Classifying malware using network traffic analysis.

Or how to learn Redis, git, tshark and Python in 4 hours.

CIRCL Alexandre Dulaunoy

Computer Incident
Response Center
Luxembourg

January 10, 2014

Problem Statement

e \We have more 5000 pcap files generated per day for each malware
execution in a sandbox

e We need to classify! the malware into various sets

e The project needs to be done in less than a day and the code
shared to another team via GitHub

) O1g2|assification parameters are defined by the analyst

File Format and Filename

0580c82f6£f90b75fcf81fd3ac779ae84 .pcap
05a0f4£f7a72f04bda62e3a6c92970f6e.pcap
05b4a945e5£1£7675c19b74748£d30d1 . pcap
05b57374486ce8abce33d3b7d6c9bad8. pcap
05bbddc8edac3615754£93139cf11674 .pcap
05bf1££78685b5de06b0417da01443a9 .pcap
05c3bccclabab5c698efaldfec2fd3ad.pcap

<MD5 hash of the malware) .pcap

MD5 values? of malware samples are used by A/V vendors, security
researchers and analyst.

5 O?Qgtps://www.virustotal.com/ as an example

MapReduce and Network Forensic

e MapReduce is an old concept in computer science
o The map stage to perform isolated computation on independent

problems
o The reduce stage to combine the computation results

e Network forensic computations can easily be expressed in map and
reduce steps:
o parsing, filtering, counting, sorting, aggregating, anonymizing,
shuffling...

Processing and Reading pcap files

1s -1 | parallel --gnu ’tcpdump -sO -A -n -r {1}’

¢ Nice for processing the files but...

e How do we combine the results?

® How do we extract the classification parameters? (e.g. sed, awk,
regexp?)

tshark

tshark -G fields

e Wireshark is supporting a wide range of dissectors

e tshark allows to use the dissectors from the command line

tshark -E separator=, -Tfields -e ip.dst -r mycap.cap

Concurrent Network Forensic Processing

To allow concurrent processing, a non-blocking data store is
required

To allow flexibility, a schema-free data store is required

To allow fast processing, you need to scale horizontally and to
know the cost of querying the data store

To allow streaming processing, write/cost versus read/cost should
be equivalent

Redis: a key-value/tuple store

¢ Redis is key store written in C with an extended set of data types
like lists, sets, ranked sets, hashes, queues

e Redis is usually in memory with persistence achieved by regularly
saving on disk

e Redis API is simple (telnet-like) and supported by a multitude of
programming languages

® http://www.redis.io/

http://www.redis.io/

Redis: installation

Download Redis 2.8.3 (stable version)

tar xvfz redis-2.8.3.tar.gz
cd redis-2.8.3

e make

Keys

e Keys are free text values (up to 23! bytes) - newline not allowed
e Short keys are usually better (to save memory)

e Naming convention are used like keys separated by colon

10 of 22

Value and data types

binary-safe strings

lists of binary-safe strings

sets of binary-safe strings

hashes (dictionary-like)

pubsub channels

11 of 22

Running redis and talking to redis...

e screen

e cd ./src/ && ./redis-server
e new screen session (crtl-a ¢)
e redis-cli

e DBSIZE

12 of 22

Commands available on all keys

Those commands are available on all keys regardless of their type

TYPE [key] — gives you the type of key (from string to hash)
EXISTS [key] — does the key exist in the current database
RENAME [old new]

RENAMENX [old new]

DEL [key]

RANDOMKEY — returns a random key

TTL [key] — returns the number of sec before expiration
EXPIRE [key ttl] or EXPIRE [key ts]

KEYS [pattern] — returns all keys matching a pattern (!to use
with care)

13 of 22

Commands available for strings type

e SET [key]| [value]

o GET [key]

e MGET [keyl] [key2] [key3]

e MSET [keyl] [valueofkeyl] ...

e INCR [key] — INCRBY [key] [value] — ! string interpreted as
integer

e DECR [key] — INCRBY [key] [value] — ! string interpreted as
integer

e APPEND [key] [value]

14 of 22

Commands available for sets type

SADD [key] [member] — adds a member to a set named key
SMEMBERS [key] — return the member of a set

SREM [key| [member] — removes a member to a set named key
SCARD [key] — returns the cardinality of a set

SUNION [key ...] — returns the union of all the sets

SINTER [key ...] — returns the intersection of all the sets

SDIFF [key ...] — returns the difference of all the sets

S...STORE [destkey key ...]| — same as before but stores the result

15 of 22

Commands available for list type

RPUSH - LPUSH [key] [value]
LLEN [key]

LRANGE [key] [start] [end]
LTRIM [key] [start] [end]
LSET [key] [index] [value]
LREM [key] [count] [value]

16 of 22

Sorting

e SORT [key]
e SORT [key] LIMIT 0 4

17 of 22

Commands availabled for sorted set type

ZADD [key] [score] [member]

ZCARD [key]

ZSCORE [key] [member]

ZRANK [key] [member] — get the rank of a member from bottom
ZREVRANK [key] [member] — get the rank of a member from top

18 of 22

Atomic commands

e GETSET [key] [newvalue] — sets newvalue and return previous
value

e (M)SETNX [key] [newvalue] — sets newvalue except if key exists
(useful for locking)

MSETNX is very useful to update a large set of objects without race
condition.

19 of 22

Database commands

e SELECT [0-15] — selects a database (default is 0)

e MOVE [key] [db] — move key to another database

e FLUSHDB — delete all the keys in the current database
e FLUSHALL — delete all the keys in all the databases

e SAVE - BGSAVE — save database on disk (directly or in
background)

e DBSIZE

e MONITOR — what's going on against your redis datastore (check
also redis-stat)

20 of 22

Redis from shell?

ret=$(redis-cli SADD dns:${md5} ${rdatal)
num=$ (redis-cli SCARD dns:${md5})

e Why not Python?

import redis
r = redis.StrictRedis(host=’localhost’, port=6379, db=0)

r.set(’foo’, ’bar’)
r.get(’foo?)

21 of 22

How do you integrate it?

1s -1 ./pcap/*.pcap | parallel --gnu "cat {1} |
tshark -E separator=, -Tfields -e http.server -r {1} |
python import.py -f {1} "

e Code need to be shared?

22 of 22

	Problem Statement
	MapReduce and Network Forensic
	Processing and Reading pcap files

