The Void An Interesting Place For Network Security Monitoring

Alexandre Dulaunoy, CIRCL-TI P:WHITF

alexandre.dulaunoy@circl.lu

November 13, 2014

CIRCL, national CERT of Luxembourg

- CIRCL¹ is composed of 6 full-time incident handlers + 2 FTE back up operators.
- The team is operating as an autonomous technical team relying on its own infrastructure.
 - Operators competencies include reverse engineering, malware analysis, network and sy stem forensic, software engineering and data mining.
- CIRCL, the national CERT, is part of SMILE² gie (a publicly funded organization to promote information security in Luxembourg).
- In 2013, CIRCL handled more than 35000 security events and conducted more than 1000 technical investigations.

http://www.circl.lu/

² of 24 ttp://www.smile.public.lu/

Motivation

- IP-darkspace is
 - o Routable non-used address space of an ISP (Internet Service Provider),
 - arriving traffic is unidirectional
 - o and unsolicited³.
- Is there any traffic in those darkspaces?
- If yes, what and why does it arrive there?
 - And on purpose or by mischance?
- What's the security impact?
- What are the security recommendations?

 $[\]frac{3}{3}$ of $\frac{3}{24}$ the black-hole is not abused.

Why is there traffic?

Origins

- Attackers (and researchers) scan networks to find vulnerable systems (e.g. SSH brute-force).
- Backscatter traffic (e.g. from spoofed DoS).
- Self-replicating code using network as a vector (e.g. conficker, residual worms).
- Badly configured devices especially embedded devices (e.g. printers, server, routers).
 - $\circ \to \mathsf{One}$ of our IP-darkspace is especially suited for spelling errors from the RFC1918 (private networks) address space.

Why is there traffic

Typing/Spelling errors with RFC1918 networks

• While typing an IP address, different error categories might emerge:

Hit wrong key	19 2 .x.z.y →	19 3 .x.y.z
Omission of number	1 9 2.x.y.z $ ightarrow$	12.x.y.z
Doubling of keys	10.a.b.c $ ightarrow$	10 0 .a.b.c
	172.x.y.z	1 5 2.x.y.z

Research activities related to spelling errors

Spelling errors apply to text but also network configuration

- 34% omissions of 1 character
 - \circ Example: Network \rightarrow Netork
- 23% of all errors happen on 3rd position of a word
 - \circ Example: Text \rightarrow Test)
- 94% spellings errors are single errors in word
 - And do not reappear

References

- Pollock J. J. and Zamora A., Collection and characterization of spelling errors in scientific and scholarly text. J. Amer. Soc. Inf. Sci. 34, 1, 51 58, 1983.
- Kukich K., Techniques for automatically correcting words in text. ACM Comput. Surv. 24, 4, 377-439, 1992.

IP-Darkspace: Data Collection

Implementation

- Minimal sensor collecting IP-Darkspace networks (close to RFC1918 address space).
- Raw pcap are captured with the full payload.
- Netbeacon^a developed to ensure consistent packet capture.

[&]quot;www.github.com/adulau/netbeacon/

An example of a dataset collected

- from 2012-03-12 until Today (still active).
- 260 gigabytes of raw pcap were collected.
- Constant stream of packets (150kbit/s) from two /22 network blocks.
 - o no day/night profile.
- Some peaks at 2Mb/s (e.g. often TCP RST from back scatter traffic or short-term misconfiguration).

General observations

- A large part of traffic is coming from badly configured devices (e.g. RFC1918 spelling errors).
 - o Printers, embedded devices, routers or even server.
 - Trying to do name resolution on non-existing DNS servers, NTP or sending syslog messages.
- Even if the black-hole is passive, payload of stateless UDP packets or even TCP (due to asymmetric routing on misspelled network) datagrams are present.
- Internal network scanning and reconnaissance tool (e.g. internal network enumeration).

Observation per AS

Traffic seen in the darknet

N	Frequency	ASN
1	4596319	4134
2	1382960	4837
3	367515	3462
4	312984	4766
5	211468	4812
6	166110	9394
7	156303	9121
8	153585	4808
9	135811	9318
10	116105	4788

- Occurrences of activities matching the proportion of hosts in a country.
- Chinese great-wall is not filtering leaked packets.

Network reconnaissance: a few machine names

And many more ...

ASTTF.NET HELP.163.COM ASUEGYI.INFO HP_CLIENT1

ASUS1025C MACBOOKAIR-CAD7
DEFAULT MACBOOK-B5BA66
DELICIOUS.COM MACBOOKPRO-5357

DELL MAIL.AFT20.COM

DELL1400 S3.QHIMG.COM DELL335873 SERVERWEB

DELL7777 SERVEUR

DELL-PC SERVICE.QQ.COM
DELLPOP3 SMTP.163.COM

Network reconnaissance: NetBios machine types

```
23
      Browser Server
4
      Client?
      Client? M <ACTIVE>
21
      Domain Controller
      Domain Controller M < ACTIVE>
11
      Master Browser
      NameType=0x00 Workstation
      NameType=0x20 Server
105
      Server
26
      Unknown
      Unknown < GROUP > B < ACTIVE >
5
      Unknown < GROUP > M < ACTIVE >
1322 Workstation
      Workstation M < ACTIVE>
```

Network reconnaissance (and potential misuse): DNS

```
3684 _msdcs.<companyname>.local
1232666 time.euro.apple.com
104 time.euro.apple.com.<mylocaldomain>
122 ocsp.tcs.terena.org
50000+ ocsp.<variousCA>
```

- DNS queries to an incorrect nameserver could lead to major misuse.
- A single typo in a list of 3 nameservers is usually unnoticed.
- Defeating OCSP, Moxie Marlinspinke⁴.

⁴http:

^{//}safecomputing.umich.edu/events/sumit09/docs/Moxi\more2.pdf

From passive collection to dynamic exploitation?

```
41.229.54.252.1025 > X.168.66.11.53: 21030+ A? wpad.
   23:52:29.818155 IP
                                                                              (22)
   23:53:09.073601
                       41.229.54.252.1025 > X.168.66.10.53:
                                                             24576+ A?
                                                                               22)
                       41.229.54.252.1025 > X.168.66.11.53:
                                                                               22)
   23:53:10.068080
                                                             24576+ A?
   23:53:11.063357
                       41.229.54.252.1025 > X.168.66.10.53:
                                                             24576+ A?
                                                                               (22)
   23.53.13 062686
                       41.229.54.252.1025 > X.168.66.10.53:
                                                             24576+ A?
                                                                               (22)
   23:53:13.068506
                       41.229.54.252.1025 > X.168.66.11.53:
                                                             24576+ A? wpad.
                                                                               (22)
                       41 229 54 252 1025 > X 168 66 11 53.
   23.53.17 063567
                                                                               (22)
                       41.229.54.252.1025 > X.168.66.10.53:
                                                             24576+ A?
                                                                               22)
                       41.229.54.252.1025 > X.168.66.10.53:
                                                                               22)
                       41.229.54.252.1025 > X.168.66.11.53:
                                                                               22)
                                                             57865+ A?
11 23.53.58 313341
                       41.229.54.252.1025 > X.168.66.10.53:
                                                             57865+ A?
                                                                               (22)
   23:54:00.312687
                       41.229.54.252.1025 > X.168.66.10.53:
                                                             57865+ A? wpad.
                                                                               (22)
13 23:54:00.318675
                       41.229.54.252.1025 > X.168.66.11.53:
                                                             57865+ A? wpad.
                                                                               (22)
   23.54.04 312157
                       41.229.54.252.1025 > X.168.66.10.53: 57865+ A? wpad.
                                                                              (22)
```

- Web Proxy Autodiscovery Protocol is still used in order to find a proxy automatically.
- WPAD fetches a PAC file (JavaScript executed even if JavaScript is disabled) to give the IP address of the proxy.

Network scanning and passive collection

- Enumerating hostname in a single domain can be used for reconnaissance.
- Passive DNS collection allows to build a corpus of probable hostname.
- Then you can use the corpus in your favorite network scanner.
- Wagner, Cynthia, Jérôme François, Gérard Wagener, and Alexandre Dulaunoy. "SDBF: Smart DNS brute-forcer." In Network Operations and Management Symposium (NOMS), 2012 IEEE, pp. 1001-1007. IEEE, 2012.

⁵http://www.foo.be/papers/sdbf.pdf

A/V Statistics from Misconfigured Resolvers

Certificate Revocation and Queries from Misconfigured Resolvers

- The increase of 5% in late 2013 might be due to certificate requirements update (e.g. key size, hashing algorithm updates)
- A lot of software assumes a certificate to be valid when OCSP or CRL are not accessibles

Software Updates/Queries from Misconfigured Resolvers

- Discovering software usage (and vulnerabilities) can be easily done with passive reconnaissance
- Are the software update process ensuring the integrity of the updates?

Printer syslog to the world

or how to tell to the world your printer status

```
2012-03-12 18:00:42

SYSLOG lpr.error printer: offline
or intervention needed
2012-03-23 21:51:24.985290

SYSLOG lpr.error printer: paper out
...
2012-08-06 19:14:57.248337

SYSLOG lpr.error printer: paper jam
```

- Printers are just an example out of many syslog messages from various devices.
- Information leaked could be used by attackers to gain more information or improve targeted attacks.

19 of 24

How to configure your router (without security)

Enable command logging and send the logs to a random syslog server

We will let you guess the sensitive part afterwards...

```
Aug 13 10:11:51 M6000-G5 command-log:[10:11:51 08-13-2012 VtyNo: vty1 UserName: XXX IP: XXX ReturnCode: 1 CMDLine: show subscriber interface gei-0/2/1/12.60 Aug 13 10:46:05 M6000-G5 command-log:[10:46:05 08-13-2012 VtyNo: vty2 UserName: XXX IP: XXX ReturnCode: 1 CMDLine: conf t ]
Aug 13 10:46:10 M6000-G5 command-log:[10:46:10 08-13-2012 VtyNo: vty2 UserName: XXX IP: XXX ReturnCode: 1 CMD Line: aaa-authentication-template 1100 ]
...
```

20 of 24

Misconfigured network interception in Iran for 2 hours?

- On April 08, 2013, a peak of ICMP time exceeded in-transit were received during 2 hours
- IP sources allocated in Iran with a nice distribution among Iranian Internet providers

```
12:29:49.255942 IP 93.126.56.1 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.255957 IP 80.191.114.59 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.255963 IP 80.191.114.59 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.256144 IP 93.126.56.1 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.256172 IP 93.126.56.1 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.256481 IP 93.126.56.1 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.256568 IP 93.126.56.1 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.257086 IP 80.191.114.59 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.257098 IP 80.191.114.59 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.257470 IP 93.126.56.1 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.257565 IP 80.191.114.59 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.257603 IP 80.191.114.59 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.258575 IP 178.173.128.245 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.258657 IP 178.173.128.245 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.258669 IP 178.173.128.245 > a.b.100.1: ICMP time exceeded in-transit, length 36
12:29:49.258677 IP 178.173.128.245 > a.b.100.1: ICMP time exceeded in-transit, length 36
```

21 of 24

Research Opportunities

- Analysis of noise traffic in order to discover patterns or similarities among collectors.
- Network packet data storage, indexing and fast lookup (e.g. bitindex, bloomfilter, privacy-preserving dataset).
- Detecting abuse of black-hole sensors.
- Analysis of country-wide Interception from noise traffic.
- Automatic exploitation using passive reconnaissance.

Conclusions

- Security recommendations
 - Default routing/NAT to Internet in operational network is evil.
 - · Use fully qualified domain names.
 - Double check syslog exports via UDP (e.g. information leakage is easy).
 - Verify any default configuration with SNMP (e.g. enable by default on some embedded devices).
- Offensive usage? What does it happen if a malicious Internet operator is responding to misspelled RFC1918 addresses? (e.g. DNS/NTP requests, software update or proxy request).

- Interested in a research project on similar dataset? or an internship on some technically interesting project?
- → alexandre.dulaunoy@circl.lu
- PGP: 3B12 DCC2 82FA 2931 2F5B 709A 09E2 CD49 44E6 CBCD