The third argument to the system call is used to indicate
whether the flag is to be set or cleared. We’ll look at the role of the flag later
in this chapter. Note that the flag can also be changed by the fcntl system call,
using the F_SETFL command.

The last item in the list introduced a new system call, fcntl, which looks like ioctl.
In fact, the fcntl call is very similar to ioctl in that it gets a command argument and
an extra (optional) argument. It is kept separate from ioctl mainly for historical
reasons: when Unix developers faced the problem of controlling I/O operations,
they decided that files and devices were dif ferent. At the time, the only devices
with ioctl implementations were ttys, which explains why -ENOTTY is the stan-
dard reply for an incorrect ioctl command. Things have changed, but fcntl remains
in the name of backward compatibility.

Using the ioctl Argument
Another point we need to cover before looking at the ioctl code for the scull
driver is how to use the extra argument. If it is an integer, it’s easy: it can be used
dir ectly. If it is a pointer, however, some care must be taken.

When a pointer is used to refer to user space, we must ensure that the user
addr ess is valid and that the corresponding page is currently mapped. If kernel
code tries to access an out-of-range address, the processor issues an exception.
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Exceptions in kernel code are tur ned to oops messages by every Linux kernel up
thr ough 2.0.x ; version 2.1 and later handle the problem more gracefully. In any
case, it’s the driver’s responsibility to make proper checks on every user-space
addr ess it uses and to retur n an error if it is invalid.

Addr ess verification for kernels 2.2.x and beyond is implemented by the function
access_ok, which is declared in <asm/uaccess.h>:

int access_ok(int type, const void *addr, unsigned long size);

The first argument should be either VERIFY_READ or VERIFY_WRITE, depend-
ing on whether the action to be perfor med is reading the user-space memory area
or writing it. The addr argument holds a user-space address, and size is a byte
count. If ioctl, for instance, needs to read an integer value from user space, size
is sizeof(int). If you need to both read and write at the given address, use
VERIFY_WRITE, since it is a superset of VERIFY_READ.

Unlike most functions, access_ok retur ns a boolean value: 1 for success (access is
OK) and 0 for failure (access is not OK). If it retur ns false, the driver will usually
retur n -EFAULT to the caller.

Ther e ar e a couple of interesting things to note about access_ok. First is that it
does not do the complete job of verifying memory access; it only checks to see
that the memory refer ence is in a region of memory that the process might reason-
ably have access to. In particular, access_ok ensur es that the address does not
point to kernel-space memory. Second, most driver code need not actually call
access_ok. The memory-access routines described later take care of that for you.
We will nonetheless demonstrate its use so that you can see how it is done, and
for backward compatibility reasons that we will get into toward the end of the
chapter.

The scull source exploits the bitfields in the ioctl number to check the arguments
befor e the switch:

int err = 0, tmp;
int ret = 0;

/*
* extract the type and number bitfields, and don’t decode
* wrong cmds: return ENOTTY (inappropriate ioctl) before access_ok()
*/

if (_IOC_TYPE(cmd) != SCULL_IOC_MAGIC) return -ENOTTY;
if (_IOC_NR(cmd) > SCULL_IOC_MAXNR) return -ENOTTY;

/*
* the direction is a bitmask, and VERIFY_WRITE catches R/W
* transfers. ‘Type’ is user oriented, while
* access_ok is kernel oriented, so the concept of "read" and
* "write" is reversed
*/

ioctl
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if (_IOC_DIR(cmd) & _IOC_READ)
err = !access_ok(VERIFY_WRITE, (void *)arg, _IOC_SIZE(cmd));

else if (_IOC_DIR(cmd) & _IOC_WRITE)
err = !access_ok(VERIFY_READ, (void *)arg, _IOC_SIZE(cmd));

if (err) return -EFAULT;

After calling access_ok, the driver can safely perfor m the actual transfer. In addi-
tion to the copy_fr om_user and copy_to_user functions, the programmer can
exploit a set of functions that are optimized for the most-used data sizes (one, two,
and four bytes, as well as eight bytes on 64-bit platforms). These functions are
described in the following list and are defined in <asm/uaccess.h>.

put_user(datum, ptr)
__put_user(datum, ptr)

These macros write the datum to user space; they are relatively fast, and
should be called instead of copy_to_user whenever single values are being
transferr ed. Since type checking is not perfor med on macro expansion, you
can pass any type of pointer to put_user, as long as it is a user-space address.
The size of the data transfer depends on the type of the ptr argument and is
deter mined at compile time using a special gcc pseudo-function that isn’t
worth showing here. As a result, if ptr is a char pointer, one byte is trans-
ferr ed, and so on for two, four, and possibly eight bytes.

put_user checks to ensure that the process is able to write to the given mem-
ory address. It retur ns 0 on success, and -EFAULT on error. _ _put_user per-
for ms less checking (it does not call access_ok), but can still fail on some
kinds of bad addresses. Thus, _ _put_user should only be used if the memory
region has already been verified with access_ok.

As a general rule, you’ll call _ _put_user to save a few cycles when you are
implementing a read method, or when you copy several items and thus call
access_ok just once before the first data transfer.

get_user(local, ptr)
__get_user(local, ptr)

These macros are used to retrieve a single datum from user space. They
behave like put_user and _ _put_user, but transfer data in the opposite direc-
tion. The value retrieved is stored in the local variable local; the retur n value
indicates whether the operation succeeded or not. Again, _ _get_user should
only be used if the address has already been verified with access_ok.

If an attempt is made to use one of the listed functions to transfer a value that
does not fit one of the specific sizes, the result is usually a strange message from
the compiler, such as ‘‘conversion to non-scalar type requested.’’ In such cases,
copy_to_user or copy_fr om_user must be used.
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Capabilities and Restricted Operations
Access to a device is controlled by the permissions on the device file(s), and the
driver is not normally involved in permissions checking. There are situations, how-
ever, wher e any user is granted read/write permission on the device, but some
other operations should be denied. For example, not all users of a tape drive
should be able to set its default block size, and the ability to work with a disk
device does not mean that the user can refor mat the drive. In cases like these, the
driver must perfor m additional checks to be sure that the user is capable of per-
for ming the requested operation.

Unix systems have traditionally restricted privileged operations to the superuser
account. Privilege is an all-or-nothing thing—the superuser can do absolutely any-
thing, but all other users are highly restricted. The Linux kernel as of version 2.2
pr ovides a mor e flexible system called capabilities. A capability-based system
leaves the all-or-nothing mode behind and breaks down privileged operations into
separate subgroups. In this way, a particular user (or program) can be empowered
to perfor m a specific privileged operation without giving away the ability to per-
for m other, unr elated operations. Capabilities are still little used in user space, but
ker nel code uses them almost exclusively.

The full set of capabilities can be found in <linux/capability.h>. A subset
of those capabilities that might be of interest to device driver writers includes the
following:

CAP_DAC_OVERRIDE
The ability to override access restrictions on files and directories.

CAP_NET_ADMIN
The ability to perfor m network administration tasks, including those which
af fect network interfaces.

CAP_SYS_MODULE
The ability to load or remove kernel modules.

CAP_SYS_RAWIO
The ability to perfor m ‘‘raw’’ I/O operations. Examples include accessing
device ports or communicating directly with USB devices.

CAP_SYS_ADMIN
A catch-all capability that provides access to many system administration oper-
ations.

CAP_SYS_TTY_CONFIG
The ability to perfor m tty configuration tasks.

Befor e per forming a privileged operation, a device driver should check that the
calling process has the appropriate capability with the capable function (defined in
<sys/sched.h>):

ioctl
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int capable(int capability);

In the scull sample driver, any user is allowed to query the quantum and quantum
set sizes. Only privileged users, however, may change those values, since inappro-
priate values could badly affect system perfor mance. When needed, the scull
implementation of ioctl checks a user’s privilege level as follows:

if (! capable (CAP_SYS_ADMIN))
return -EPERM;

In the absence of a more specific capability for this task, CAP_SYS_ADMIN was
chosen for this test.

The Implementation of the ioctl Commands
The scull implementation of ioctl only transfers the configurable parameters of the
device and turns out to be as easy as the following:

switch(cmd) {

#ifdef SCULL_DEBUG
case SCULL_IOCHARDRESET:

/*
* reset the counter to 1, to allow unloading in case
* of problems. Use 1, not 0, because the invoking
* process has the device open.
*/
while (MOD_IN_USE)

MOD_DEC_USE_COUNT;
MOD_INC_USE_COUNT;
/* don’t break: fall through and reset things */

#endif /* SCULL_DEBUG */

case SCULL_IOCRESET:
scull_quantum = SCULL_QUANTUM;
scull_qset = SCULL_QSET;
break;

case SCULL_IOCSQUANTUM: /* Set: arg points to the value */
if (! capable (CAP_SYS_ADMIN))

return -EPERM;
ret = __get_user(scull_quantum, (int *)arg);
break;

case SCULL_IOCTQUANTUM: /* Tell: arg is the value */
if (! capable (CAP_SYS_ADMIN))

return -EPERM;
scull_quantum = arg;
break;
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case SCULL_IOCGQUANTUM: /* Get: arg is pointer to result */
ret = __put_user(scull_quantum, (int *)arg);
break;

case SCULL_IOCQQUANTUM: /* Query: return it (it’s positive) */
return scull_quantum;

case SCULL_IOCXQUANTUM: /* eXchange: use arg as pointer */
if (! capable (CAP_SYS_ADMIN))

return -EPERM;
tmp = scull_quantum;
ret = __get_user(scull_quantum, (int *)arg);
if (ret == 0)

ret = __put_user(tmp, (int *)arg);
break;

case SCULL_IOCHQUANTUM: /* sHift: like Tell + Query */
if (! capable (CAP_SYS_ADMIN))

return -EPERM;
tmp = scull_quantum;
scull_quantum = arg;
return tmp;

default: /* redundant, as cmd was checked against MAXNR */
return -ENOTTY;

}
return ret;

scull also includes six entries that act on scull_qset. These entries are identical
to the ones for scull_quantum and are not worth showing in print.

The six ways to pass and receive arguments look like the following from the
caller’s point of view (i.e., from user space):

int quantum;

ioctl(fd,SCULL_IOCSQUANTUM, &quantum);
ioctl(fd,SCULL_IOCTQUANTUM, quantum);

ioctl(fd,SCULL_IOCGQUANTUM, &quantum);
quantum = ioctl(fd,SCULL_IOCQQUANTUM);

ioctl(fd,SCULL_IOCXQUANTUM, &quantum);
quantum = ioctl(fd,SCULL_IOCHQUANTUM, quantum);

Of course, a normal driver would not implement such a mix of calling modes in
one place. We have done so here only to demonstrate the differ ent ways in which
things could be done. Normally, however, data exchanges would be consistently
per formed, either through pointers (more common) or by value (less common),
and mixing of the two techniques would be avoided.

ioctl
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Device Control Without ioctl
Sometimes controlling the device is better accomplished by writing control
sequences to the device itself. This technique is used, for example, in the console
driver, wher e so-called escape sequences are used to move the cursor, change the
default color, or per form other configuration tasks. The benefit of implementing
device control this way is that the user can control the device just by writing data,
without needing to use (or sometimes write) programs built just for configuring
the device.

For example, the setter m pr ogram acts on the console (or another terminal) con-
figuration by printing escape sequences. This behavior has the advantage of per-
mitting the remote control of devices. The controlling program can live on a
dif ferent computer than the controlled device, because a simple redir ection of the
data stream does the configuration job. You’r e alr eady used to this with ttys, but
the technique is more general.

The drawback of controlling by printing is that it adds policy constraints to the
device; for example, it is viable only if you are sur e that the control sequence can’t
appear in the data being written to the device during normal operation. This is
only partly true for ttys. Although a text display is meant to display only ASCII
characters, sometimes control characters can slip through in the data being written
and can thus affect the console setup. This can happen, for example, when you
issue gr ep on a binary file; the extracted lines can contain anything, and you often
end up with the wrong font on your console.*

Contr olling by write is definitely the way to go for those devices that don’t transfer
data but just respond to commands, such as robotic devices.

For instance, a driver written for fun by one of your authors moves a camera on
two axes. In this driver, the ‘‘device’’ is simply a pair of old stepper motors, which
can’t really be read from or written to. The concept of ‘‘sending a data stream’’ to a
stepper motor makes little or no sense. In this case, the driver interprets what is
being written as ASCII commands and converts the requests to sequences of
impulses that manipulate the stepper motors. The idea is similar, somewhat, to the
AT commands you send to the modem in order to set up communication, the
main differ ence being that the serial port used to communicate with the modem
must transfer real data as well. The advantage of direct device control is that you
can use cat to move the camera without writing and compiling special code to
issue the ioctl calls.

* CTRL-N sets the alternate font, which is made up of graphic symbols and thus isn’t a
friendly font for typing input to your shell; if you encounter this problem, echo a CTRL-O
character to restor e the primary font.
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When writing command-oriented drivers, there’s no reason to implement the ioctl
method. An additional command in the interpreter is easier to implement and use.

Sometimes, though, you might choose to act the other way around: instead of
making write into an interpreter and avoiding ioctl, you might choose to avoid
write altogether and use ioctl commands exclusively, while accompanying the
driver with a specific command-line tool to send those commands to the driver.
This approach moves the complexity from kernel space to user space, where it
may be easier to deal with, and helps keep the driver small while denying use of
simple cat or echo commands.

Blocking I/O
One problem that might arise with read is what to do when there’s no data yet,
but we’re not at end-of-file.

The default answer is ‘‘go to sleep waiting for data.’’ This section shows how a
pr ocess is put to sleep, how it is awakened, and how an application can ask if
ther e is data without just blindly issuing a read call and blocking. We then apply
the same concepts to write.

As usual, before we show actual code, we’ll explain a few concepts.

Going to Sleep and Awakening
Whenever a process must wait for an event (such as the arrival of data or the ter-
mination of a process), it should go to sleep. Sleeping causes the process to sus-
pend execution, freeing the processor for other uses. At some future time, when
the event being waited for occurs, the process will be woken up and will continue
with its job. This section discusses the 2.4 machinery for putting a process to sleep
and waking it up. Earlier versions are discussed in “Backward Compatibility” later
in this chapter.

Ther e ar e several ways of handling sleeping and waking up in Linux, each suited
to differ ent needs. All, however, work with the same basic data type, a wait queue
(wait_queue_head_t). A wait queue is exactly that—a queue of processes that
ar e waiting for an event. Wait queues are declar ed and initialized as follows:

wait_queue_head_t my_queue;
init_waitqueue_head (&my_queue);

When a wait queue is declared statically (i.e., not as an automatic variable of a
pr ocedure or as part of a dynamically-allocated data structure), it is also possible
to initialize the queue at compile time:

DECLARE_WAIT_QUEUE_HEAD (my_queue);

Blocking I/O
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It is a common mistake to neglect to initialize a wait queue (especially since earlier
versions of the kernel did not requir e this initialization); if you forget, the results
will usually not be what you intended.

Once the wait queue is declared and initialized, a process may use it to go to
sleep. Sleeping is accomplished by calling one of the variants of sleep_on, depend-
ing on how deep a sleep is called for.

sleep_on(wait_queue_head_t *queue);
Puts the process to sleep on this queue. sleep_on has the disadvantage of not
being interruptible; as a result, the process can end up being stuck (and un-
killable) if the event it’s waiting for never happens.

interruptible_sleep_on(wait_queue_head_t *queue);
The interruptible variant works just like sleep_on, except that the sleep can be
interrupted by a signal. This is the form that device driver writers have been
using for a long time, before wait_event_interruptible (described later)
appear ed.

sleep_on_timeout(wait_queue_head_t *queue, long timeout);
interruptible_sleep_on_timeout(wait_queue_head_t *queue,

long timeout);
These two functions behave like the previous two, with the exception that the
sleep will last no longer than the given timeout period. The timeout is speci-
fied in ‘‘jiffies,’’ which are cover ed in Chapter 6.

void wait_event(wait_queue_head_t queue, int condition);
int wait_event_interruptible(wait_queue_head_t queue, int

condition);
These macros are the preferr ed way to sleep on an event. They combine wait-
ing for an event and testing for its arrival in a way that avoids race conditions.
They will sleep until the condition, which may be any boolean C expression,
evaluates true. The macros expand to a while loop, and the condition is
reevaluated over time—the behavior is differ ent fr om that of a function call or
a simple macro, where the arguments are evaluated only at call time. The lat-
ter macro is implemented as an expression that evaluates to 0 in case of suc-
cess and -ERESTARTSYS if the loop is interrupted by a signal.

It is worth repeating that driver writers should almost always use the interruptible
instances of these functions/macros. The noninterruptible version exists for the
small number of situations in which signals cannot be dealt with, for example,
when waiting for a data page to be retrieved from swap space. Most drivers do not
pr esent such special situations.

Of course, sleeping is only half of the problem; something, somewhere will have
to wake the process up again. When a device driver sleeps directly, there is
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usually code in another part of the driver that perfor ms the wakeup, once it
knows that the event has occurred. Typically a driver will wake up sleepers in its
interrupt handler once new data has arrived. Other scenarios are possible, how-
ever.

Just as there is mor e than one way to sleep, so there is also more than one way to
wake up. The high-level functions provided by the kernel to wake up processes
ar e as follows:

wake_up(wait_queue_head_t *queue);
This function will wake up all processes that are waiting on this event queue.

wake_up_interruptible(wait_queue_head_t *queue);
wake_up_interruptible wakes up only the processes that are in interruptible
sleeps. Any process that sleeps on the wait queue using a noninterruptible
function or macro will continue to sleep.

wake_up_sync(wait_queue_head_t *queue);
wake_up_interruptible_sync(wait_queue_head_t *queue);

Nor mally, a wake_up call can cause an immediate reschedule to happen,
meaning that other processes might run before wake_up retur ns. The “syn-
chr onous” variants instead make any awakened processes runnable, but do
not reschedule the CPU. This is used to avoid rescheduling when the current
pr ocess is known to be going to sleep, thus forcing a reschedule anyway.
Note that awakened processes could run immediately on a differ ent pr ocessor,
so these functions should not be expected to provide mutual exclusion.

If your driver is using interruptible_sleep_on, ther e is little differ ence between
wake_up and wake_up_interruptible. Calling the latter is a common convention,
however, to preserve consistency between the two calls.

As an example of wait queue usage, imagine you want to put a process to sleep
when it reads your device and awaken it when someone else writes to the device.
The following code does just that:

DECLARE_WAIT_QUEUE_HEAD(wq);

ssize_t sleepy_read (struct file *filp, char *buf, size_t count,
loff_t *pos)

{
printk(KERN_DEBUG "process %i (%s) going to sleep\n",

current->pid, current->comm);
interruptible_sleep_on(&wq);
printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm);
return 0; /* EOF */

}
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ssize_t sleepy_write (struct file *filp, const char *buf, size_t count,
loff_t *pos)

{
printk(KERN_DEBUG "process %i (%s) awakening the readers...\n",

current->pid, current->comm);
wake_up_interruptible(&wq);
return count; /* succeed, to avoid retrial */

}

The code for this device is available as sleepy in the example programs and can
be tested using cat and input/output redir ection, as usual.

An important thing to remember with wait queues is that being woken up does
not guarantee that the event you were waiting for has occurred; a process can be
woken for other reasons, mainly because it received a signal. Any code that sleeps
should do so in a loop that tests the condition after retur ning fr om the sleep, as
discussed in “A Sample Implementation: scullpipe” later in this chapter.

A Deeper Look at Wait Queues
The previous discussion is all that most driver writers will need to know to get
their job done. Some, however, will want to dig deeper. This section attempts to
get the curious started; everybody else can skip to the next section without miss-
ing much that is important.

The wait_queue_head_t type is a fairly simple structure, defined in
<linux/wait.h>. It contains only a lock variable and a linked list of sleeping
pr ocesses. The individual data items in the list are of type wait_queue_t, and
the list is the generic list defined in <linux/list.h> and described in “Linked
Lists” in Chapter 10. Normally the wait_queue_t structur es ar e allocated on the
stack by functions like interruptible_sleep_on; the structures end up in the stack
because they are simply declared as automatic variables in the relevant functions.
In general, the programmer need not deal with them.

Some advanced applications, however, can requir e dealing with wait_queue_t
variables directly. For these, it’s worth a quick look at what actually goes on inside
a function like interruptible_sleep_on. The following is a simplified version of the
implementation of interruptible_sleep_on to put a process to sleep:

void simplified_sleep_on(wait_queue_head_t *queue)
{

wait_queue_t wait;

init_waitqueue_entry(&wait, current);
current->state = TASK_INTERRUPTIBLE;

add_wait_queue(queue, &wait);
schedule();
remove_wait_queue (queue, &wait);

}
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The code here creates a new wait_queue_t variable (wait, which gets allo-
cated on the stack) and initializes it. The state of the task is set to TASK_INTER-
RUPTIBLE, meaning that it is in an interruptible sleep. The wait queue entry is
then added to the queue (the wait_queue_head_t * argument). Then schedule
is called, which relinquishes the processor to somebody else. schedule retur ns
only when somebody else has woken up the process and set its state to
TASK_RUNNING. At that point, the wait queue entry is removed from the queue,
and the sleep is done.

Figur e 5-1 shows the internals of the data structures involved in wait queues and
how they are used by processes.

Wait Queues in Linux 2.4

Several processes are sleeping on the same queue

KEY

No process is sleeping on the queue

The device structure
with its
wait_queue_head_t

The struct
wait_queue itself

The current
process and
its associated
stack page

Another
process and
its associated
stack page

The current process is sleeping on the device’s queue

wait_queue_head_t

spinlock_t lock;

structlist_head task_list;

wait_queue_t

struct task_struct *task;

struct list_head task_list;

Figur e 5-1. Wait queues in Linux 2.4

A quick look through the kernel shows that a great many procedur es do their
sleeping ‘‘manually’’ with code that looks like the previous example. Most of those
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implementations date back to kernels prior to 2.2.3, before wait_event was intro-
duced. As suggested, wait_event is now the preferr ed way to sleep on an event,
because interruptible_sleep_on is subject to unpleasant race conditions. A full
description of how that can happen will have to wait until “Going to Sleep With-
out Races” in Chapter 9; the short version, simply, is that things can change in the
time between when your driver decides to sleep and when it actually gets around
to calling interruptible_sleep_on.

One other reason for calling the scheduler explicitly, however, is to do exclusive
waits. There can be situations in which several processes are waiting on an event;
when wake_up is called, all of those processes will try to execute. Suppose that
the event signifies the arrival of an atomic piece of data. Only one process will be
able to read that data; all the rest will simply wake up, see that no data is avail-
able, and go back to sleep.

This situation is sometimes referr ed to as the ‘‘thundering herd problem.’’ In high-
per formance situations, thundering herds can waste resources in a big way. The
cr eation of a large number of runnable processes that can do no useful work gen-
erates a large number of context switches and processor overhead, all for nothing.
Things would work better if those processes simply remained asleep.

For this reason, the 2.3 development series added the concept of an exclusive
sleep. If processes sleep in an exclusive mode, they are telling the kernel to wake
only one of them. The result is improved perfor mance in some situations.

The code to perfor m an exclusive sleep looks very similar to that for a regular
sleep:

void simplified_sleep_exclusive(wait_queue_head_t *queue)
{

wait_queue_t wait;

init_waitqueue_entry(&wait, current);
current->state = TASK_INTERRUPTIBLE | TASK_EXCLUSIVE;

add_wait_queue_exclusive(queue, &wait);
schedule();
remove_wait_queue (queue, &wait);

}

Adding the TASK_EXCLUSIVE flag to the task state indicates that the process is in
an exclusive wait. The call to add_wait_queue_exclusive is also necessary, how-
ever. That function adds the process to the end of the wait queue, behind all oth-
ers. The purpose is to leave any processes in nonexclusive sleeps at the
beginning, where they will always be awakened. As soon as wake_up hits the first
exclusive sleeper, it knows it can stop.
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The attentive reader may have noticed another reason to manipulate wait queues
and the scheduler explicitly. Whereas functions like sleep_on will block a process
on exactly one wait queue, working with the queues directly allows sleeping on
multiple queues simultaneously. Most drivers need not sleep on more than one
queue; if yours is the exception, you will need to use code like what we’ve
shown.

Those wanting to dig even deeper into the wait queue code can look at
<linux/sched.h> and kernel/sched.c.

Wr iting Reentrant Code
When a process is put to sleep, the driver is still alive and can be called by
another process. Let’s consider the console driver as an example. While an appli-
cation is waiting for keyboard input on tty1, the user switches to tty2 and
spawns a new shell. Now both shells are waiting for keyboard input within the
console driver, although they sleep on differ ent wait queues: one on the queue
associated with tty1 and the other on the queue associated with tty2. Each pro-
cess is blocked within the interruptible_sleep_on function, but the driver can still
receive and answer requests from other ttys.

Of course, on SMP systems, multiple simultaneous calls to your driver can happen
even when you do not sleep.

Such situations can be handled painlessly by writing reentrant code. Reentrant
code is code that doesn’t keep status information in global variables and thus is
able to manage interwoven invocations without mixing anything up. If all the sta-
tus information is process specific, no interfer ence will ever happen.

If status information is needed, it can either be kept in local variables within the
driver function (each process has a differ ent stack page in kernel space where
local variables are stor ed), or it can reside in private_data within the filp
accessing the file. Using local variables is preferr ed because sometimes the same
filp can be shared between two processes (usually parent and child).

If you need to save large amounts of status data, you can keep the pointer in a
local variable and use kmalloc to retrieve the actual storage space. In this case you
must remember to kfr ee the data, because there’s no equivalent to ‘‘everything is
released at process termination’’ when you’re working in kernel space. Using local
variables for large items is not good practice, because the data may not fit the sin-
gle page of memory allocated for stack space.

You need to make reentrant any function that matches either of two conditions.
First, if it calls schedule, possibly by calling sleep_on or wake_up. Second, if it
copies data to or from user space, because access to user space might page-fault,
and the process will be put to sleep while the kernel deals with the missing page.
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Every function that calls any such functions must be reentrant as well. For exam-
ple, if sample_r ead calls sample_getdata, which in turn can block, then sam-
ple_r ead must be reentrant as well as sample_getdata, because nothing prevents
another process from calling it while it is already executing on behalf of a process
that went to sleep.

Finally, of course, code that sleeps should always keep in mind that the state of
the system can change in almost any way while a process is sleeping. The driver
should be careful to check any aspect of its environment that might have changed
while it wasn’t paying attention.

Blocking and Nonblocking Operations
Another point we need to touch on before we look at the implementation of full-
featur ed read and write methods is the role of the O_NONBLOCK flag in
filp->f_flags. The flag is defined in <linux/fcntl.h>, which is automati-
cally included by <linux/fs.h>.

The flag gets its name from ‘‘open-nonblock,’’ because it can be specified at open
time (and originally could only be specified there). If you browse the source code,
you’ll find some refer ences to an O_NDELAY flag; this is an alternate name for
O_NONBLOCK, accepted for compatibility with System V code. The flag is cleared
by default, because the normal behavior of a process waiting for data is just to
sleep. In the case of a blocking operation, which is the default, the following
behavior should be implemented in order to adhere to the standard semantics:

• If a process calls read but no data is (yet) available, the process must block.
The process is awakened as soon as some data arrives, and that data is
retur ned to the caller, even if there is less than the amount requested in the
count argument to the method.

• If a process calls write and there is no space in the buffer, the process must
block, and it must be on a differ ent wait queue from the one used for reading.
When some data has been written to the hardware device, and space becomes
fr ee in the output buffer, the process is awakened and the write call succeeds,
although the data may be only partially written if there isn’t room in the buffer
for the count bytes that were requested.

Both these statements assume that there are both input and output buffers; in
practice, almost every device driver has them. The input buffer is requir ed to avoid
losing data that arrives when nobody is reading. In contrast, data can’t be lost on
write, because if the system call doesn’t accept data bytes, they remain in the user-
space buffer. Even so, the output buffer is almost always useful for squeezing
mor e per formance out of the hardware.
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The perfor mance gain of implementing an output buffer in the driver results from
the reduced number of context switches and user-level/ker nel-level transitions.
Without an output buffer (assuming a slow device), only one or a few characters
ar e accepted by each system call, and while one process sleeps in write, another
pr ocess runs (that’s one context switch). When the first process is awakened, it
resumes (another context switch), write retur ns (ker nel/user transition), and the
pr ocess reiterates the system call to write more data (user/kernel transition); the
call blocks, and the loop continues. If the output buffer is big enough, the write
call succeeds on the first attempt—the buffer ed data will be pushed out to the
device later, at interrupt time—without control needing to go back to user space
for a second or third write call. The choice of a suitable size for the output buffer
is clearly device specific.

We didn’t use an input buffer in scull, because data is already available when read
is issued. Similarly, no output buffer was used, because data is simply copied to
the memory area associated with the device. Essentially, the device is a buf fer, so
the implementation of additional buffers would be superfluous. We’ll see the use
of buffers in Chapter 9, in the section titled “Interrupt-Driven I/O.”

The behavior of read and write is differ ent if O_NONBLOCK is specified. In this
case, the calls simply retur n -EAGAIN if a process calls read when no data is
available or if it calls write when there’s no space in the buffer.

As you might expect, nonblocking operations retur n immediately, allowing the
application to poll for data. Applications must be careful when using the stdio
functions while dealing with nonblocking files, because they can easily mistake a
nonblocking retur n for EOF. They always have to check errno.

Naturally, O_NONBLOCK is meaningful in the open method also. This happens
when the call can actually block for a long time; for example, when opening a
FIFO that has no writers (yet), or accessing a disk file with a pending lock. Usu-
ally, opening a device either succeeds or fails, without the need to wait for exter-
nal events. Sometimes, however, opening the device requir es a long initialization,
and you may choose to support O_NONBLOCK in your open method by retur ning
immediately with -EAGAIN (“try it again”) if the flag is set, after initiating device
initialization. The driver may also implement a blocking open to support access
policies in a way similar to file locks. We’ll see one such implementation in the
section “Blocking open as an Alternative to EBUSY” later in this chapter.

Some drivers may also implement special semantics for O_NONBLOCK; for exam-
ple, an open of a tape device usually blocks until a tape has been inserted. If the
tape drive is opened with O_NONBLOCK, the open succeeds immediately regard-
less of whether the media is present or not.

Only the read, write, and open file operations are affected by the nonblocking
flag.
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A Sample Implementation: scullpipe
The /dev/scullpipe devices (there are four of them by default) are part of the scull
module and are used to show how blocking I/O is implemented.

Within a driver, a process blocked in a read call is awakened when data arrives;
usually the hardware issues an interrupt to signal such an event, and the driver
awakens waiting processes as part of handling the interrupt. The scull driver
works differ ently, so that it can be run without requiring any particular hardware
or an interrupt handler. We chose to use another process to generate the data and
wake the reading process; similarly, reading processes are used to wake sleeping
writer processes. The resulting implementation is similar to that of a FIFO (or
named pipe) filesystem node, whence the name.

The device driver uses a device structure that embeds two wait queues and a
buf fer. The size of the buffer is configurable in the usual ways (at compile time,
load time, or runtime).

typedef struct Scull_Pipe {
wait_queue_head_t inq, outq; /* read and write queues */
char *buffer, *end; /* begin of buf, end of buf */
int buffersize; /* used in pointer arithmetic */
char *rp, *wp; /* where to read, where to write */
int nreaders, nwriters; /* number of openings for r/w */
struct fasync_struct *async_queue; /* asynchronous readers */
struct semaphore sem; /* mutual exclusion semaphore */
devfs_handle_t handle; /* only used if devfs is there */

} Scull_Pipe;

The read implementation manages both blocking and nonblocking input and
looks like this (the puzzling first line of the function is explained later, in “Seeking
a Device”):

ssize_t scull_p_read (struct file *filp, char *buf, size_t count,
loff_t *f_pos)

{
Scull_Pipe *dev = filp->private_data;

if (f_pos != &filp->f_pos) return -ESPIPE;

if (down_interruptible(&dev->sem))
return -ERESTARTSYS;

while (dev->rp == dev->wp) { /* nothing to read */
up(&dev->sem); /* release the lock */
if (filp->f_flags & O_NONBLOCK)

return -EAGAIN;
PDEBUG("\"%s\" reading: going to sleep\n", current->comm);
if (wait_event_interruptible(dev->inq, (dev->rp != dev->wp)))

return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
/* otherwise loop, but first reacquire the lock */
if (down_interruptible(&dev->sem))
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return -ERESTARTSYS;
}
/* ok, data is there, return something */
if (dev->wp > dev->rp)

count = min(count, dev->wp - dev->rp);
else /* the write pointer has wrapped, return data up to dev->end */

count = min(count, dev->end - dev->rp);
if (copy_to_user(buf, dev->rp, count)) {

up (&dev->sem);
return -EFAULT;

}
dev->rp += count;
if (dev->rp == dev->end)

dev->rp = dev->buffer; /* wrapped */
up (&dev->sem);

/* finally, awaken any writers and return */
wake_up_interruptible(&dev->outq);
PDEBUG("\"%s\" did read %li bytes\n",current->comm, (long)count);
return count;

}

As you can see, we left some PDEBUG statements in the code. When you compile
the driver, you can enable messaging to make it easier to follow the interaction of
dif ferent processes.

Note also, once again, the use of semaphores to protect critical regions of the
code. The scull code has to be careful to avoid going to sleep when it holds a
semaphor e—otherwise, writers would never be able to add data, and the whole
thing would deadlock. This code uses wait_event_interruptible to wait for data if
need be; it has to check for available data again after the wait, though. Somebody
else could grab the data between when we wake up and when we get the
semaphor e back.

It’s worth repeating that a process can go to sleep both when it calls schedule,
either directly or indirectly, and when it copies data to or from user space. In the
latter case the process may sleep if the user array is not currently present in main
memory. If scull sleeps while copying data between kernel and user space, it will
sleep with the device semaphore held. Holding the semaphore in this case is justi-
fied since it will not deadlock the system, and since it is important that the device
memory array not change while the driver sleeps.

The if statement that follows interruptible_sleep_on takes care of signal handling.
This statement ensures the proper and expected reaction to signals, which could
have been responsible for waking up the process (since we were in an interrupt-
ible sleep). If a signal has arrived and it has not been blocked by the process, the
pr oper behavior is to let upper layers of the kernel handle the event. To this aim,
the driver retur ns -ERESTARTSYS to the caller; this value is used internally by the
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virtual filesystem (VFS) layer, which either restarts the system call or retur ns
-EINTR to user space. We’ll use the same statement to deal with signal handling
for every read and write implementation. Because signal_ pending was introduced
only in version 2.1.57 of the kernel, sysdep.h defines it for earlier kernels to pre-
serve portability of source code.

The implementation for write is quite similar to that for read (and, again, its first
line will be explained later). Its only ‘‘peculiar’’ feature is that it never completely
fills the buffer, always leaving a hole of at least one byte. Thus, when the buffer is
empty, wp and rp ar e equal; when there is data there, they are always differ ent.

static inline int spacefree(Scull_Pipe *dev)
{

if (dev->rp == dev->wp)
return dev->buffersize - 1;

return ((dev->rp + dev->buffersize - dev->wp) % dev->buffersize) - 1;
}

ssize_t scull_p_write(struct file *filp, const char *buf, size_t count,
loff_t *f_pos)

{
Scull_Pipe *dev = filp->private_data;

if (f_pos != &filp->f_pos) return -ESPIPE;

if (down_interruptible(&dev->sem))
return -ERESTARTSYS;

/* Make sure there’s space to write */
while (spacefree(dev) == 0) { /* full */

up(&dev->sem);
if (filp->f_flags & O_NONBLOCK)

return -EAGAIN;
PDEBUG("\"%s\" writing: going to sleep\n",current->comm);
if (wait_event_interruptible(dev->outq, spacefree(dev) > 0))

return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
if (down_interruptible(&dev->sem))

return -ERESTARTSYS;
}
/* ok, space is there, accept something */
count = min(count, spacefree(dev));
if (dev->wp >= dev->rp)

count = min(count, dev->end - dev->wp); /* up to end-of-buffer */
else /* the write pointer has wrapped, fill up to rp-1 */

count = min(count, dev->rp - dev->wp - 1);
PDEBUG("Going to accept %li bytes to %p from %p\n",

(long)count, dev->wp, buf);
if (copy_from_user(dev->wp, buf, count)) {

up (&dev->sem);
return -EFAULT;

}
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dev->wp += count;
if (dev->wp == dev->end)

dev->wp = dev->buffer; /* wrapped */
up(&dev->sem);

/* finally, awaken any reader */
wake_up_interruptible(&dev->inq); /* blocked in read() and select() */

/* and signal asynchronous readers, explained later in Chapter 5 */
if (dev->async_queue)

kill_fasync(&dev->async_queue, SIGIO, POLL_IN);
PDEBUG("\"%s\" did write %li bytes\n",current->comm, (long)count);
return count;

}

The device, as we conceived it, doesn’t implement blocking open and is simpler
than a real FIFO. If you want to look at the real thing, you can find it in fs/pipe.c,
in the kernel sources.

To test the blocking operation of the scullpipe device, you can run some programs
on it, using input/output redir ection as usual. Testing nonblocking activity is trick-
ier, because the conventional programs don’t perfor m nonblocking operations.
The misc-pr ogs source directory contains the following simple program, called
nbtest, for testing nonblocking operations. All it does is copy its input to its output,
using nonblocking I/O and delaying between retrials. The delay time is passed on
the command line and is one second by default.

int main(int argc, char **argv)
{

int delay=1, n, m=0;

if (argc>1) delay=atoi(argv[1]);
fcntl(0, F_SETFL, fcntl(0,F_GETFL) | O_NONBLOCK); /* stdin */
fcntl(1, F_SETFL, fcntl(1,F_GETFL) | O_NONBLOCK); /* stdout */

while (1) {
n=read(0, buffer, 4096);
if (n>=0)

m=write(1, buffer, n);
if ((n<0 || m<0) && (errno != EAGAIN))

break;
sleep(delay);

}
perror( n<0 ? "stdin" : "stdout");
exit(1);

}

Blocking I/O
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poll and select
Applications that use nonblocking I/O often use the poll and select system calls as
well. poll and select have essentially the same functionality: both allow a process
to determine whether it can read from or write to one or more open files without
blocking. They are thus often used in applications that must use multiple input or
output streams without blocking on any one of them. The same functionality is
of fered by two separate functions because they were implemented in Unix almost
at the same time by two differ ent gr oups: select was introduced in BSD Unix,
wher eas poll was the System V solution.

Support for either system call requir es support from the device driver to function.
In version 2.0 of the kernel the device method was modeled on select (and no poll
was available to user programs); from version 2.1.23 onward both were offer ed,
and the device method was based on the newly introduced poll system call
because poll of fered more detailed control than select.

Implementations of the poll method, implementing both the poll and select system
calls, have the following prototype:

unsigned int (*poll) (struct file *, poll_table *);

The driver’s method will be called whenever the user-space program perfor ms a
poll or select system call involving a file descriptor associated with the driver. The
device method is in charge of these two steps:

1. Call poll_wait on one or more wait queues that could indicate a change in the
poll status.

2. Return a bit mask describing operations that could be immediately perfor med
without blocking.

Both of these operations are usually straightforward, and tend to look very similar
fr om one driver to the next. They rely, however, on infor mation that only the
driver can provide, and thus must be implemented individually by each driver.

The poll_table structur e, the second argument to the poll method, is used
within the kernel to implement the poll and select calls; it is declared in
<linux/poll.h>, which must be included by the driver source. Driver writers
need know nothing about its internals and must use it as an opaque object; it is
passed to the driver method so that every event queue that could wake up the
pr ocess and change the status of the poll operation can be added to the
poll_table structur e by calling the function poll_wait:

void poll_wait (struct file *, wait_queue_head_t *, poll_table *);
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The second task perfor med by the poll method is retur ning the bit mask describ-
ing which operations could be completed immediately; this is also straightforward.
For example, if the device has data available, a read would complete without
sleeping; the poll method should indicate this state of affairs. Several flags (defined
in <linux/poll.h>) are used to indicate the possible operations:

POLLIN
This bit must be set if the device can be read without blocking.

POLLRDNORM
This bit must be set if ‘‘normal’’ data is available for reading. A readable device
retur ns (POLLIN | POLLRDNORM).

POLLRDBAND
This bit indicates that out-of-band data is available for reading from the
device. It is currently used only in one place in the Linux kernel (the DECnet
code) and is not generally applicable to device drivers.

POLLPRI
High-priority data (out-of-band) can be read without blocking. This bit causes
select to report that an exception condition occurred on the file, because select
reports out-of-band data as an exception condition.

POLLHUP
When a process reading this device sees end-of-file, the driver must set POLL-
HUP (hang-up). A process calling select will be told that the device is readable,
as dictated by the select functionality.

POLLERR
An error condition has occurred on the device. When poll is invoked, the
device is reported as both readable and writable, since both read and write
will retur n an error code without blocking.

POLLOUT
This bit is set in the retur n value if the device can be written to without block-
ing.

POLLWRNORM
This bit has the same meaning as POLLOUT, and sometimes it actually is the
same number. A writable device retur ns (POLLOUT | POLLWRNORM).

POLLWRBAND
Like POLLRDBAND, this bit means that data with nonzero priority can be writ-
ten to the device. Only the datagram implementation of poll uses this bit, since
a datagram can transmit out of band data.

It’s worth noting that POLLRDBAND and POLLWRBAND ar e meaningful only with
file descriptors associated with sockets: device drivers won’t normally use these
flags.

poll and select
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The description of poll takes up a lot of space for something that is relatively sim-
ple to use in practice. Consider the scullpipe implementation of the poll method:

unsigned int scull_p_poll(struct file *filp, poll_table *wait)
{

Scull_Pipe *dev = filp->private_data;
unsigned int mask = 0;

/*
* The buffer is circular; it is considered full
* if "wp" is right behind "rp". "left" is 0 if the
* buffer is empty, and it is "1" if it is completely full.
*/

int left = (dev->rp + dev->buffersize - dev->wp) % dev->buffersize;

poll_wait(filp, &dev->inq, wait);
poll_wait(filp, &dev->outq, wait);
if (dev->rp != dev->wp) mask |= POLLIN | POLLRDNORM; /* readable */
if (left != 1) mask |= POLLOUT | POLLWRNORM; /* writable */

return mask;
}

This code simply adds the two scullpipe wait queues to the poll_table, then
sets the appropriate mask bits depending on whether data can be read or written.

The poll code as shown is missing end-of-file support. The poll method should
retur n POLLHUP when the device is at the end of the file. If the caller used the
select system call, the file will be reported as readable; in both cases the applica-
tion will know that it can actually issue the read without waiting forever, and the
read method will retur n 0 to signal end-of-file.

With real FIFOs, for example, the reader sees an end-of-file when all the writers
close the file, whereas in scullpipe the reader never sees end-of-file. The behavior
is differ ent because a FIFO is intended to be a communication channel between
two processes, while scullpipe is a trashcan where everyone can put data as long
as there’s at least one reader. Mor eover, it makes no sense to reimplement what is
alr eady available in the kernel.

Implementing end-of-file in the same way as FIFOs do would mean checking
dev->nwriters, both in read and in poll, and reporting end-of-file (as just
described) if no process has the device opened for writing. Unfortunately, though,
if a reader opened the scullpipe device before the writer, it would see end-of-file
without having a chance to wait for data. The best way to fix this problem would
be to implement blocking within open; this task is left as an exercise for the
reader.
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Interaction with read and write
The purpose of the poll and select calls is to determine in advance if an I/O opera-
tion will block. In that respect, they complement read and write. Mor e important,
poll and select ar e useful because they let the application wait simultaneously for
several data streams, although we are not exploiting this feature in the scull exam-
ples.

A corr ect implementation of the three calls is essential to make applications work
corr ectly. Though the following rules have more or less already been stated, we’ll
summarize them here.

Reading data from the device

• If ther e is data in the input buffer, the read call should retur n immediately,
with no noticeable delay, even if less data is available than the application
requested and the driver is sure the remaining data will arrive soon. You can
always retur n less data than you’re asked for if this is convenient for any rea-
son (we did it in scull), provided you retur n at least one byte.

• If ther e is no data in the input buffer, by default read must block until at least
one byte is there. If O_NONBLOCK is set, on the other hand, read retur ns
immediately with a retur n value of -EAGAIN (although some old versions of
System V retur n 0 in this case). In these cases poll must report that the device
is unreadable until at least one byte arrives. As soon as there is some data in
the buffer, we fall back to the previous case.

• If we are at end-of-file, read should retur n immediately with a retur n value of
0, independent of O_NONBLOCK. poll should report POLLHUP in this case.

Wr iting to the device

• If ther e is space in the output buffer, write should retur n without delay. It can
accept less data than the call requested, but it must accept at least one byte. In
this case, poll reports that the device is writable.

• If the output buffer is full, by default write blocks until some space is freed. If
O_NONBLOCK is set, write retur ns immediately with a retur n value of
-EAGAIN (older System V Unices retur ned 0). In these cases poll should
report that the file is not writable. If, on the other hand, the device is not able
to accept any more data, write retur ns -ENOSPC (‘‘No space left on device’’),
independently of the setting of O_NONBLOCK.

• Never make a write call wait for data transmission before retur ning, even if
O_NONBLOCK is clear. This is because many applications use select to find out
whether a write will block. If the device is reported as writable, the call must
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consistently not block. If the program using the device wants to ensure that
the data it enqueues in the output buffer is actually transmitted, the driver
must provide an fsync method. For instance, a removable device should have
an fsync entry point.

Although these are a good set of general rules, one should also recognize that
each device is unique and that sometimes the rules must be bent slightly. For
example, record-oriented devices (such as tape drives) cannot execute partial
writes.

Flushing pending output

We’ve seen how the write method by itself doesn’t account for all data output
needs. The fsync function, invoked by the system call of the same name, fills the
gap. This method’s prototype is

int (*fsync) (struct file *file, struct dentry *dentry, int datasync);

If some application will ever need to be assured that data has been sent to the
device, the fsync method must be implemented. A call to fsync should retur n only
when the device has been completely flushed (i.e., the output buffer is empty),
even if that takes some time, regardless of whether O_NONBLOCK is set. The
datasync argument, present only in the 2.4 kernel, is used to distinguish
between the fsync and fdatasync system calls; as such, it is only of interest to
filesystem code and can be ignored by drivers.

The fsync method has no unusual features. The call isn’t time critical, so every
device driver can implement it to the author’s taste. Most of the time, char drivers
just have a NULL pointer in their fops. Block devices, on the other hand, always
implement the method with the general-purpose block_fsync, which in turn
flushes all the blocks of the device, waiting for I/O to complete.

The Underlying Data Structure
The actual implementation of the poll and select system calls is reasonably simple,
for those who are inter ested in how it works. Whenever a user application calls
either function, the kernel invokes the poll method of all files refer enced by the
system call, passing the same poll_table to each of them. The structure is, for
all practical purposes, an array of poll_table_entry structur es allocated for a
specific poll or select call. Each poll_table_entry contains the struct file
pointer for the open device, a wait_queue_head_t pointer, and a
wait_queue_t entry. When a driver calls poll_wait, one of these entries gets
filled in with the information provided by the driver, and the wait queue entry gets
put onto the driver’s queue. The pointer to wait_queue_head_t is used to track
the wait queue where the current poll table entry is register ed, in order for
fr ee_wait to be able to dequeue the entry before the wait queue is awakened.
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If none of the drivers being polled indicates that I/O can occur without blocking,
the poll call simply sleeps until one of the (perhaps many) wait queues it is on
wakes it up.

What’s interesting in the implementation of poll is that the file operation may be
called with a NULL pointer as poll_table argument. This situation can come
about for a couple of reasons. If the application calling poll has provided a timeout
value of 0 (indicating that no wait should be done), there is no reason to accumu-
late wait queues, and the system simply does not do it. The poll_table pointer
is also set to NULL immediately after any driver being polled indicates that I/O is
possible. Since the kernel knows at that point that no wait will occur, it does not
build up a list of wait queues.

When the poll call completes, the poll_table structur e is deallocated, and all
wait queue entries previously added to the poll table (if any) are removed from
the table and their wait queues.

Actually, things are somewhat more complex than depicted here, because the poll
table is not a simple array but rather a set of one or more pages, each hosting an
array. This complication is meant to avoid putting too low a limit (dictated by the
page size) on the maximum number of file descriptors involved in a poll or select
system call.

We tried to show the data structures involved in polling in Figure 5-2; the figure is
a simplified repr esentation of the real data structures because it ignores the multi-
page nature of a poll table and disregards the file pointer that is part of each
poll_table_entry. The reader interested in the actual implementation is urged
to look in <linux/poll.h> and fs/select.c.

Asynchronous Notification
Though the combination of blocking and nonblocking operations and the select
method are suf ficient for querying the device most of the time, some situations
ar en’t ef ficiently managed by the techniques we’ve seen so far.

Let’s imagine, for example, a process that executes a long computational loop at
low priority, but needs to process incoming data as soon as possible. If the input
channel is the keyboard, you are allowed to send a signal to the application (using
the ‘INTR’ character, usually CTRL-C), but this signaling ability is part of the tty
abstraction, a software layer that isn’t used for general char devices. What we need
for asynchronous notification is something differ ent. Further more, any input data
should generate an interrupt, not just CTRL-C.

User programs have to execute two steps to enable asynchronous notification from
an input file. First, they specify a process as the ‘‘owner’’ of the file. When a pro-
cess invokes the F_SETOWN command using the fcntl system call, the process ID
of the owner process is saved in filp->f_owner for later use. This step is nec-
essary for the kernel to know just who to notify. In order to actually enable
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The struct poll_table_struct

int error;

struct poll_table_page *tables;

The struct poll_table_entry

wait_queue_t wait;

wait_queue_head_t *wait_address;

The data structures behind poll

A generic device structure
with its
wait_queue_head_t

A process with an active
poll ()

The struct
poll_table_struct

Poll table entries

A process calls poll for one device only

A process is calling poll (or select) on two devices

Figur e 5-2. The data structures of poll

asynchr onous notification, the user programs must set the FASYNC flag in the
device by means of the F_SETFL fcntl command.

After these two calls have been executed, the input file can request delivery of a
SIGIO signal whenever new data arrives. The signal is sent to the process (or pro-
cess group, if the value is negative) stored in filp->f_owner.

For example, the following lines of code in a user program enable asynchronous
notification to the current process for the stdin input file:

signal(SIGIO, &input_handler); /* dummy sample; sigaction() is better */
fcntl(STDIN_FILENO, F_SETOWN, getpid());
oflags = fcntl(STDIN_FILENO, F_GETFL);
fcntl(STDIN_FILENO, F_SETFL, oflags | FASYNC);

The program named asynctest in the sources is a simple program that reads
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stdin as shown. It can be used to test the asynchronous capabilities of scullpipe.
The program is similar to cat, but doesn’t terminate on end-of-file; it responds only
to input, not to the absence of input.

Note, however, that not all the devices support asynchronous notification, and you
can choose not to offer it. Applications usually assume that the asynchronous
capability is available only for sockets and ttys. For example, pipes and FIFOs
don’t support it, at least in the current kernels. Mice offer asynchronous notifica-
tion because some programs expect a mouse to be able to send SIGIO like a tty
does.

Ther e is one remaining problem with input notification. When a process receives a
SIGIO, it doesn’t know which input file has new input to offer. If mor e than one
file is enabled to asynchronously notify the process of pending input, the applica-
tion must still resort to poll or select to find out what happened.

The Driver’s Point of View
A mor e relevant topic for us is how the device driver can implement asynchronous
signaling. The following list details the sequence of operations from the kernel’s
point of view:

1. When F_SETOWN is invoked, nothing happens, except that a value is assigned
to filp->f_owner.

2. When F_SETFL is executed to turn on FASYNC, the driver’s fasync method is
called. This method is called whenever the value of FASYNC is changed in
filp->f_flags, to notify the driver of the change so it can respond prop-
erly. The flag is cleared by default when the file is opened. We’ll look at the
standard implementation of the driver method soon.

3. When data arrives, all the processes register ed for asynchronous notification
must be sent a SIGIO signal.

While implementing the first step is trivial—ther e’s nothing to do on the driver’s
part — the other steps involve maintaining a dynamic data structure to keep track
of the differ ent asynchr onous readers; there might be several of these readers. This
dynamic data structure, however, doesn’t depend on the particular device
involved, and the kernel offers a suitable general-purpose implementation so that
you don’t have to rewrite the same code in every driver.

The general implementation offer ed by Linux is based on one data structure and
two functions (which are called in the second and third steps described earlier).
The header that declares related material is <linux/fs.h>—nothing new
her e—and the data structure is called struct fasync_struct. As we did with
wait queues, we need to insert a pointer to the structure in the device-specific data
structur e. Actually, we’ve already seen such a field in the section “A Sample Imple-
mentation: scullpipe.”

Asynchronous Notification
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The two functions that the driver calls correspond to the following prototypes:

int fasync_helper(int fd, struct file *filp,
int mode, struct fasync_struct **fa);

void kill_fasync(struct fasync_struct **fa, int sig, int band);

fasync_helper is invoked to add files to or remove files from the list of inter-
ested processes when the FASYNC flag changes for an open file. All of its argu-
ments except the last are provided to the fasync method and can be passed
thr ough dir ectly. kill_fasync is used to signal the interested processes when
data arrives. Its arguments are the signal to send (usually SIGIO) and the band,
which is almost always POLL_IN (but which may be used to send “urgent” or out-
of-band data in the networking code).

Her e’s how scullpipe implements the fasync method:

int scull_p_fasync(fasync_file fd, struct file *filp, int mode)
{

Scull_Pipe *dev = filp->private_data;

return fasync_helper(fd, filp, mode, &dev->async_queue);
}

It’s clear that all the work is perfor med by fasync_helper. It wouldn’t be possible,
however, to implement the functionality without a method in the driver, because
the helper function needs to access the correct pointer to struct
fasync_struct * (her e &dev->async_queue), and only the driver can pro-
vide the information.

When data arrives, then, the following statement must be executed to signal asyn-
chr onous readers. Since new data for the scullpipe reader is generated by a pro-
cess issuing a write, the statement appears in the write method of scullpipe.

if (dev->async_queue)
kill_fasync(&dev->async_queue, SIGIO, POLL_IN);

It might appear that we’re done, but there’s still one thing missing. We must
invoke our fasync method when the file is closed to remove the file from the list
of active asynchronous readers. Although this call is requir ed only if
filp->f_flags has FASYNC set, calling the function anyway doesn’t hurt and is
the usual implementation. The following lines, for example, are part of the close
method for scullpipe:

/* remove this filp from the asynchronously notified filp’s */
scull_p_fasync(-1, filp, 0);

The data structure underlying asynchronous notification is almost identical to the
structur e struct wait_queue, because both situations involve waiting on an
event. The differ ence is that struct file is used in place of struct
task_struct. The struct file in the queue is then used to retrieve
f_owner, in order to signal the process.
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Seeking a Device
The difficult part of the chapter is over; now we’ll quickly detail the llseek method,
which is useful and easy to implement.

The llseek Implementation
The llseek method implements the lseek and llseek system calls. We have already
stated that if the llseek method is missing from the device’s operations, the default
implementation in the kernel perfor ms seeks from the beginning of the file and
fr om the current position by modifying filp->f_pos, the current reading/writ-
ing position within the file. Please note that for the lseek system call to work cor-
rectly, the read and write methods must cooperate by updating the offset item
they receive as argument (the argument is usually a pointer to filp->f_pos).

You may need to provide your own llseek method if the seek operation corre-
sponds to a physical operation on the device or if seeking from end-of-file, which
is not implemented by the default method, makes sense. A simple example can be
seen in the scull driver:

loff_t scull_llseek(struct file *filp, loff_t off, int whence)
{

Scull_Dev *dev = filp->private_data;
loff_t newpos;

switch(whence) {
case 0: /* SEEK_SET */
newpos = off;
break;

case 1: /* SEEK_CUR */
newpos = filp->f_pos + off;
break;

case 2: /* SEEK_END */
newpos = dev->size + off;
break;

default: /* can’t happen */
return -EINVAL;

}
if (newpos<0) return -EINVAL;
filp->f_pos = newpos;
return newpos;

}

The only device-specific operation here is retrieving the file length from the
device. In scull the read and write methods cooperate as needed, as shown in
“r ead and write” in Chapter 3.

Seeking a Device

163

22 June 2001 16:36



Chapter 5: Enhanced Char Driver Operations

Although the implementation just shown makes sense for scull, which handles a
well-defined data area, most devices offer a data flow rather than a data area (just
think about the serial ports or the keyboard), and seeking those devices does not
make sense. If this is the case, you can’t just refrain from declaring the llseek oper-
ation, because the default method allows seeking. Instead, you should use the fol-
lowing code:

loff_t scull_p_llseek(struct file *filp, loff_t off, int whence)
{

return -ESPIPE; /* unseekable */
}

This function comes from the scullpipe device, which isn’t seekable; the error code
is translated to ‘‘Illegal seek,’’ though the symbolic name means ‘‘is a pipe.’’
Because the position indicator is meaningless for nonseekable devices, neither
read nor write needs to update it during data transfer.

It’s interesting to note that since pr ead and pwrite have been added to the set of
supported system calls, the lseek device method is not the only way a user-space
pr ogram can seek a file. A proper implementation of unseekable devices should
allow normal read and write calls while preventing pr ead and pwrite. This is
accomplished by the following line—the first in both the read and write methods
of scullpipe—we didn’t explain when introducing those methods:

if (f_pos != &filp->f_pos) return -ESPIPE;

Access Control on a Device File
Of fering access control is sometimes vital for the reliability of a device node. Not
only should unauthorized users not be permitted to use the device (a restriction is
enforced by the filesystem permission bits), but sometimes only one authorized
user should be allowed to open the device at a time.

The problem is similar to that of using ttys. In that case, the login pr ocess changes
the ownership of the device node whenever a user logs into the system, in order
to prevent other users from interfering with or sniffing the tty data flow. However,
it’s impractical to use a privileged program to change the ownership of a device
every time it is opened, just to grant unique access to it.

None of the code shown up to now implements any access control beyond the
filesystem permission bits. If the open system call forwards the request to the
driver, open will succeed. We now introduce a few techniques for implementing
some additional checks.

Every device shown in this section has the same behavior as the bare scull device
(that is, it implements a persistent memory area) but differs from scull in access
contr ol, which is implemented in the open and close operations.
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Single-Open Devices
The brute-force way to provide access control is to permit a device to be opened
by only one process at a time (single openness). This technique is best avoided
because it inhibits user ingenuity. A user might well want to run differ ent pr o-
cesses on the same device, one reading status information while the other is writ-
ing data. In some cases, users can get a lot done by running a few simple
pr ograms thr ough a shell script, as long as they can access the device concur-
rently. In other words, implementing a single-open behavior amounts to creating
policy, which may get in the way of what your users want to do.

Allowing only a single process to open a device has undesirable properties, but it
is also the easiest access control to implement for a device driver, so it’s shown
her e. The source code is extracted from a device called scullsingle.

The open call refuses access based on a global integer flag:

int scull_s_open(struct inode *inode, struct file *filp)
{

Scull_Dev *dev = &scull_s_device; /* device information */
int num = NUM(inode->i_rdev);

if (!filp->private_data && num > 0)
return -ENODEV; /* not devfs: allow 1 device only */

spin_lock(&scull_s_lock);
if (scull_s_count) {

spin_unlock(&scull_s_lock);
return -EBUSY; /* already open */

}
scull_s_count++;
spin_unlock(&scull_s_lock);
/* then, everything else is copied from the bare scull device */

if ( (filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);

if (!filp->private_data)
filp->private_data = dev;

MOD_INC_USE_COUNT;
return 0; /* success */

}

The close call, on the other hand, marks the device as no longer busy.

int scull_s_release(struct inode *inode, struct file *filp)
{

scull_s_count--; /* release the device */
MOD_DEC_USE_COUNT;
return 0;

}

Nor mally, we recommend that you put the open flag scull_s_count (with the
accompanying spinlock, scull_s_lock, whose role is explained in the next

Access Control on a Device File
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subsection) within the device structure (Scull_Dev her e) because, conceptually,
it belongs to the device. The scull driver, however, uses standalone variables to
hold the flag and the lock in order to use the same device structure and methods
as the bare scull device and minimize code duplication.

Another Digression into Race Conditions
Consider once again the test on the variable scull_s_count just shown. Two
separate actions are taken there: (1) the value of the variable is tested, and the
open is refused if it is not 0, and (2) the variable is incremented to mark the
device as taken. On a single-processor system, these tests are safe because no
other process will be able to run between the two actions.

As soon as you get into the SMP world, however, a problem arises. If two pro-
cesses on two processors attempt to open the device simultaneously, it is possible
that they could both test the value of scull_s_count befor e either modifies it.
In this scenario you’ll find that, at best, the single-open semantics of the device is
not enforced. In the worst case, unexpected concurrent access could create data
structur e corruption and system crashes.

In other words, we have another race condition here. This one could be solved in
much the same way as the races we already saw in Chapter 3. Those race condi-
tions were trigger ed by access to a status variable of a potentially shared data
structur e and were solved using semaphores. In general, however, semaphor es
can be expensive to use, because they can put the calling process to sleep. They
ar e a heavyweight solution for the problem of protecting a quick check on a status
variable.

Instead, scullsingle uses a differ ent locking mechanism called a spinlock. Spinlocks
will never put a process to sleep. Instead, if a lock is not available, the spinlock
primitives will simply retry, over and over (i.e., ‘‘spin’’), until the lock is freed.
Spinlocks thus have very little locking overhead, but they also have the potential
to cause a processor to spin for a long time if somebody hogs the lock. Another
advantage of spinlocks over semaphores is that their implementation is empty
when compiling code for a uniprocessor system (where these SMP-specific races
can’t happen). Semaphores are a mor e general resource that make sense on
unipr ocessor computers as well as SMP, so they don’t get optimized away in the
unipr ocessor case.

Spinlocks can be the ideal mechanism for small critical sections. Processes should
hold spinlocks for the minimum time possible, and must never sleep while hold-
ing a lock. Thus, the main scull driver, which exchanges data with user space and
can therefor e sleep, is not suitable for a spinlock solution. But spinlocks work
nicely for controlling access to scull_s_single (even if they still are not the
optimal solution, which we will see in Chapter 9).

Spinlocks are declar ed with a type of spinlock_t, which is defined in
<linux/spinlock.h>. Prior to use, they must be initialized:
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spin_lock_init(spinlock_t *lock);

A process entering a critical section will obtain the lock with spin_lock:

spin_lock(spinlock_t *lock);

The lock is released at the end with spin_unlock:

spin_unlock(spinlock_t *lock);

Spinlocks can be more complicated than this, and we’ll get into the details in
Chapter 9. But the simple case as shown here suits our needs for now, and all of
the access-control variants of scull will use simple spinlocks in this manner.

The astute reader may have noticed that whereas scull_s_open acquir es the
scull_s_lock lock prior to incrementing the scull_s_count flag,
scull_s_close takes no such precautions. This code is safe because no other code
will change the value of scull_s_count if it is nonzero, so there will be no
conflict with this particular assignment.

Restr icting Access to a Single User at a Time
The next step beyond a single system-wide lock is to let a single user open a
device in multiple processes but allow only one user to have the device open at a
time. This solution makes it easy to test the device, since the user can read and
write from several processes at once, but assumes that the user takes some
responsibility for maintaining the integrity of the data during multiple accesses.
This is accomplished by adding checks in the open method; such checks are per-
for med after the normal permission checking and can only make access more
restrictive than that specified by the owner and group permission bits. This is the
same access policy as that used for ttys, but it doesn’t resort to an external privi-
leged program.

Those access policies are a little trickier to implement than single-open policies. In
this case, two items are needed: an open count and the uid of the ‘‘owner’’ of the
device. Once again, the best place for such items is within the device structure;
our example uses global variables instead, for the reason explained earlier for
scullsingle. The name of the device is sculluid.

The open call grants access on first open, but remembers the owner of the device.
This means that a user can open the device multiple times, thus allowing cooper-
ating processes to work concurrently on the device. At the same time, no other
user can open it, thus avoiding external interfer ence. Since this version of the
function is almost identical to the preceding one, only the relevant part is repr o-
duced here:

spin_lock(&scull_u_lock);
if (scull_u_count &&

(scull_u_owner != current->uid) && /* allow user */
(scull_u_owner != current->euid) && /* allow whoever did su */
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!capable(CAP_DAC_OVERRIDE)) { /* still allow root */
spin_unlock(&scull_u_lock);
return -EBUSY; /* -EPERM would confuse the user */

}

if (scull_u_count == 0)
scull_u_owner = current->uid; /* grab it */

scull_u_count++;
spin_unlock(&scull_u_lock);

We chose to retur n -EBUSY and not -EPERM, even though the code is perfor ming
a per mission check, in order to point a user who is denied access in the right
dir ection. The reaction to ‘‘Permission denied’’ is usually to check the mode and
owner of the /dev file, while ‘‘Device busy’’ correctly suggests that the user should
look for a process already using the device.

This code also checks to see if the process attempting the open has the ability to
override file access permissions; if so, the open will be allowed even if the open-
ing process is not the owner of the device. The CAP_DAC_OVERRIDE capability
fits the task well in this case.

The code for close is not shown, since all it does is decrement the usage count.

Blocking open as an Alternative to EBUSY
When the device isn’t accessible, retur ning an error is usually the most sensible
appr oach, but there are situations in which you’d prefer to wait for the device.

For example, if a data communication channel is used both to transmit reports on
a timely basis (using cr ontab) and for casual usage according to people’s needs,
it’s much better for the timely report to be slightly delayed rather than fail just
because the channel is currently busy.

This is one of the choices that the programmer must make when designing a
device driver, and the right answer depends on the particular problem being
solved.

The alternative to EBUSY, as you may have guessed, is to implement blocking
open.

The scullwuid device is a version of sculluid that waits for the device on open
instead of retur ning -EBUSY. It dif fers fr om sculluid only in the following part of
the open operation:

spin_lock(&scull_w_lock);
while (scull_w_count &&
(scull_w_owner != current->uid) && /* allow user */
(scull_w_owner != current->euid) && /* allow whoever did su */
!capable(CAP_DAC_OVERRIDE)) {
spin_unlock(&scull_w_lock);
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if (filp->f_flags & O_NONBLOCK) return -EAGAIN;
interruptible_sleep_on(&scull_w_wait);
if (signal_pending(current)) /* a signal arrived */
return -ERESTARTSYS; /* tell the fs layer to handle it */

/* else, loop */
spin_lock(&scull_w_lock);

}
if (scull_w_count == 0)

scull_w_owner = current->uid; /* grab it */
scull_w_count++;
spin_unlock(&scull_w_lock);

The implementation is based once again on a wait queue. Wait queues were cre-
ated to maintain a list of processes that sleep while waiting for an event, so they fit
per fectly her e.

The release method, then, is in charge of awakening any pending process:

int scull_w_release(struct inode *inode, struct file *filp)
{

scull_w_count--;
if (scull_w_count == 0)

wake_up_interruptible(&scull_w_wait); /* awaken other uid’s */
MOD_DEC_USE_COUNT;
return 0;

}

The problem with a blocking-open implementation is that it is really unpleasant
for the interactive user, who has to keep guessing what is going wrong. The inter-
active user usually invokes precompiled commands such as cp and tar and can’t
just add O_NONBLOCK to the open call. Someone who’s making a backup using
the tape drive in the next room would prefer to get a plain ‘‘device or resource
busy’’ message instead of being left to guess why the hard drive is so silent today
while tar is scanning it.

This kind of problem (differ ent, incompatible policies for the same device) is best
solved by implementing one device node for each access policy. An example of
this practice can be found in the Linux tape driver, which provides multiple device
files for the same device. Differ ent device files will, for example, cause the drive to
record with or without compression, or to automatically rewind the tape when the
device is closed.

Cloning the Device on Open
Another technique to manage access control is creating differ ent private copies of
the device depending on the process opening it.
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Clearly this is possible only if the device is not bound to a hardware object; scull is
an example of such a ‘‘software’’ device. The internals of /dev/tty use a similar
technique in order to give its process a differ ent ‘‘view’’ of what the /dev entry
point repr esents. When copies of the device are created by the software driver, we
call them virtual devices—just as virtual consoles use a single physical tty device.

Although this kind of access control is rarely needed, the implementation can be
enlightening in showing how easily kernel code can change the application’s per-
spective of the surrounding world (i.e., the computer). The topic is quite exotic,
actually, so if you aren’t interested, you can jump directly to the next section.

The /dev/scullpriv device node implements virtual devices within the scull pack-
age. The scullpriv implementation uses the minor number of the process’s control-
ling tty as a key to access the virtual device. You can nonetheless easily modify the
sources to use any integer value for the key; each choice leads to a differ ent pol-
icy. For example, using the uid leads to a differ ent virtual device for each user,
while using a pid key creates a new device for each process accessing it.

The decision to use the controlling terminal is meant to enable easy testing of the
device using input/output redir ection: the device is shared by all commands run
on the same virtual terminal and is kept separate from the one seen by commands
run on another terminal.

The open method looks like the following code. It must look for the right virtual
device and possibly create one. The final part of the function is not shown
because it is copied from the bare scull, which we’ve already seen.

/* The clone-specific data structure includes a key field */
struct scull_listitem {

Scull_Dev device;
int key;
struct scull_listitem *next;

};

/* The list of devices, and a lock to protect it */
struct scull_listitem *scull_c_head;
spinlock_t scull_c_lock;

/* Look for a device or create one if missing */
static Scull_Dev *scull_c_lookfor_device(int key)
{

struct scull_listitem *lptr, *prev = NULL;

for (lptr = scull_c_head; lptr && (lptr->key != key); lptr = lptr->next)
prev=lptr;

if (lptr) return &(lptr->device);

/* not found */
lptr = kmalloc(sizeof(struct scull_listitem), GFP_ATOMIC);
if (!lptr) return NULL;

170

22 June 2001 16:36



/* initialize the device */
memset(lptr, 0, sizeof(struct scull_listitem));
lptr->key = key;
scull_trim(&(lptr->device)); /* initialize it */
sema_init(&(lptr->device.sem), 1);

/* place it in the list */
if (prev) prev->next = lptr;
else scull_c_head = lptr;

return &(lptr->device);
}

int scull_c_open(struct inode *inode, struct file *filp)
{

Scull_Dev *dev;
int key, num = NUM(inode->i_rdev);

if (!filp->private_data && num > 0)
return -ENODEV; /* not devfs: allow 1 device only */

if (!current->tty) {
PDEBUG("Process \"%s\" has no ctl tty\n",current->comm);
return -EINVAL;

}
key = MINOR(current->tty->device);

/* look for a scullc device in the list */
spin_lock(&scull_c_lock);
dev = scull_c_lookfor_device(key);
spin_unlock(&scull_c_lock);

if (!dev) return -ENOMEM;

/* then, everything else is copied from the bare scull device */

The release method does nothing special. It would normally release the device on
last close, but we chose not to maintain an open count in order to simplify the
testing of the driver. If the device were released on last close, you wouldn’t be
able to read the same data after writing to the device unless a background process
wer e to keep it open. The sample driver takes the easier approach of keeping the
data, so that at the next open, you’ll find it there. The devices are released when
scull_cleanup is called.

Her e’s the release implementation for /dev/scullpriv, which closes the discussion of
device methods.

int scull_c_release(struct inode *inode, struct file *filp)
{

/*
* Nothing to do, because the device is persistent.
* A ‘real’ cloned device should be freed on last close
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*/
MOD_DEC_USE_COUNT;
return 0;

}

Backward Compatibility
Many parts of the device driver API covered in this chapter have changed between
the major kernel releases. For those of you needing to make your driver work with
Linux 2.0 or 2.2, here is a quick rundown of the differ ences you will encounter.

Wait Queues in Linux 2.2 and 2.0
A relatively small amount of the material in this chapter changed in the 2.3 devel-
opment cycle. The one significant change is in the area of wait queues. The 2.2
ker nel had a differ ent and simpler implementation of wait queues, but it lacked
some important features, such as exclusive sleeps. The new implementation of
wait queues was introduced in kernel version 2.3.1.

The 2.2 wait queue implementation used variables of the type struct
wait_queue * instead of wait_queue_head_t. This pointer had to be initial-
ized to NULL prior to its first use. A typical declaration and initialization of a wait
queue looked like this:

struct wait_queue *my_queue = NULL;

The various functions for sleeping and waking up looked the same, with the
exception of the variable type for the queue itself. As a result, writing code that
works for all 2.x ker nels is easily done with a bit of code like the following, which
is part of the sysdep.h header we use to compile our sample code.

# define DECLARE_WAIT_QUEUE_HEAD(head) struct wait_queue *head = NULL
typedef struct wait_queue *wait_queue_head_t;

# define init_waitqueue_head(head) (*(head)) = NULL

The synchronous versions of wake_up wer e added in 2.3.29, and sysdep.h pr o-
vides macros with the same names so that you can use the feature in your code
while maintaining portability. The replacement macros expand to normal
wake_up, since the underlying mechanisms were missing from earlier kernels. The
timeout versions of sleep_on wer e added in kernel 2.1.127. The rest of the wait
queue interface has remained relatively unchanged. The sysdep.h header defines
the needed macros in order to compile and run your modules with Linux 2.2 and
Linux 2.0 without cluttering the code with lots of #ifdefs.

The wait_event macr o did not exist in the 2.0 kernel. For those who need it, we
have provided an implementation in sysdep.h
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Asynchronous Notification
Some small changes have been made in how asynchronous notification works for
both the 2.2 and 2.4 releases.

In Linux 2.3.21, kill_fasync got its third argument. Prior to this release, kill_fasync
was called as

kill_fasync(struct fasync_struct *queue, int signal);

Fortunately, sysdep.h takes care of the issue.

In the 2.2 release, the type of the first argument to the fasync method changed. In
the 2.0 kernel, a pointer to the inode structur e for the device was passed, instead
of the integer file descriptor:

int (*fasync) (struct inode *inode, struct file *filp, int on);

To solve this incompatibility, we use the same approach taken for read and write:
use of a wrapper function when the module is compiled under 2.0 headers.

The inode argument to the fasync method was also passed in when called from
the release method, rather than the -1 value used with later kernels.

The fsync Method
The third argument to the fsync file_operations method (the integer data-
sync value) was added in the 2.3 development series, meaning that portable code
will generally need to include a wrapper function for older kernels. There is a
trap, however, for people trying to write portable fsync methods: at least one dis-
tributor, which will remain nameless, patched the 2.4 fsync API into its 2.2 kernel.
The kernel developers usually (usually . . . ) try to avoid making API changes
within a stable series, but they have little control over what the distributors do.

Access to User Space in Linux 2.0
Memory access was handled differ ently in the 2.0 kernels. The Linux virtual mem-
ory system was less well developed at that time, and memory access was handled
a little differ ently. The new system was the key change that opened 2.1 develop-
ment, and it brought significant improvements in perfor mance; unfortunately, it
was accompanied by yet another set of compatibility headaches for driver writers.

The functions used to access memory under Linux 2.0 were as follows:

verify_area(int mode, const void *ptr, unsigned long size);
This function worked similarly to access_ok, but perfor med mor e extensive
checking and was slower. The function retur ned 0 in case of success and
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-EFAULT in case of errors. Recent kernel headers still define the function, but
it’s now just a wrapper around access_ok. When using version 2.0 of the ker-
nel, calling verify_ar ea is never optional; no access to user space can safely be
per formed without a prior, explicit verification.

put_user(datum, ptr)
The put_user macr o looks much like its modern-day equivalent. It differ ed,
however, in that no verification was done, and there was no retur n value.

get_user(ptr)
This macro fetched the value at the given address, and retur ned it as its retur n
value. Once again, no verification was done by the execution of the macro.

verify_ar ea had to be called explicitly because no user-ar ea copy function per-
for med the check. The great news introduced by Linux 2.1, which forced the
incompatible change in the get_user and put_user functions, was that the task of
verifying user addresses was left to the hardware, because the kernel was now
able to trap and handle processor exceptions generated during data copies to user
space.

As an example of how the older calls are used, consider scull one more time. A
version of scull using the 2.0 API would call verify_ar ea in this way:

int err = 0, tmp;

/*
* extract the type and number bitfields, and don’t decode
* wrong cmds: return ENOTTY before verify_area()
*/

if (_IOC_TYPE(cmd) != SCULL_IOC_MAGIC) return -ENOTTY;
if (_IOC_NR(cmd) > SCULL_IOC_MAXNR) return -ENOTTY;

/*
* the direction is a bit mask, and VERIFY_WRITE catches R/W
* transfers. ‘Type’ is user oriented, while
* verify_area is kernel oriented, so the concept of "read" and
* "write" is reversed
*/

if (_IOC_DIR(cmd) & _IOC_READ)
err = verify_area(VERIFY_WRITE, (void *)arg, _IOC_SIZE(cmd));

else if (_IOC_DIR(cmd) & _IOC_WRITE)
err = verify_area(VERIFY_READ, (void *)arg, _IOC_SIZE(cmd));

if (err) return err;

Then get_user and put_user can be used as follows:

case SCULL_IOCXQUANTUM: /* eXchange: use arg as pointer */
tmp = scull_quantum;
scull_quantum = get_user((int *)arg);
put_user(tmp, (int *)arg);
break;
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default: /* redundant, as cmd was checked against MAXNR */
return -ENOTTY;

}
return 0;

Only a small portion of the ioctl switch code has been shown, since it is little dif-
fer ent fr om the version for 2.2 and beyond.

Life would be relatively easy for the compatibility-conscious driver writer if it
wer en’t for the fact that put_user and get_user ar e implemented as macros in all
Linux versions, and their interfaces changed. As a result, a straightforward fix using
macr os cannot be done.

One possible solution is to define a new set of version-independent macros. The
path taken by sysdep.h consists in defining upper-case macros: GET_USER,
__GET_USER, and so on. The arguments are the same as with the kernel macros
of Linux 2.4, but the caller must be sure that verify_ar ea has been called first
(because that call is needed when compiling for 2.0).

Capabilities in 2.0
The 2.0 kernel did not support the capabilities abstraction at all. All permissions
checks simply looked to see if the calling process was running as the superuser; if
so, the operation would be allowed. The function suser was used for this purpose;
it takes no arguments and retur ns a nonzer o value if the process has superuser
privileges.

suser still exists in later kernels, but its use is strongly discouraged. It is better to
define a version of capable for 2.0, as is done in sysdep.h:

# define capable(anything) suser()

In this way, code can be written that is portable but which works with modern,
capability-oriented systems.

The Linux 2.0 select Method
The 2.0 kernel did not support the poll system call; only the BSD-style select call
was available. The corresponding device driver method was thus called select, and
operated in a slightly differ ent way, though the actions to be perfor med ar e almost
identical.

The select method is passed a pointer to a select_table, and must pass that
pointer to select_wait only if the calling process should wait for the requested con-
dition (one of SEL_IN, SEL_OUT, or SEL_EX).

The scull driver deals with the incompatibility by declaring a specific select method
to be used when it is compiled for version 2.0 of the kernel:
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#ifdef __USE_OLD_SELECT_ _
int scull_p_poll(struct inode *inode, struct file *filp,

int mode, select_table *table)
{

Scull_Pipe *dev = filp->private_data;

if (mode == SEL_IN) {
if (dev->rp != dev->wp) return 1; /* readable */
PDEBUG("Waiting to read\n");
select_wait(&dev->inq, table); /* wait for data */
return 0;

}
if (mode == SEL_OUT) {

/*
* The buffer is circular; it is considered full
* if "wp" is right behind "rp". "left" is 0 if the
* buffer is empty, and it is "1" if it is completely full.
*/

int left = (dev->rp + dev->buffersize - dev->wp) % dev->buffersize;
if (left != 1) return 1; /* writable */
PDEBUG("Waiting to write\n");
select_wait(&dev->outq, table); /* wait for free space */
return 0;

}
return 0; /* never exception-able */

}
#else /* Use poll instead, already shown */

The __USE_OLD_SELECT_ _ pr eprocessor symbol used here is set by the sys-
dep.h include file according to kernel version.

Seeking in Linux 2.0
Prior to Linux 2.1, the llseek device method was called lseek instead, and it
received differ ent parameters from the current implementation. For that reason,
under Linux 2.0 you were not allowed to seek a file, or a device, past the 2 GB
limit, even though the llseek system call was already supported.

The prototype of the file operation in the 2.0 kernel was the following:

int (*lseek) (struct inode *inode, struct file *filp , off_t off,
int whence);

Those working to write drivers compatible with 2.0 and 2.2 usually end up defin-
ing separate implementations of the seek method for the two interfaces.

2.0 and SMP
Because Linux 2.0 only minimally supported SMP systems, race conditions of the
type mentioned in this chapter did not normally come about. The 2.0 kernel did
have a spinlock implementation, but, since only one processor could be running
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ker nel code at a time, there was less need for locking.

Quick Reference
This chapter introduced the following symbols and header files.

#include <linux/ioctl.h>
This header declares all the macros used to define ioctl commands. It is cur-
rently included by <linux/fs.h>.

_IOC_NRBITS
_IOC_TYPEBITS
_IOC_SIZEBITS
_IOC_DIRBITS

The number of bits available for the differ ent bitfields of ioctl commands.
Ther e ar e also four macros that specify the MASKs and four that specify the
SHIFTs, but they’re mainly for internal use. _IOC_SIZEBITS is an important
value to check, because it changes across architectur es.

_IOC_NONE
_IOC_READ
_IOC_WRITE

The possible values for the ‘‘direction’’ bitfield. ‘‘Read’’ and ‘‘write’’ are dif fer-
ent bits and can be OR’d to specify read/write. The values are 0 based.

_IOC(dir,type,nr,size)
_IO(type,nr)
_IOR(type,nr,size)
_IOW(type,nr,size)
_IOWR(type,nr,size)

Macr os used to create an ioctl command.

_IOC_DIR(nr)
_IOC_TYPE(nr)
_IOC_NR(nr)
_IOC_SIZE(nr)

Macr os used to decode a command. In particular, _IOC_TYPE(nr) is an OR
combination of _IOC_READ and _IOC_WRITE.

#include <asm/uaccess.h>
int access_ok(int type, const void *addr, unsigned long

size);
This function checks that a pointer to user space is actually usable. access_ok
retur ns a nonzer o value if the access should be allowed.

Quick Reference
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VERIFY_READ
VERIFY_WRITE

The possible values for the type argument in access_ok. VERIFY_WRITE is a
superset of VERIFY_READ.

#include <asm/uaccess.h>
int put_user(datum,ptr);
int get_user(local,ptr);
int __put_user(datum,ptr);
int __get_user(local,ptr);

Macr os used to store or retrieve a datum to or from user space. The number of
bytes being transferred depends on sizeof(*ptr). The regular versions call
access_ok first, while the qualified versions (_ _put_user and _ _get_user)
assume that access_ok has already been called.

#include <linux/capability.h>
Defines the various CAP_ symbols for capabilities under Linux 2.2 and later.

int capable(int capability);
Retur ns nonzer o if the process has the given capability.

#include <linux/wait.h>
typedef struct { /* . . .  */ } wait_queue_head_t;
void init_waitqueue_head(wait_queue_head_t *queue);
DECLARE_WAIT_QUEUE_HEAD(queue);

The defined type for Linux wait queues. A wait_queue_head_t must be
explicitly initialized with either init_waitqueue_head at runtime or
declar e_wait_queue_head at compile time.

#include <linux/sched.h>
void interruptible_sleep_on(wait_queue_head_t *q);
void sleep_on(wait_queue_head_t *q);
void interruptible_sleep_on_timeout(wait_queue_head_t *q,

long timeout);
void sleep_on_timeout(wait_queue_head_t *q, long timeout);

Calling any of these functions puts the current process to sleep on a queue.
Usually, you’ll choose the interruptible for m to implement blocking read and
write.

void wake_up(struct wait_queue **q);
void wake_up_interruptible(struct wait_queue **q);
void wake_up_sync(struct wait_queue **q);
void wake_up_interruptible_sync(struct wait_queue **q);

These functions wake processes that are sleeping on the queue q. The _inter-
ruptible for m wakes only interruptible processes. The _sync versions will not
reschedule the CPU before retur ning.
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typedef struct { /* . . .  */ } wait_queue_t;
init_waitqueue_entry(wait_queue_t *entry, struct task_struct

*task);
The wait_queue_t type is used when sleeping without calling sleep_on.
Wait queue entries must be initialized prior to use; the task argument used is
almost always current.

void add_wait_queue(wait_queue_head_t *q, wait_queue_t
*wait);

void add_wait_queue_exclusive(wait_queue_head_t *q,
wait_queue_t *wait);

void remove_wait_queue(wait_queue_head_t *q, wait_queue_t
*wait);

These functions add an entry to a wait queue; add_wait_queue_exclusive adds
the entry to the end of the queue for exclusive waits. Entries should be
removed from the queue after sleeping with remove_wait_queue.

void wait_event(wait_queue_head_t q, int condition);
int wait_event_interruptible(wait_queue_head_t q, int condi-

tion);
These two macros will cause the process to sleep on the given queue until the
given condition evaluates to a true value.

void schedule(void);
This function selects a runnable process from the run queue. The chosen pro-
cess can be current or a differ ent one. You won’t usually call schedule
dir ectly, because the sleep_on functions do it internally.

#include <linux/poll.h>
void poll_wait(struct file *filp, wait_queue_head_t *q,

poll_table *p)
This function puts the current process into a wait queue without scheduling
immediately. It is designed to be used by the poll method of device drivers.

int fasync_helper(struct inode *inode, struct file *filp,
int mode, struct fasync_struct **fa);

This function is a ‘‘helper’’ for implementing the fasync device method. The
mode argument is the same value that is passed to the method, while fa
points to a device-specific fasync_struct *.

void kill_fasync(struct fasync_struct *fa, int sig, int
band);

If the driver supports asynchronous notification, this function can be used to
send a signal to processes register ed in fa.

Quick Reference
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#include <linux/spinlock.h>
typedef struct { /* . . .  */ } spinlock_t;
void spin_lock_init(spinlock_t *lock);

The spinlock_t type defines a spinlock, which must be initialized (with
spin_lock_init) prior to use.

spin_lock(spinlock_t *lock);
spin_unlock(spinlock_t *lock);

spin_lock locks the given lock, perhaps waiting until it becomes available. The
lock can then be released with spin_unlock.
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