

530 Appendix B

called allmul that is called whenever two 64-bit values are multiplied. This
function, along with its assembly language source code, is included in the
Microsoft C run-time library (CRT), and is presented in Listing B.1.

_allmul PROC NEAR

mov eax, HIWORD (A)
mov ecx, HIWORD (B)
or ecx, eax ;test for both hiwords zero.
mov ecx, LOWORD (B)
jnz short hard ;both are zero, just mult ALO and BLO
mov eax, LOWORD (A)
mul ecx
ret 16 ; callee restores the stack
hard:
push ebx
mul ecx ;eax has AHI, ecx has BLO, so AHI * BLO
mov ebx, eax ;save result
mov eax, LOWORD (A2)
mul dword ptr HIWORD(B2) ;ALO * BHI
add ebx, eax ;ebx = ((ALO * BHI) + (AHI * BLO))
mov eax, LOWORD (A2) ;jecx = BLO
mul ecx ;so edx:eax = ALO*BLO
add edx, ebx ;now edx has all the LO*HI stuff
pop ebx
ret 16

Listing B.1 The allmul function used for performing 64-bit multiplications in code
generated by the Microsoft compilers.

Unfortunately, in most reversing scenarios you might run into this function
without knowing its name (because it will be an internal symbol inside the
program). That’s why it makes sense for you to take a quick look at Listing B.1
to try to get a general idea of how this function works—it might help you iden-
tify it later on when you run into this function while reversing.

Division

Dividing 64-bit integers is significantly more complex than multiplying, and
again the compiler uses an external function to implement this functionality.
The Microsoft compiler uses the alldiv CRT function to implement 64-bit

divisions. Again, alldiv is fully listed in Listing B.2 in order to simply its
identification when reversing a program that includes 64-bit arithmetic.

Understanding Compiled Arithmetic

531

_alldiv PROC NEAR

push edi
push esi
push ebx

; Set up the local stack and save the index registers.

When this is

; done the stack frame will look as follows (assuming that the

; expression a/b will generate a call to 1lldiv(a, b)):

; | EDI |
P | ESI |
5 ESP---->| EBX |
DVND equ [esp + 16] ; stack address of dividend (a)
DVSR equ [esp + 24] ; stack address of divisor (b)
; Determine sign of the result (edi = 0 if result is positive, non-zero
; otherwise) and make operands positive.
Xor edi, edi ; result sign assumed positive
mov eax, HIWORD (DVND) ; hi word of a
or eax, eax ; test to see if signed
jge short L1 ; skip rest if a is already positive
inc edi ; complement result sign flag
mov edx, LOWORD (DVND) ; lo word of a
neg eax ; make a positive
neg edx
sbb eax, 0

Listing B.2 The alldiv function used for performing 64-bit divisions in code generated

by the Microsoft compilers. (continued)

532 Appendix B

mov HIWORD (DVND) ,eax ; save positive value
mov LOWORD (DVND) , edx
Ll:
mov eax,HIWORD (DVSR) ; hi word of b
or eax, eax ; test to see if signed
jge short L2 ; skip rest if b is already positive
inc edi ; complement the result sign flag
mov edx, LOWORD (DVSR) ; lo word of a
neg eax ; make b positive
neg edx
sbb eax, 0
mov HIWORD (DVSR) ,eax ; save positive value
mov LOWORD (DVSR) , edx
L2:

; Now do the divide. First look to see if the divisor is less than
; 4194304K. If so, then we can use a simple algorithm with word
; divides, otherwise things get a little more complex.

; NOTE - eax currently contains the high order word of DVSR

or eax, eax ; check to see if divisor < 4194304K

jnz short L3 ; nope, gotta do this the hard way

mov ecx, LOWORD (DVSR) ; load divisor

mov eax, HIWORD (DVND) ; load high word of dividend

XOor edx, edx

div ecx ; eax <- high order bits of quotient

mov ebx, eax ; save high bits of quotient

mov eax, LOWORD (DVND) ; edx:eax <- remainder:lo word of
dividend

div ecx ; eax <- low order bits of quotient

mov edx, ebx ; edx:eax <- quotient

Jjmp short L4 ; set sign, restore stack and return

7

; Here we do it the hard way. Remember, eax contains the high word of

; DVSR
L3:
mov ebx, eax ; ebx:ecx <- divisor
mov ecx, LOWORD (DVSR)
mov edx, HIWORD (DVND) ; edx:eax <- dividend
mov eax, LOWORD (DVND)
L5:
shr ebx, 1 ; shift divisor right one bit
rcr ecx, 1

Listing B.2 (continued)

Understanding Compiled Arithmetic

533

shr
rcr
or

jnz

mov

; We may be off by one,

edx, 1 3
eax, 1

ebx, ebx

short L5 p
ecx ;
esi,eax 7

shift dividend right one bit

loop until divisor < 4194304K
now divide, ignore remainder
save quotient

so to check, we will multiply the quotient

; by the divisor and check the result against the orignal dividend

; Note that we must also check for overflow, which can occur if the

; dividend is close to 2**64 and the quotient is off by 1.

mul
mov
mov
mul
add
jc

dword ptr HIWORD(DVSR) ; QUOT * HIWORD (DVSR)

ecx, eax
eax, LOWORD (DVSR)

esi :
edx, ecx 3
short L6 B

QUOT * LOWORD (DVSR)
EDX:EAX = QUOT * DVSR
carry means Quotient is off by 1

; do long compare here between original dividend and the result of the

; multiply in edx:eax.

If original is larger or equal, we are ok,

; otherwise subtract one (1) from the gquotient.

cmp
original

ja

jb

cmp

jbe

L6:
dec
L7:
XOor
mov

edx, HIWORD (DVND)

short L6 ;
short L7 3
eax, LOWORD (DVND) ;
short L7 B

; compare hi words of result and

if result > original, do subtract

if result < original, we are ok

hi words are equal, compare lo words
if less or equal we are ok, else

;subtract

esi 8

edx, edx B

eax,esi

subtract 1 from qguotient

edx:eax <- quotient

; Just the cleanup left to do. edx:eax contains the quotient. Set the

; sign according to the

L4:
dec
jnz
neg

edi :
short L8 ;
edx i

Listing B.2 (continued)

save value, cleanup the stack, and return.

check to see if result is negative
if EDI == 0, result should be negative
otherwise, negate the result

534 Appendix B

neg eax
sbb edx, 0

; Restore the saved registers and return.

L8:
pop ebx
pop esi
pop edi
ret 16

_alldiv ENDP

Listing B.2 (continued)

I'will not go into an in-depth discussion of the workings of al1div because
it is generally a static code sequence. While reversing all you are really going
to need is to properly identify this function. The internals of how it works are
really irrelevant as long as you understand what it does.

Type Conversions

Data types are often hidden from view when looking at a low-level represen-
tation of the code. The problem is that even though most high-level languages
and compilers are normally data-type-aware,' this information doesn’t always
trickle down into the program binaries. One case in which the exact data type
is clearly established is during various type conversions. There are several dif-
ferent sequences commonly used when programs perform type casting,
depending on the specific types. The following sections discuss the most com-
mon type conversions: zero extensions and sign extensions.

Zero Extending

When a program wishes to increase the size of an unsigned integer it usually
employs the MOVZX instruction. MOVZX copies a smaller operand into a larger
one and zero extends it on the way. Zero extending simply means that the
source operand is copied into the larger destination operand and that the most

'This isn’t always the case-software developers often use generic data types such as int or void *
for dealing with a variety of data types in the same code.

Understanding Compiled Arithmetic

535

significant bits are set to zero regardless of the source operand’s value. This
usually indicates that the source operand is unsigned. MOVZX supports con-
version from 8-bit to 16-bit or 32-bit operands or from 16-bit operands into 32-
bit operands.

Sign Extending

Sign extending takes place when a program is casting a signed integer into a
larger signed integer. Because negative integers are represented using the
two’s complement notation, to enlarge a signed integer one must set all upper
bits for negative integers or clear them all if the integer is positive.

To 32 Bits

MOVSX is equivalent to MOVZX, except that instead of zero extending it per-
forms sign extending when enlarging the integer. The instruction can be used
when converting an 8-bit operand to 16 bits or 32 bits or a 16-bit operand into
32 bits.

To 64 Bits

The CDQ instruction is used for converting a signed 32-bit integer in EAX to a
64-bit sign-extended integer in EDX : EAX. In many cases, the presence of this
instruction can be considered as proof that the value stored in EAX is a signed
integer and that the following code will treat EDX and EAX together as a signed
64-bit integer, where EDX contains the most significant 32 bits and EAX con-
tains the least significant 32 bits. Similarly, when EDX is set to zero right before
an instruction that uses EDX and EAX together as a 64-bit value, you know for
a fact that EAX contains an unsigned integer.

ND 1A

C

s

Deciphering Program Data

It would be safe to say that any properly designed program is designed
around data. What kind of data must the program manage? What would be
the most accurate and efficient representation of that data within the program?
These are really the most basic questions that any skilled software designer or
developer must ask.

The same goes for reversing. To truly understand a program, reversers must
understand its data. Once the general layout and purpose of the program’s key
data structures are understood, specific code area of interest will be relatively
easy to decipher.

This appendix covers a variety of topics related to low-level data manage-
ment in a program. I start out by describing the stack and how it is used by
programs and proceed to a discussion of the most basic data constructs used in
programs, such as variables, and so on. The next section deals with how data
is laid out in memory and describes (from a low-level perspective) common
data constructs such as arrays and other types of lists. Finally, I demonstrate
how classes are implemented in low-level and how they can be identified
while reversing.

537

538 Appendix C

The Stack

The stack is basically a continuous chunk of memory that is organized into vir-
tual “layers” by each procedure running in the system. Memory within the
stack is used for the lifetime duration of a function and is freed (and can be
reused) once that function returns.

The following sections demonstrate how stacks are arranged and describe
the various calling conventions which govern the basic layout of the stack.

Stack Frames

A stack frame is the area in the stack allocated for use by the currently running
function. This is where the parameters passed to the function are stored, along
with the return address (to which the function must jump once it completes),
and the internal storage used by the function (these are the local variables the
function stores on the stack).

The specific layout used within the stack frame is critical to a function
because it affects how the function accesses the parameters passed to it and it
function stores its internal data (such as local variables). Most functions start
with a prologue that sets up a stack frame for the function to work with. The
idea is to allow quick-and-easy access to both the parameter area and the local
variable area by keeping a pointer that resides between the two. This pointer is
usually stored in an auxiliary register (usually EBP), while ESP (which is the
primary stack pointer) remains available for maintaining the current stack
position. The current stack position is important in case the function needs to
call another function. In such a case the region below the current position of
ESP will be used for creating a new stack frame that will be used by the callee.

Figure C.1 demonstrates the general layout of the stack and how a stack
frame is laid out.

The ENTER and LEAVE Instructions

The ENTER and LEAVE instructions are built-in tools provided by the CPU for
implementing a certain type of stack frame. They were designed as an easy-to-
use, one-stop solution to setting up a stack frame in a procedure.

ENTER sets up a stack frame by pushing EBP into the stack and setting it to
point to the top of the local variable area (see Figure C.1). ENTER also supports
the management of nested stack frames, usually within the same procedure (in
languages that support such nested blocks). For nesting to work, the code issu-
ing the ENTER code must specify the current nesting level (which makes this
feature less relevant for implementing actual procedure calls). When a nesting
level is provided, the instruction stores the pointer to the beginning of every
currently active stack frame in the procedure’s stack frame. The code can then
use those pointers for accessing the other currently active stack frames.

Deciphering Program Data 539

ssalppy _

Aiows|y 1soybiH _

‘(suonouny

109p92 ul) J9|1ed Aq
1o (suonouny |eopis
ul) uonoNJsul

134 Aq paddod
‘19|82 Aq paysnd

‘uononnsul 11v0 Ag paysnd

‘uononasul | 34 Ag paddod A

‘anbojoid uonouny Ag paysnd

‘anbojide uonouny Aq paddod A

ssalppy _

2 8lqeuEeA [e00T

| S|qeUeA [2007]

€ Jlojaweled

¢ Jolsweled

| J8}jsweled

SsaIppy uinjey

d43 pIo

x|

€ a|qele [e0oT

2 alqeueA [eo0T

| 9|qeueA [2007]

Alows|\ 1Mo _

1noAe awel oeys

(1o11e2)
uonoun4
snoinald

_ ssalppy

3o®BlS Jo Buluuibag

awel Yoelg s J9|en

owel oels s J9|en

owel Yoelg s J9|en

d493
0 anjep
wauny

awel4 3oels s.uonound
Buiuuny Ajusiiny

aoedg pasnun

_ Kiowsy 1s8YbIH

_ ssalppy

ds3
10 anjep
weauny

1noAe yoels

_ Alows|\ 1s9M0T

Layout of the stack and of a stack frame.

Figure C.1

ENTER is a highly complex instruction that performs the work of quite a few
instructions. Internally, it is implemented using a fairly lengthy piece of

microcode, which creates some performance problems. For this reason most

compilers seem to avoid using ENTER, even if they support nested code blocks

540 Appendix C

for languages such as C and C++. Such compilers simply ignore the existence
of code blocks while arranging the procedure’s local stack layout and place all
local variables in a single region.

The LEAVE instruction is ENTER’s counterpart. LEAVE simply restores ESP
and EBP to their previously stored values. Because LEAVE is a much simpler
instruction, many compilers seem to use it in their function epilogue (even
though ENTER is not used in the prologue).

Calling Conventions

A calling convention defines how functions are called in a program. Calling
conventions are relevant to this discussion because they govern the way data
(such as parameters) is arranged on the stack when a function call is made. It
is important that you develop an understanding of calling conventions
because you will be constantly running into function calls while reversing, and
because properly identifying the calling conventions used will be very helpful
in gaining an understanding of the program you're trying to decipher.

Before discussing the individual calling conventions, I should discuss the
basic function call instructions, CALL and RET. The CALL instruction pushes
the current instruction pointer (it actually stores the pointer to the instruction
that follows the CALL) onto the stack and performs an unconditional jump into
the new code address.

The RET instruction is CALL’s counterpart, and is the last instruction in
pretty much every function. RET pops the return address (stored earlier by
CALL) into the EIP register and proceeds execution from that address.

The following sections go over the most common calling conventions and
describe how they are implemented in assembly language.

The cdecl Calling Convention

The cdecl calling convention is the standard C and C++ calling convention.
The unique feature it has is that it allows functions to receive a dynamic num-
ber of parameters. This is possible because the caller is responsible for restor-
ing the stack pointer after making a function call. Additionally, cdecl
functions receive parameters in the reverse order compared to the rest of the
calling conventions. The first parameter is pushed onto the stack first, and the
last parameter is pushed last. Identifying cdecl calls is fairly simple: Any
function that takes one or more parameters and ends with a simple RET with
no operands is most likely a cdec1 function.

Deciphering Program Data

541

The fastcall Calling Convention

As the name implies, fastcall is a slightly higher-performance calling con-
vention that uses registers for passing the first two parameters passed to a
function. The rest of the parameters are passed through the stack. fastcall
was originally a Microsoft specific calling convention but is now supported by
most major compilers, so you can expect to see it quite frequently in modern
programs. fastcall always uses ECX and EDX to store the first and second
function parameters, respectively.

The stdcall Calling Convention

The stdcall calling convention is very common in Windows because it is
used by every Windows API and system function. stdcall is the opposite of
cdecl in terms of argument passing method and order. stdcall functions
receive parameters in the reverse order compared to cdecl, meaning that the
last parameter an stdcall function takes is pushed to the stack first. Another
important difference between the two is that stdcall functions are responsi-
ble for clearing their own stack, whereas in cdecl that’s the caller’s responsi-
bility. stdcall functions typically use the RET instruction for clearing the
stack. The RET instruction can optionally receive an operand that specifies the
number of bytes to clear from the stack after jumping back to the caller. This
means that in stdcall functions the operand passed to RET often exposes the
number of bytes passed as parameters, meaning that if you divide that num-
ber by 4 you get the number of parameters that the function receives. This can
be a very helpful hint for both identifying stdcall functions while reversing
and for determining how many parameters such functions take.

The C++ Class Member Calling Convention (thiscall)

This calling convention is used by the Microsoft and Intel compilers when a
C++ method function with a static number of parameters is called. A quick
technique for identifying such calls is to remember that any function call
sequence that loads a valid pointer into ECX and pushes parameters onto the
stack, but without using EDX, is a C++ method function call. The idea is that
because every C++ method must receive a class pointer (called the this
pointer) and is likely to use that pointer extensively, the compiler uses a more
efficient technique for passing and storing this particular parameter.

For member functions with a dynamic number of parameters, compilers tend to
use cdecl and simply pass the this pointer as the first parameter on the stack.

542 Appendix C

Basic Data Constructs

The following sections deal with the most basic data constructs from a high-
level perspective and describe how they are implemented by compilers in the
low-level realm. These are the most basic elements in programming such as
global variables, local variables, constants, and so on. The benefit of learning
how these constructs are implemented is that this knowledge can really sim-
plify the process of identifying such constructs while reversing.

Global Variables

In most programs the data hierarchy starts with one or more global variables.
These variables are used as a sort of data root when program data structures are
accessed. Often uncovering and mapping these variables is required for devel-
oping an understanding of a program. In fact, I often consider searching and
mapping global variables to be the first logical step when reversing a program.

In most environments, global variables are quite easy to locate. Global vari-
ables typically reside in fixed addresses inside the executable module’s data
section, and when they are accessed, a hard-coded address must be used,
which really makes it easy to spot code that accesses such variables. Here is a
quick example:

mov eax, [00403038]

This is a typical instruction that reads a value from a global variable. You
pretty much know for a fact that this is a global variable because of that hard-
coded address, 0x00403038. Such hard-coded addresses are rarely used by
compilers for anything other than global variables. Still, there are several other
cases in which compilers use hard-coded addresses, which are discussed in the
sidebar titled “Static Variables” and in several other places throughout this
appendix.

Local Variables

Local variables are used by programmers for storing any kind of immediate
values required by the current function. This includes counters, pointers, and
other short-term information. Compilers have two primary options for man-
aging local variables: They can be placed on the stack or they can be stored in
a register. These two options are discussed in the next sections.

Deciphering Program Data

543

STATIC VARIABLES

The static keyword has different effects on different kinds of objects. When
applied to global variables (outside of a function), static limits their scope to
the current source file. This information is usually not available in the program
binaries, so reversers are usually blind to the use of the static keyword on
global variables.

When applied to a local variable, the static keyword simply converts the
variable into a global variable placed in the module’s data section. The reality
is, of course, that such a variable would only be visible to the function in which
it's defined, but that distinction is invisible to reversers. This restriction is
enforced at compile time. The only way for a reverser to detect a static local
variable is by checking whether that variable is exclusively accessed from
within a single function. Regular global variables are likely (but not guaranteed)
to be accessed from more than one function.

Stack-Based

In many cases, compilers simply preallocate room in the function’s stack area
for the variable. This is the area on the stack that’s right below (or before) the
return address and stored base pointer. In most stack frames, EBP points to the
end of that region, so that any code requiring access to a local variable must
use EBP and subtract a certain offset from it, like this:

mov eax, [ebp - 0x4]

This code reads from EBP - 4, which is usually the beginning of the local
variable region. The specific data type of the variable is not known from this
instruction, but it is obvious that the compiler is treating this as a full 32-bit
value from the fact that EAX is used, and not one of the smaller register sizes.
Note that because this variable is accessed using what is essentially a hard-
coded offset from EBP, this variable and others around it must have a fixed,
predetermined size.

Mapping and naming the local variables in a function is a critical step in the
reversing process. Afterward, the process of deciphering the function’s logic
and flow becomes remarkably simpler!

Overwriting Passed Parameters

When developers need to pass parameters that can be modified by the called
function and read back by the caller, they just pass their parameters by refer-
ence instead of by value. The idea is that instead of actually pushing the value

544 Appendix C

of parameters onto the stack, the caller pushes an address that points to that
value. This way, when the called function receives the parameter, it can read
the value (by accessing the passed memory address) and write back to it by
simply writing to the specified memory address.

This fact makes it slightly easier for reversers to figure out what’s going on.
When a function is writing into the parameter area of the stack, you know that
it is probably just using that space to hold some extra variables, because func-
tions rarely (if ever) return values to their caller by writing back to the param-
eter area of the stack.

Register-Based

Performance-wise, compilers always strive to store all local variables in regis-
ters. Registers are always the most efficient way to store immediate values,
and using them always generates the fastest and smallest code (smallest
because most instructions have short preassigned codes for accessing regis-
ters). Compilers usually have a separate register allocator component respon-
sible for optimizing the generated code’s usage of registers. Compiler
designers often make a significant effort to optimize these components so that
registers are allocated as efficiently as possible because that can have a sub-
stantial impact on overall program size and efficiency.

There are several factors that affect the compiler’s ability to place a local
variable in a register. The most important one is space. There are eight general-
purpose registers in IA-32 processors, two of which are used for managing the
stack. The remaining six are usually divided between the local variables as effi-
ciently as possible. One important point for reversers to remember is that most
variables aren’t used for the entire lifetime of the function and can be reused.
This can be confusing because when a variable is overwritten, it might be dif-
ficult to tell whether the register still represents the same thing (meaning that
this is the same old variable) or if it now represents a brand-new variable.
Finally, another factor that forces compilers to use memory addresses for local
variables is when a variable’s address is taken using the & operator—in such
cases the compiler has no choice but to place the local variable on the stack.

Imported Variables

Imported variables are global variables that are stored and maintained in
another binary module (meaning another dynamic module, or DLL). Any
binary module can declare global variables as “exported” (this is done differ-
ently in different development platforms) and allow other binaries loaded into
the same address space access to those variables.

Deciphering Program Data 545

THE REGISTER AND VOLATILE KEYWORDS

Another factor that affects a compiler’s allocation of registers for local variable
use is the register and volatile keywords in C and C++. register tells
the compiler that this is a heavily used variable that should be placed in a
register if possible. It appears that because of advances in register allocation
algorithms some compilers have started ignoring this keyword and rely
exclusively on their internal algorithms for register allocation. At the other end
of the spectrum, the volatile keyword tells the compiler that other software
or hardware components might need to asynchronously read and write to the
variable and that it must therefore be always updated (meaning that it cannot
be cached in a register). The use of this keyword forces the compiler to use a
memory location for the variable.

Neither the register nor the volatile keyword leaves obvious marks in
the resulting binary code, but use of the volatile keyword can sometimes be
detected. Local variables that are defined as volatile are always accessed
directly from memory, regardless of how many registers are available. That is a
fairly unusual behavior in code generated by modern compilers. The register
keyword appears to leave no easily distinguishable marks in a program'’s binary
code.

Imported variables are important for reversers for several reasons, the most
important being that (unlike other variables) they are usually named. This is
because in order to export a variable, the exporting module and the importing
module must both reference the same variable name. This greatly improves
readability for reversers because they can get at least some idea of what the
variable contains through its name. It should be noted that in some cases
imported variables might not be named. This could be either because they are
exported by ordinals (see Chapter 3) or because their names were intentionally
mangled during the build process in order to slow down and annoy reversers.

Identifying imported variables is usually fairly simple because accessing
them always involves an additional level of indirection (which, incidentally,
also means that using them incurs a slight performance penalty).

A low-level code sequence that accesses an imported variable would usu-
ally look something like this:

mov
eax, DWORD PTR [IATAddress]
mov

ebx, DWORD PTR [eax]

In itself, this snippet is quite common—it is code that indirectly reads data
from a pointer that points to another pointer. The giveaway is the value of
IATAddress. Because this pointer points to the module’s Import Address
Table, it is relatively easy to detect these types of sequences.

546 Appendix C

The bottom line is that any double-pointer indirection where the first
pointer is an immediate pointing to the current module’s Import Address
Table should be interpreted as a reference to an imported variable.

Constants

C and C++ provide two primary methods for using constants within the code.
One is interpreted by the compiler’s preprocessor, and the other is interpreted
by the compiler’s front end along with the rest of the code.

Any constant defined using the #define directive is replaced with its value
in the preprocessing stage. This means that specifying the constant’s name in
the code is equivalent to typing its value. This almost always boils down to an
immediate embedded within the code.

The other alternative when defining a constant in C/C++ is to define a
global variable and add the const keyword to the definition. This produces
code that accesses the constant just as if it were a regular global variable. In
such cases, it may or may not be possible to confirm that you're dealing with a
constant. Some development tools will simply place the constant in the data
section along with the rest of the global variables. The enforcement of the
const keyword will be done at compile time by the compiler. In such cases, it
is impossible to tell whether a variable is a constant or just a global variable
that is never modified.

Other development tools might arrange global variables into two different
sections, one that’s both readable and writable, and another that is read-only.
In such a case, all constants will be placed in the read-only section and you will
get a nice hint that you're dealing with a constant.

Thread-Local Storage (TLS)

Thread-local storage is useful for programs that are heavily thread-dependent
and than maintain per-thread data structures. Using TLS instead of using reg-
ular global variables provides a highly efficient method for managing thread-
specific data structures. In Windows there are two primary techniques for
implementing thread-local storage in a program. One is to allocate TLS storage
using the TLS APIL The TLS API includes several functions such as T1sAlloc,
TlsGetValue, and T1sSetValue that provide programs with the ability to
manage a small pool of thread-local 32-bit values.

Another approach for implementing thread-local storage in Windows pro-
grams is based on a different approach that doesn’t involve any API calls. The
idea is to define a global variable with the declspec (thread) attribute that
places the variable in a special thread-local section of the image executable.
In such cases the variable can easily be identified while reversing as thread
local because it will point to a different image section than the rest of the global

Deciphering Program Data

547

variables in the executable. If required, it is quite easy to check the attributes of
the section containing the variable (using a PE-dumping tool such as DUMP-
BIN) and check whether it’s thread-local storage. Note that the thread
attribute is generally a Microsoft-specific compiler extension.

Data Structures

A data structure is any kind of data construct that is specifically laid out in
memory to meet certain program needs. Identifying data structures in mem-
ory is not always easy because the philosophy and idea behind their organiza-
tion are not always known. The following sections discuss the most common
layouts and how they are implemented in assembly language. These include
generic data structures, arrays, linked lists, and trees.

Generic Data Structures

A generic data structure is any chunk of memory that represents a collection of
fields of different data types, where each field resides at a constant distance from
the beginning of the block. This is a very broad definition that includes anything
defined using the struct keyword in C and C++ or using the class keyword
in C++. The important thing to remember about such structures is that they have
a static arrangement that is defined at compile time, and they usually have a sta-
tic size. It is possible to create a data structure where the last member is a vari-
able-sized array and that generates code that dynamically allocates the structure
in runtime based on its calculated size. Such structures rarely reside on the stack
because normally the stack only contains fixed-size elements.

Alignment

Data structures are usually aligned to the processor’s native word-size bound-
aries. That’s because on most systems unaligned memory accesses incur a
major performance penalty. The important thing to realize is that even though
data structure member sizes might be smaller than the processor’s native
word size, compilers usually align them to the processor’s word size.

A good example would be a Boolean member in a 32-bit-aligned structure.
The Boolean uses 1 bit of storage, but most compilers will allocate a full 32-bit
word for it. This is because the wasted 31 bits of space are insignificant com-
pared to the performance bottleneck created by getting the rest of the data struc-
ture out of alignment. Remember that the smallest unit that 32-bit processors can
directly address is usually 1 byte. Creating a 1-bit-long data member means that
in order to access this member and every member that comes after it, the proces-
sor would not only have to perform unaligned memory accesses, but also quite

548 Appendix C

a bit of shifting and ANDing in order to reach the correct member. This is only
worthwhile in cases where significant emphasis is placed on lowering memory
consumption.

Even if you assign a full byte to your Boolean, you'd still have to pay a sig-
nificant performance penalty because members would lose their 32-bit align-
ment. Because of all of this, with most compilers you can expect to see mostly
32-bit-aligned data structures when reversing.

Arrays

An array is simply a list of data items stored sequentially in memory. Arrays
are the simplest possible layout for storing a list of items in memory, which is
probably the reason why arrays accesses are generally easy to detect when
reversing. From the low-level perspective, array accesses stand out because
the compiler almost always adds some kind of variable (typically a register,
often multiplied by some constant value) to the object’s base address. The only
place where an array can be confused with a conventional data structure is
where the source code contains hard-coded indexes into the array. In such
cases, it is impossible to tell whether you're looking at an array or a data struc-
ture, because the offset could either be an array index or an offset into a data
structure.

Unlike generic data structures, compilers don’t typically align arrays, and items
are usually placed sequentially in memory, without any spacing for alignment.
This is done for two primary reasons. First of all, arrays can get quite large, and
aligning them would waste huge amounts of memory. Second, array items are
often accessed sequentially (unlike structure members, which tend to be
accessed without any sensible order), so that the compiler can emit code that
reads and writes the items in properly sized chunks regardless of their real size.

Generic Data Type Arrays

Generic data type arrays are usually arrays of pointers, integers, or any other
single-word-sized items. These are very simple to manage because the index is
simply multiplied by the machine’s word size. In 32-bit processors this means
multiplying by 4, so that when a program is accessing an array of 32-bit words
it must simply multiply the desired index by 4 and add that to the array’s start-
ing address in order to reach the desired item’s memory address.

Deciphering Program Data

549

Data Structure Arrays

Data structure arrays are similar to conventional arrays (that contain basic
data types such as integers, and so on), except that the item size can be any
value, depending on the size of the data structure. The following is an average
data-structure array access code.

mov eax, DWORD PTR [ebp - 0x20]
shl eax, 4

mov ecx, DWORD PTR [ebp - 0x24]
cmp DWORD PTR [ecx+eax+4], O

This snippet was taken from the middle of a loop. The ebp - 0x20 local
variable seems to be the loop’s counter. This is fairly obvious because ebp -
0x20 is loaded into EAX, which is shifted left by 4 (this is the equivalent of
multiplying by 16, see Appendix B). Pointers rarely get multiplied in such a
way—it is much more common with array indexes. Note that while reversing
with a live debugger it is slightly easier to determine the purpose of the two
local variables because you can just take a look at their values.

After the multiplication ECX is loaded from ebp - 0x24, which seems to
be the array’s base pointer. Finally, the pointer is added to the multiplied index
plus 4. This is a classic data-structure-in-array sequence. The first variable
(ECX) is the base pointer to the array. The second variable (EAX) is the current
byte offset into the array. This was created by multiplying the current logical
index by the size of each item, so you now know that each item in your array
is 16 bytes long. Finally, the program adds 4 because this is how it accesses a
specific member within the structure. In this case the second item in the struc-
ture is accessed.

Linked Lists

Linked lists are a popular and convenient method of arranging a list in mem-
ory. Programs frequently use linked lists in cases where items must frequently
be added and removed from different parts of the list. A significant disadvan-
tage with linked lists is that items are generally not directly accessible through
their index, as is the case with arrays (though it would be fair to say that this
only affects certain applications that need this type of direct access). Addition-
ally, linked lists have a certain memory overhead associated with them because
of the inclusion of one or two pointers along with every item on the list.

From a reversing standpoint, the most significant difference between an
array and a linked list is that linked list items are scattered in memory and
each item contains a pointer to the next item and possibly to the previous item
(in doubly linked lists). This is different from array items which are stored
sequentially in memory. The following sections discuss singly linked lists and
doubly linked lists.

550 Appendix C

Singly Linked Lists

Singly linked lists are simple data structures that contain a combination of the
“payload”, and a “next” pointer, which points to the next item. The idea is that
the position of each item in memory has nothing to do with the logical order of
items in the list, so that when item order changes, or when items are added
and removed, no memory needs to be copied. Figure C.2 shows how a linked
list is arranged logically and in memory.

The following code demonstrates how a linked list is traversed and accessed
in a program:

mov esi, DWORD PTR [ebp + 0x10]
test esi, esi

je AfterLoop

LoopStart:

mov eax, DWORD PTR [esi+88]
mov ecx, DWORD PTR [esi+84]
push eax

push ecx

call ProcessItem

test al, al

jne AfterLoop

mov esi, DWORD PTR [esi+196]
test esi, esi

jne LoopStart

AfterLoop:

This code section is a common linked-list iteration loop. In this example, the
compiler has assigned the current item’s pointer into EST—what must have
been called pCurrentItem (or something of that nature) in the source code.
In the beginning, the program loads the current item variable with a value
from ebp + 0x10. This is a parameter that was passed to the current func-
tion—it is most likely the list’s head pointer.

The loop’s body contains code that passes the values of two members from
the current item to a function. I've named this function ProcessItem for the
sake of readability. Note that the return value from this function is checked
and that the loop is interrupted if that value is nonzero.

If you take a look near the end, you will see the code that accesses the cur-
rent item’s “next” member and replaces the current item’s pointer with it.
Notice that the offset into the next item is 196. That is a fairly high number,
indicating that you're dealing with large items, probably a large data structure.
After loading the “next” pointer, the code checks that it’s not NULL and breaks
the loop if it is. This is most likely a while loop that checks the value of pCur-
rentItem. The following is the original source code for the previous assem-
bly language snippet.

Deciphering Program Data 551

€ way

-v—_l® c way '

| way

swoabuelly |eolbo

I9)ulod I1XoN € Way

% Ejeq € way

Aowap

| 4 Iouiod 1XoN | way|

Ejeq | way

19)UI0d 1XaN g Wway|

A eleq g way|

JapiO Aejiquy - Aowsi u|

Figure C.2 Logical and in-memory arrangement of a singly linked list.

552 Appendix C

PLIST_ITEM pCurrentItem = pListHead
while (pCurrentItem)
{
if (ProcessItem(pCurrentItem->SomeMember,
pCurrentItem->SomeOtherMember))
break;

pCurrentItem = pCurrentItem->pNext;

}

Notice how the source code uses a while loop, even though the assembly
language version clearly used an i f statement at the beginning, followed by a
do...while() loop. This is a typical loop optimization technique that was
mentioned in Appendix A.

Doubly Linked Lists

A doubly linked list is the same as a singly linked list with the difference that
each item also contains a “previous” pointer that points to the previous item in
the list. This makes it very easy to delete an item from the middle of the list,
which is not a trivial operation with singly linked lists. Another advantage is
that programs can traverse the list backward (toward the beginning of the list)
if they need to. Figure C.3 demonstrates how a doubly linked list is arranged
logically and in memory.

Trees

A binary tree is essentially a compromise between a linked list and an array.
Like linked lists, trees provide the ability to quickly add and remove items
(which can be a very slow and cumbersome affair with arrays), and they make
items very easily accessible (though not as easily as with a regular array).

Binary trees are implemented similarly to linked lists where each item sits
separately in its own block of memory. The difference is that with binary trees
the links to the other items are based on their value, or index (depending on
how the tree is arranged on what it contains).

A binary tree item usually contains two pointers (similar to the “prev” and
“next” pointers in a doubly linked list). The first is the “left-hand” pointer that
points to an item or group of items of lower or equal indexes. The second is the
“right-hand” pointer that points items of higher indexes. When searching a
binary tree, the program simply traverses the items and jumps from node to
node looking for one that matches the index it’s looking for. This is a very effi-
cient method for searching through a large number of items. Figure C.4 shows
how a tree is laid out in memory and how it’s logically arranged.

Deciphering Program Data 553

€ way

—1* ¢ wsy LN\ 2

~ L L

| way

uswebuely [eo1boT

I91Ulod 1XaN € wa)|

eleq ¢ way

18)ul0d SNolABId € Wiy

Aows

| 4 18)uIod 1XON | Wy

Ejeq | way

18}Ul0d SNOIABId | Wid)|

I9julod IXoN ¢ way

A eleq z wel|

18]UI0d SNOIABI g W8l

JapiO Meagly —Alowsy u|

Figure C.3 Doubly linked list layout—logically and in memory.

554 Appendix C

Lo L [Lo LT Lo LT e LT e [LT 2 [

wawabueny [eo1607

i

wrusH | gL [wunmen
T
[21]
wnubiH [gL [unmon
| S |
\
HyPTaBiH Z Nurmon
NuruBIH ol NurmoT
clL

HUruBH | L [wfmol
_ L
T
| 6 /]
¥
N HuriubH | 8 | nupmon
\
Nowubin | €L [uamoq
| ¢ |
\
O urubiH | v | Murmon

laplQ Areaiqiy - Aows|n uj

Figure C.4 Binary tree layout: in memory and logically.

Deciphering Program Data

555

Classes

A class is basically the C++ term (though that term is used by a number of high-
level object-oriented languages) for an “object” in the object-oriented design
sense of the word. These are logical constructs that contain a combination of
data and of code that operates on that data.

Classes are important constructs in object-oriented languages, because
pretty much every aspect of the program revolves around them. Therefore, it
is important to develop an understanding of how they are implemented and of
the various ways to identify them while reversing. In this section I will be
demonstrating how the various aspects of the average class are implemented
in assembly language, including data members, code members (methods), and
virtual members.

Data Members

A plain-vanilla class with no inheritance is essentially a data structure with
associated functions. The functions are automatically configured to receive a
pointer to an instance of the class (the this pointer) as their first parameter
(this is the this pointer I discussed earlier that’s typically passed via ECX).
When a program accesses the data members of a class the code generated will
be identical to the code generated when accessing a plain data structure.
Because data accesses are identical, you must use member function calls in
order to distinguish a class from a regular data structure.

Data Members in Inherited Classes

The powerful features of object-oriented programming aren’t really apparent
until one starts using inheritance. Inheritance allows for the creation of a
generic base class that has multiple descendants, each with different function-
ality. When an object is instantiated, the instantiating code must choose which
type of object is being created. When the compiler encounters such an instanti-
ation, it determines the exact data type being instantiated, and generates code
that allocates the object plus all of its ancestors. The compiler arranges the
classes in memory so that the base class’s (the topmost ancestor) data members
are first in memory, followed by the next ancestor, and so on and so forth.

This layout is necessary in order to guarantee “backward-compatibility”
with code that is not familiar with the specific class that was instantiated but
only with some of the base classes it inherits from. For example, when a func-
tion receives a pointer to an inherited object but is only familiar with its base
class, it can assume that the base class is the first object in the memory region,
and can simply ignore the descendants. If the same function is familiar with

556

Appendix C

the descendant’s specific type it knows to skip the base class (and any other
descendants present) in order to reach the inherited object. All of this behavior
is embedded into the machine code by the compiler based on which object
type is accepted by that function. The inherited class memory layout is
depicted in Figure C.5.

Class Methods

Conventional class methods are essentially just simple functions. Therefore, a
nonvirtual member function call is essentially a direct function call with the
this pointer passed as the first parameter. Some compilers such as Intel’s and
Microsoft’s always use the ECX register for the this pointer. Other compilers
such G++ (the C++ version of GCC) simply push this into the stack as the
first parameter.

In-Memory Layout of

Base Class Inherited Objects

Lowest Memory
?lass Base |Addmss

int BaseMemberl;
int BaseMember?2;

Base Class Instantiation

BaseMember1
Child1 Class BaseMember2

class Childl : Base

int ChildiMemberl; Child2 Class Instance

int ChildlMember2;
}i * * BaseMember1

BaseMember2

Child1Member1
Child1Member2

Child2 Class Child2Member1
Child2Member2

class Child2 : Childl

int Child2Memberl;

int Child2Member2; .
Vi L * emoers; OtherChild Class Instance

BaseMember1
BaseMember2

OtherChildMember1
OtherChild Class OtherChildMember2

| Highest Memory

class OtherChild : Base |AddeS

int OtherChildMemberl;
int OtherChildMember?2;

Figure C.5 Layout of inherited objects in memory.

Deciphering Program Data

557

To confirm that a class method call is a regular, nonvirtual call, check that
the function’s address is embedded into the code and that it is not obtained
through a function table.

Virtual Functions

The idea behind virtual functions is to allow a program to utilize an object’s
services without knowing which particular object type it is using. All it needs
to know is the type of the base class from which the specific object inherits. Of
course, the code can only call methods that are defined as part of the base class.

One thing that should be immediately obvious is that this is a runtime fea-
ture. When a function takes a base class pointer as an input parameter, callers
can also pass a descendant of that base class to the function. In compile time
the compiler can’t possibly know which specific descendant of the class in
question will be passed to the function. Because of this, the compiler must
include runtime information within the object that determines which particu-
lar method is called when an overloaded base-class method is invoked.

Compilers implement the virtual function mechanism by use of a virtual
function table. Virtual function tables are created at compile time for classes that
define virtual functions and for descendant classes that provide overloaded
implementations of virtual functions defined in other classes. These tables are
usually placed in . rdata, the read-only data section in the executable image.
A virtual function table contains hard-coded pointers to all virtual function
implementations within a specific class. These pointers will be used to find the
correct function when someone calls into one of these virtual methods.

In runtime, the compiler adds a new VFTABLE pointer to the beginning of
the object, usually before the first data member. Upon object instantiation, the
VFTABLE pointer is initialized (by compiler-generated code) to point to the
correct virtual function table. Figure C.6 shows how objects with virtual func-
tions are arranged in memory.

Identifying Virtual Function Calls

So, now that you understand how virtual functions are implemented, how do
you identify virtual function calls while reversing? It is really quite easy—vir-
tual function calls tend to stand out while reversing. The following code snip-
pet is an average virtual function call without any parameters.

mov eax, DWORD PTR [esi]
mov ecx, esi
call DWORD PTR [eax + 4]

558 Appendix C

Base Class
Implementations

Base::VirtualFunc1() { ... };

tl Base::VirtualFunc2() { ... };

Child1 Class
Implementations

Child1 Class
vftable

| Child1::VirtualFunc1() { ... };

Pointer to
Child1::VirtualFunc1()

| Child1::VirtualFunc2() { ... };

Pointer to
Child1::VirtualFunc2()

Child2 Class
Implementations

Child2 Class
vftable

Child2::VirtualFunc1() { ... };

A

Pointer to BaseFunc1

<
<

Pointer to BaseFunc2

I Child2::VirtualFunc2() { Not Implemented };

Base Class

class Base

int BaseMemberl;
virtual VirtualFuncl() ;
virtual VirtualFunc2 () ;

Child1 Class

class Childl : Base

int ChildlMemberl;
virtual ChildlFunc() ;
VirtualFuncl () ;
VirtualFunc2 () ;

Child2 Class

class Child2 : Base

int Child2Memberl;
VirtualFuncl () ;

}i

Figure C.6

Lowest Memory |

In-Memory Layout of
Inherited Objects

Address|
...... |
| .
o
| L
- _rl-_
| .
. |
. | :
[|
| L

Highest Memory |

Child1 Class Instance

Vitable Pointer —

BaseMember1

Child1Member1

Child2 Class Instance

Vftable Pointer

BaseMember1

Child1Member1

Child2Member1

Address |

is more or less generic and is used by all compilers.

In-memory layout of objects with virtual function tables. Note that this layout

Deciphering Program Data

559

The revealing element here is the use of the ECX register and the fact that the
CALL is not using a hard-coded address but is instead accessing a data struc-
ture in order to get the function’s address. Notice that this data structure is
essentially the same data structure loaded into ECX (even though it is read
from a separate register, ESTI). This tells you that the function pointer resides
inside the object instance, which is a very strong indicator that this is indeed a
virtual function call.

Let’s take a look at another virtual function call, this time at one that receives
some parameters.

mov eax, DWORD PTR [esi]
push ebx

push edx

mov ecx, esi

call DWORD PTR [eax + 4]

No big news here. This sequence is identical, except that here you have two
parameters that are pushed to the stack before the call is made. To summarize,
identifying virtual function calls is often very easy, but it depends on the spe-
cific compiler implementation. Generally speaking, any function call sequence
thatloads a valid pointer into ECX and indirectly calls a function whose address
is obtained via that same pointer is probably a C++ virtual member function
call. This is true for code generated by the Microsoft and Intel compilers.

In code produced by other compilers such as G++ (that don’t use ECX for
passing the this pointer) identification might be a bit more challenging
because there aren’t any definite qualities that can be quickly used for deter-
mining the nature of the call. In such cases, the fact that both the function’s
pointer and the data it works with reside in the same data structure should be
enough to convince us that we're dealing with a class. Granted, this is not
always true, but if someone implemented his or her own private concept of a
“class” using a generic data structure, complete with data members and func-
tion pointers stored in it, you might as well treat it as a class—it is the same
thing from the low-level perspective.

Identifying Constructors of Objects with Inheritance

For inherited objects that have virtual functions, the constructors are interest-
ing because they perform the actual initialization of the virtual function table
pointers. If you look at two constructors, one for an inherited class and another
for its base class, you will see that they both initialize the object’s virtual func-
tion table (even though an object only stores one virtual function table
pointer). Each constructor initializes the virtual function table to its own table.
This is because the constructors can’t know which particular type of object was
instantiated—the inherited class or the base class. Here is the constructor of a
simple inherited class:

560 Appendix C

InheritedClass: :InheritedClass()

push ebp

mov esp, ebp

sub esp, 8

mov [ebp - 4], ebx
mov ebx, [ebp + 8]
mov [esp], ebx

call BaseConstructor
mov [ebx + 4], O
mov [ebx], InheritedVFTable
mov ebx, [ebp - 4]
mov esp, ebp

pop ebp

ret

Notice how the constructor actually calls the base class’s constructor. This is
how object initialization takes place in C++. An object is initialized and the
constructor for its specific type is called. If the object is inherited, the compiler
adds calls to the ancestor’s constructor before the beginning of the descen-
dant’s actual constructor code. The same process takes place in each ancestor’s
constructor until the base class is reached. Here is an example of a base class
constructor:

BaseClass: :BaseClass()

push ebp

mov ebp, esp

mov edx, [ebp + 8]

mov [edx], BaseVFTable
mov [edx + 4], O

mov [edx + 8], 0

pop ebp

ret

Notice how the base class sets the virtual function pointer to its own copy
only to be replaced by the inherited class’s constructor as soon as this function
returns. Also note that this function doesn’t call any other constructors since it
is the base class. If you were to follow a chain of constructors where each call
its parent’s constructor, you would know you reached the base class at this
point because this constructor doesn’t call anyone else, it just initializes the vir-
tual function table and returns.

Symbols & Numerics
(-functions, 468

32-bit versions of Windows, 71-72
64-bit arithmetic, 528-534

64-bit versions of Windows, 71-72
3DES encryption algorithm, 200

A
Accolade game developer, 18
activation records (MSIL), 430
ADC instruction, 529
ADD instruction (IA-32)
configuration, 49-50
operands, 522
64-bit integers, 529
add instruction (MSIL), 432
address spaces, 72
Advanced Compiler Design and Imple-
mentation, Steven S. Muchnick, 54
adware, 276-277
aggregation transformations, 346
Aleph1, 245
algorithms
binary search algorithm, 177
Cipher Block Chaining (CBC), 415
cryptographic, 6

Index

DES (Data Encryption Standard)
algorithm, 200
MDS5 cryptographic hashing algo-
rithm, 213
password transformation algo-
rithm, 210-213
ripping, 365-370
3DES encryption algorithm, 200
XOR algorithm, 416
alignment of data structures,
547-548
alldiv function, 530-534
allmul function, 530
AND logical operator, 492-493,
498-499
Andrews, Gregory, Disassembly of
Executable Code Revisited, 111
Andromeda IA-32 decompiler, 477
anti-reverse-engineering clauses, 23
antireversing
antidebugger code, 329, 331-336
benefits, 327-328
control flow transformations, 346
decompilers, 348
disassemblers, 336-343
encryption, 330

561

Index

antireversing (continued)
inlining, 353
interleaving code, 354-355
OBFUSCATE macro, 343-344
obfuscation, 328-329, 344-345
opaque predicates, 346-347
outlining, 353
symbolic information, 328-330
table interpretation, 348-353
APIs (application programming
interfaces)
defined, 88
generic table API
callbacks prototypes, 195
definition, 145-146, 194-196
function prototypes, 196
internal data structures, 195
RtlDeleteElementGener-
icTable function, 193-194
RtlGetElementGenericTable
function, 153-168
RtlInitializeGenericTable
function, 146-151
RtlInsertElementGener-
icTable function, 168-170
RtlIsGenericTableEmpty
function, 152-153
RtlLocateNodeGenericTable
function, 170-178
RtlLookupElementGeneric
Table function, 188-193
Rt1lNumberGenericTable
Elements function, 151-152
RtlRealInsertElement
Worker function, 178-186
RtlSplay function, 185-188
IsDebuggerPresent Windows
API, 332-333
native API, 90-91
NtQuerySystemInformation
native API, 333-334
undocumented Windows APIs,
142-144
Win32 API, 88-90

Apple Macintosh, 423
applications of reverse engineering,
4-5
Applied Cryptography, Second Edition,
Bruce Schneier, 312, 415
“Architectural Support for Copy
and Taper Resistant Software”,
David Lie et al., 319
architecture
compilers, 55-58
decompilers, 459
Windows operating system, 70-71
arithmetic flags
carry flag (CF), 520-521
defined, 519
EFLAGS register, 519-520
overflow flag (OF), 520-521
parity flag (PF), 521
sign flag (SF), 521
zero flag (ZF), 521
arithmetic operations
ADC instruction, 529
ADD instruction, 522, 529
DIV/IDIV instruction, 524
LEA instruction, 522
modulo, 527-528
MUL/ IMUL instruction, 523-524
reciprocal multiplication, 524-527
SBB instruction, 529
64-bit arithmetic, 528-534
SUB instruction, 522, 529
arithmetic (pure), 510-512
array restructuring, 356
arrays, 31, 548-549
The Art of Computer Programming —
Volume 2: Seminumerical Algo-
rithms (Second Edition), Donald E.
Knuth, 251
The Art of Computer Programming —
Volume 3: Sorting and Searching
(Second Edition), Donald E. Knuth,
177,187
assembler program, 11

Index

563

assemblies (NET), 426, 453
assembly language
AT&T Unix notation, 49
code examples, 52-53
defined, 10-11, 44
flags, 4647
instructions, 47-51
Intel notation, 49
machine code, 11
operation code (opcode), 11
platforms, 11
registers, 44-46
AT&T Unix assembly language
notation, 49
attacks
copy protection technologies, 324
DoS (Denial-of-Service) attacks,
280
power usage analysis attacks, 319
audio, 321
Automatic Detection and Prevention of
Buffer-Overflow Attacks, Crispin
Cowan, Calton Pu, David Maier,
Heather Hinton, Peat Bakke,
Steve Beattie, Aaron Grier, Perry
Wagle, and Qian Zhang, 252

B

back end of decompilers, 476477

backdoor access (with malicious
software), 280

backdoors, 276

Bakke, Peat, Automatic Detection and
Prevention of Buffer-Overflow
Attacks, 252

base object, 29

BaseNamedObjects directory, 83

basic block (BB), 464—466

Beattie, Steve, Automatic Detection
and Prevention of Buffer-Overflow
Attacks, 252

beq instruction, 432

Best, Robert M., Microprocessor for
Executing Enciphered Programs
patent, 311, 318

bge instruction, 432

bgt instruction, 432

binary code, 11

binary file comparison programs,
242

binary search algorithm, 177

binary searching, 32

binary trees, 32, 552, 554

BIOS/firmware malware, 279-280

ble instruction, 432

blt instruction, 432

bne instruction, 432

Boomerang IA-32 decompiler, 477

box instruction, 432

br instruction, 432

branch prediction, 67-68

branchless logic

conditional instructions, 513-515
defined, 509
pure arithmetic, 510-512

break conditions in loops, 506-507

breaking copy protection
technologies

attacks, 324

challenge response, 315-316

class breaks, 312-313

cracking, 357-358

crypto-processors, 318-319

Defender crackme program,
415-416

dongle, 316-317

encryption, 318

hardware-based, 316-317

media-based, 314-316

objectives, 312

online activation, 315-316

requirements, 313

ripping algorithms, 365-370

serial numbers, 315

564

Index

breaking copy protection
technologies (continued)
server-based software, 317
StarForce suite (StarForce Tech-
nologies), 345
trusted components, 312
Uncrackable Model, 314
breakpoint interrupt, 331
BreakPoint Software Hex Workshop,
131-132
breakpoints, 331-332
brute-forcing the Defender crackme
program, 409414
BSA and IDC Global Software Piracy
Study, Business Software Alliance
and IDC, 310
bugs (overflows)
heap overflows, 255-256
integer overflows, 256260
stack overflows, 245-255
string filters, 256
Business Software Alliance, BSA and
IDC Global Software Piracy Study,
310
Byte magazine, 311
bytecodes
defined, 12
difference from binary code, 61
interpreters, 61-62
just-in-time compilers (JiTs), 62
reversing strategies, 62-63
virtual machines, 12-13, 61

C
C programming language, 34-35
C# programming language, 36-37,
428

C++ programming language, 35
CALL instruction, 51, 487, 540
call instruction, 431
calling conventions

cdecl, 540

defined, 540

fastcall, 541
stdcall, 541
thiscall, 541
calling functions, 487
carry flag (CF), 520-521
cases
Felten vs. RIAA, 22
Us vs. Sklyarov, 22
CBC (Cipher Block Chaining), 415
cdecl calling convention, 540
CDQ instruction, 535
CF (carry flag), 520-521
CFGs (control flow graphs), 462
challenge response, 315-316
checksums, 335-336
Cifuentes, Christina, Reverse Compi-
lation Techniques, 477
CIL (Common Intermediate Lan-
guage). See Common Intermedi-
ate Language (CIL)
Cipher Block Chaining (CBC), 415
“Cipher Instruction Search Attack
on the Bus-Encryption Security
Microcontroller”, Markus G.
Kuhn, 319
class breaks, 312-313
class keyword, 547
class library (.NET), 426
classes
constructors, 559-560
data members, 555-556
defined, 555
inherited classes, 555-556
methods, 556-557
virtual functions, 557-560
CLR (Common Language Runtime),
36, 60, 426-427
CMOVcc (Conditional Move),
514-515
CMP instruction, 50, 480—-483
code
analysis with decompilers, 466-468
compiler-generated, 53-54
constructs, 28-29

Index

565

code checksums, 335-336
code interleaving, 354-355
Code Red Worm, 262
code-level reversing, 13-14
Collberg, Christian
“A Functional Taxonomy for Soft-
ware Watermarking”, 322
“Manufacturing Cheap, Resilient,
and Stealthy Opaque Con-
structs”, 346
A Taxonomy of Obfuscating Transfor-
mations, 348
Common Intermediate Language
(CIL)
activation records, 430
add instruction, 432
beq instruction, 432
bge instruction, 432
bgt instruction, 432
ble instruction, 432
blt instruction, 432
bne instruction, 432
box instruction, 432
br instruction, 432
C#,36-37
call instruction, 431
code samples
counting items, 433-435
linked lists, 436443
details, 424
div instruction, 432
evaluation stack, 430
ldarg instruction, 431
1dc instruction, 431
1df1d instruction, 431
1dloc instruction, 431
mul instruction, 432
NET executables, 429
newarr instruction, 433
newobj instruction, 433
ret instruction, 431
starg instruction, 431

stfld instruction, 431
stloc instruction, 431
sub instruction, 432
switch instruction, 432
unbox instruction, 432
Common Language Runtime (CLR),
36, 60, 426427
Common Type System (CTS),
428-429
comparing operands, 50, 480—483
competing software, 8-9, 18-19
compilation
lexical analysis or scanning, 55
redundancy elimination, 57
compiler-generated code, 53-54
compilers
architecture, 55-58
bytecodes, 12
compiler-readable form, 458
defined, 11-12, 54
GCC and G++ version 3.3.1, 59
Intel C++ Compiler version 8.0,
59-60
intermediate representations, 55-56
just-in-time compilers (JiTs), 62
listing files, 58-59
Microsoft C/C++ Optimizing
Compiler version 13.10.3077, 59
optimizations, 54, 56-57
complex data types, 473474
compound conditionals, 491-492
computation transformations, 346
Computer Software Security System
patent, Richard Johnstone, 311
conditional blocks, 32
conditional branches, 51
conditional codes
signed, 483-485
unsigned, 485-486
conditional instructions, 513-515
Conditional Move (CMOVcc),
514-515

566

Index

conditionals
compound, 491-492
logical operators, 492-499
loops
break conditions, 506-507
posttested, 506
pretested, 504-506
skip-cycle statements, 507-508
unrolling, 508-509
multiple-alternative, 490-491
single-branch, 488489
switch blocks, 499-504
two-way, 489490
constants, 546
constructors, 559-560
constructs for data
constants, 546
global variables, 542
imported variables, 544-546
local variables, 542-544
thread-local storage (TLS), 546-547
context switching, 85-86
control flow
conditional blocks, 32
defined, 32
loops, 33
low-level implementation, 4344
switch blocks, 33
control flow analysis, 475
control flow graphs (CFGs), 462
control flow transformations,
346-347
conventions for calls
cdecl, 540
defined, 540
fastcall, 541
stdcall, 541
thiscall, 541
Copper, Keith D., Engineering a
Compiler, 54
copy protection technologies
attacks, 324
challenge response, 315-316

class breaks, 312-313
cracking, 357-358
crypto-processors, 318-319
Defender crackme program,
415-416
dongle, 316-317
encryption, 318
hardware-based, 316-317
media-based, 314-316
objectives, 312
online activation, 315-316
requirements, 313
ripping algorithms, 365-370
serial numbers, 315
server-based software, 317

StarForce suite (StarForce Tech-

nologies), 345
trusted components, 312
Uncrackable Model, 314

copyright laws, 19
copyrights, 309-310

CopyWrite copy protection technol-

ogy, 314

Cowan, Crispin, Automatic Detection
and Prevention of Buffer-Overflow

Attacks, 252
cracking
class breaks, 312-313
defined, 309, 357-358
keygenning, 364-365
patching, 358-363
ripping algorithms, 365-370
crackmes
Defender
brute-forcing, 409415

copy protection technologies,

415-416

decrypted code analysis, 387-395

decryption keys, 418-419

disappearance of SoftICE, 396

DUMPBIN, 372-376

Index

567

Executable Modules window,
371-372
generic usage message, 370-371
initialization routine reversal,
377-387
inlining, 419
KERNEL32 . DLL, 400-404
“killer” thread, 399—-400
obfuscated interface, 416-417
parameter parsing, 404—406
PEiD program, 376-377
processor time-stamp verification
thread, 417418
running, 370
secondary thread reversal,
396-399
16-digit hexadecimal serial num-
bers, 371
usernames, 371, 406-407
validating user information,
407-408
defined, 358
finding, 420
KeygenMe-3, 358-363
critical sections, 87
. crx file format, 202-204
Cryptex command-line data
encryption tool
clusters, 239-241
commands, 202
decrypting files, 235-236
decryption loop, 238-239
directory layout
directory processing code,
218-223
dumping, 227
file entries, 223-227
file decryption and extraction rou-
tine, 228-233
file entry format, 241
floating-point sequence, 236-238
functions, 205-207
header, 240

holes, 241
password verification process
“Bad Password” message,
207-210
hashing the password, 213-218
password transformation algo-
rithm, 210-213
scanning the file list, 234-235
3DES encryption algorithm, 200
verifying hash values, 239
welcome screen, 201
Windows Crypto API, 206-207
cryptographic service providers
(CSPs), 207
cryptography
algorithms, 6
information-stealing worms, 278
trusted computing, 322-324
crypto-processors, 318-319
CSPs (cryptographic service
providers), 207
CTS (Common Type System),
428-429

D
data constructs
constants, 546
global variables, 542
imported variables, 544-546
local variables, 542-544
thread-local storage (TLS), 546-547
Data Encryption Standard (DES)
algorithm, 200
data encryption tool
clusters, 239-241
commands, 202
decrypting files, 235-236
decryption loop, 238-239
directory layout
directory processing code,
218-223
dumping, 227
file entries, 223-227

568

Index

data encryption tool (continued)

file decryption and extraction rou-

tine, 228-233
file entry format, 241
floating-point sequence, 236238
functions, 205-207
header, 240
holes, 241
password verification process
“Bad Password” message,
207-210
hashing the password, 213-218
password transformation algo-
rithm, 210-213
scanning the file list, 234-235
3DES encryption algorithm, 200
verifying hash values, 239
welcome screen, 201
Windows Crypto API, 206-207
data management
defined, 29-30
high-level, 38
lists, 31-32
low-level, 37-38
registers, 39

user-defined data structures, 30-31

variables, 30
data members (classes), 555-556
data (programs)
defined, 537
stack
defined, 538
layout, 539
stack frames
defined, 538
ENTER instruction, 538-540
layout, 539
LEAVE instruction, 538, 540
data reverse engineering
Cryptex command-line data
encryption tool, 200-202
defined, 199

file formats, 202-204
Microsoft Word file format, 200
networking protocols, 202
uses, 199-200
data structure arrays, 549
data structures
alignment, 547-548
arrays, 31, 548-549
classes
constructors, 559-560
data members, 555-556
defined, 555
inherited classes, 555-556
methods, 556-557
virtual functions, 557-560
defined, 547
generic data structures, 547-548
linked lists, 32, 549-553
lists, 31
trees, 32, 552, 554

user-defined data structures, 30-31

variables, 30
data transformations, 355-356
data type conversions
defined, 534
sign extending, 535
zero extending, 534-535
data types
complex, 473474
primitive, 472-473
data-flow analysis
data propagation, 468470
data type propagation, 471474
defined, 466-467
register variable identification,
470471
single static assignment (SSA),
467-468
DataRescue Interactive Disassem-
bler (IDA), 112-115
dead-listing, 110

Index

569

Debray, Saumya, Disassembly of Exe-
cutable Code Revisited, 111
debuggers
breakpoint interrupt, 331
breakpoints, 15-16, 331-332
code checksums, 335-336
defined, 15-16, 116
detecting, 334-336
features, 117
hardware breakpoints, 331-332
int 3 instruction, 331
Interactive Disassembler (IDA), 121
IsDebuggerPresent Windows
API, 332
kernel-mode debuggers, 117-118,
122-126
NtQuerySystemInformation
native API, 333-334
OllyDbg, 118-120
PEBrowse Professional Interactive,
122
single-stepping, 16
SoftICE, 124-126, 334
tracing code, 15-16
trap flag, 335
user-mode debuggers, 117-122
WinDbg
command-line interface, 119
disassembler, 119
extensions, 129
features, 119
improvements, 121
kernel-mode, 123-124
user-mode, 119-121
debugging virtual machines,
127-128
decompilers
antireversing, 348
architecture, 459
back end, 476-477
code analysis, 466
control flow analysis, 475

control flow graphs (CFGs), 462
data-flow analysis
data propagation, 468470
data type propagation, 471474
defined, 466-467
register variable identification,
470-471
single static assignment (SSA),
467-468
defined, 16, 129
expression trees, 461-462
expressions, 461462
front end
basic block (BB), 464-466
function of, 463
semantic analysis, 463—464
IA-32 decompilers, 477
instruction sets, 460
intermediate representations,
459-460
library functions, 475-476
native code, 458-459
NET, 424425, 443
Defender crackme program
brute-forcing, 409-415
copy protection technologies,
415-416
decrypted code analysis, 387-395
decryption keys, 418419
disappearance of SoftICE, 396
DUMPBIN, 372-376
Executable Modules window,
371-372
generic usage message, 370
initialization routine reversal,
377-387
inlining, 419
KERNEL32 .DLL, 400-404
“killer” thread, 399—400
obfuscated interface, 416-417
parameter parsing, 404—406
PEiD program, 376-377

Index

Defender crackme program
(continued)
processor time-stamp verification
thread, 417-418
running, 370
secondary thread reversal, 396-399
16-digit hexadecimal serial num-
bers, 371
usernames, 371, 406407
validating user information,
407-408
deleting malicious software, 277
Denial-of-Service (DoS) attacks, 280
deobfuscators, 345
DES (Data Encryption Standard)
algorithm, 200
detecting debuggers, 334-336
Devices directory, 83
“Differential Power Analysis”, Paul
Kocher, Joshua Jaffe, and Ben-
jamin Jun, 319
Digital Millennium Copyright Act
(DMCA), 20-22
digital rights management (DRM), 7,
319-321
Directive on the Legal Protection of
Computer Programs (European
Union), 23
directories (Windows operating sys-
tem), 83
disassemblers
antireversing, 336-343
decompilers, 463
defined, 15, 110-112
ILDasm, 115-116
Interactive Disassembler (IDA),
112-115
linear sweep, 111, 337-338
recursive traversal, 111, 338-343
Disassembly of Executable Code Revis-
ited, Benjamin Schwarz, Saumya
Debray, and Gregory Andrews,
111

dispatcher (Windows operating sys-
tem), 84

DIV instruction (IA-32), 49-50, 524

div instruction (MSIL), 432

DLLs (Dynamic Link Libraries), 28,
96-97

DMCA (Digital Millennium Copy-
right Act), 20-22

dongle, 316-317

DoS (Denial-of-Service) attacks, 280

DotFuscator obfuscator, 444, 448-451

doubly linked lists, 552-553

DRM (digital rights management), 7,
319-321

DUMPBIN executable-dumping tool,
133-136

Dynamic Link Libraries (DLLs), 28,
96-97

E
EAX register, 4546
EBP register, 4546
EBX register, 4546
ECX register, 4546
EDI register, 4546
EDX register, 4546
EFLAGS register, 46, 519-520
ElcomSoft software company, 22
encapsulation, 27
encrypted assemblies (.NET), 453
encryption
antireversing, 330
Cipher Block Chaining (CBC), 415
copy protection technologies, 318
DES (Data Encryption Standard)
algorithm, 200
3DES encryption algorithm, 200
XOR algorithm, 416
Engineering a Compiler, Keith D. Cop-
per and Linda Torczon, 54
ENTER instruction, 538-540
epilogues in functions, 486

Index

571

EST register, 45-46
ESP register, 4546
European Union’s Directive on the
Legal Protection of Computer
Programs, 23
evaluation stack (MSIL), 430
events, 86
exception handlers, 105-107
exceptions, 105-107
EXECryptor (StrongBit Technology),
345
executable data sections, 43
executable formats
directories, 99-102
exports, 99
file alignment, 95
headers, 97-98
image sections, 95
imports, 99
relative virtual address (RVA), 95
relocations, 93-95
section alignment, 95-96
executable-dumping tools, 133-138
execution environments
defined, 60
microprocessors, 6368
virtual machines, 60-63
expression trees, 461-462
expressions, 461-462

F

fastcall calling convention, 541

faults (pages), 73-74

Felten vs. RIAA case, 22

file formats
. crx file format, 202-204
Microsoft Word file format, 200
reversing, 202-204

file-backed section object, 78

FileMon system-monitoring tool,

130
finding crackmes, 420

firmware malware, 279-280
flags
carry flag (CF), 520-521
defined, 519
EFLAGS register, 519-520
overflow flag (OF), 520-521
parity flag (PF), 521
sign flag (SF), 521
status flags, 4647
system flags, 46-47
zero flag (ZF), 521
flow analysis
data propagation, 468470
data type propagation, 471-474
defined, 466-467
register variable identification,
470-471
single static assignment (SSA),
467-468
flow control
conditional blocks, 32
defined, 32
loops, 33
low-level implementation, 43—44
switch blocks, 33
front end of decompilers
basic block (BB), 464-466
function of, 463
semantic analysis, 463—464
function calls
assembly language instructions, 51
stack, 42
“A Functional Taxonomy for Soft-
ware Watermarking”, J. Nagra, C.
Thomboroson, and C. Colberg,
322
function-level working-set tuning,
515-517
functions
alldiv, 530-534
allmul, 530
calling, 487

Index

functions (continued)
Cryptex command-line data
encryption tool, 205-207
defined, 486
epilogues, 486
(-functions, 468
imported, 487-488
internal, 487
intrinsic string-manipulation func-
tions, 249-250
library functions, 475-476
prologues, 486
RtlDeleteElementGeneric
Table, 193-194
RtlGetElementGenericTable
disassembly, 153-155
initialization, 155-159
logic and structure, 159-161
search loop 1, 161-163
search loop 2, 163-164
search loop 3, 164-165
search loop 4, 165
setup, 155-159
source code, 165-168
RtlInitializeGenericTable,
146-151
RtlInsertElementGeneric
Table, 168-170
RtlIsGenericTableEmpty,
152-153
RtlLocateNodeGenericTable,
170-178
RtlLookupElementGeneric
Table, 188-193
Rt1NumberGenericTable
Elements, 151-152
RtlRealInsertElement
Worker, 178-186
RtlSplay, 185-188
virtual functions, 557-560
(-functions, 468

G
GCC (GNU C Compiler) and G++
(GNU C++ Compiler) version
3.3.1 compiler, 59
General Method of Program Code
Obfuscation, Gregory Wroblewski,
347
generic data structures, 547-548
generic data type arrays, 548
generic table API
callbacks prototypes, 195
definition, 145-146, 194-196
function prototypes, 196
internal data structures, 195
RtlDeleteElementGeneric
Table function, 193-194
RtlGetElementGenericTable
function
disassembly, 153-155
initialization, 155-159
logic and structure, 159-161
search loop 1, 161-163
search loop 2, 163-164
search loop 3, 164-165
search loop 4, 165
setup, 155-159
source code, 165-168
RtlInitializeGenericTable
function, 146-151
RtlInsertElementGeneric
Table function, 168-170
RtlIsGenericTableEmpty
function, 152-153
RtlLocateNodeGenericTable
function, 170-178
RtlLookupElementGeneric
Table function, 188-193
Rt1NumberGenericTable
Elements function, 151-152
RtlRealInsertElementWorker
function, 178-186
RtlSplay function, 185-188

Index

573

Genesis gaming console (Sega Enter-
prises), 18

GLOBAL?? directory, 83

global variables, 542

GNU C Compiler (GCC) and GNU
C++ Compiler (G++) compilers,
59

Grier, Aaron, Automatic Detection and
Prevention of Buffer-Overflow
Attacks, 252

ground rules for reversing sessions,
142-143

H

Hacarmy.D, Trojan/Backdoor pro-
gram, 285-305

Hack SDMI challenge, 22

handles, 81

hardware breakpoints, 331-332

hardware exceptions, 105

hardware-based copy protection
technologies, 316-317

heap, 42

heap overflows, 255-256

Hex Workshop (BreakPoint Soft-
ware, Inc.), 131-132

high-level data management, 38

high-level languages, 33-37

Hinton, Heather, Automatic Detection
and Prevention of Buffer-Overflow
Attacks, 252

|
IA-32 decompilers, 477
TA-32 instructions
ADC, 529
ADD, 49-50, 522, 529
CALL, 51, 487, 540
CDQ, 535
CMP, 50, 480-483
Conditional Move (CMOVcc),
514-515

DIV, 49-50, 524
DIV/IDIV, 524
ENTER, 538-540
IDIV, 49-50, 524
IMUL, 49-50, 523
int 3,331
Jcg, b1
LEA, 522
LEAVE, 538, 540
MOV, 49
MOVSX, 535
MOVZX, 534-535
MUL, 49-50, 523
opcode (operation code), 47
operands, 47-48
RET, 51, 540
SBB, 529
Set Byte on Condition (SETcc),
513-514
SUB, 49-50, 522, 529
SYSENTER, 394
IA-32 Intel Architecture Software
Developer’s Manual, Volume 2A and
Volume 2B reference manuals, 48
IA-32 registers
defined, 39, 44-45
EAX, 45-46
EBP, 45-46
EBX, 45-46
ECX, 45-46
EDI, 45-46
EDX, 45-46
EFLAGS, 46, 519-520
ESTI, 45-46
ESP, 45-46
IDA (Interactive Disassembler),
112-115, 121
IDC, BSA and IDC Global Software
Piracy Study, 310
IDIV instruction, 49-50, 524
IIS Indexing Service Vulnerability,
262-271

574

Index

IL (Intermediate Language)
activation records, 430
add instruction, 432
beq instruction, 432
bge instruction, 432
bgt instruction, 432
ble instruction, 432
blt instruction, 432
bne instruction, 432
box instruction, 432
br instruction, 432
C#, 36-37
call instruction, 431
code samples

counting items, 433-435

linked lists, 436443
details, 424
div instruction, 432
evaluation stack, 430
ldarg instruction, 431
1dc instruction, 431
1df1d instruction, 431
1ldloc instruction, 431
mul instruction, 432
.NET executables, 429
newarr instruction, 433
newobj instruction, 433
ret instruction, 431
starg instruction, 431
stfld instruction, 431
stloc instruction, 431
sub instruction, 432
switch instruction, 432
unbox instruction, 432

ILDasm, 115-116

imported functions, 487488

imported variables, 544-546

IMUL instruction, 49-50, 523-524

information theft, 281

information-stealing worms,

278-279
inheritance, 29

inherited classes, 555-556
inlining, 353, 419
input/output system (Windows
operating system), 103-104

instruction sets for decompilers, 460
instructions (IA-32)

ADC, 529

ADD, 49-50, 522, 529

CALL, 51, 487, 540

CDQ, 535

CMP, 50, 480-483

Conditional Move (CMOVcc),

514-515

DIV, 49-50, 524

DIV/IDIV, 524

ENTER, 538-540

IDIV, 49-50, 524

IMUL, 49-50, 523

int 3,331

Jcc, 51

LEA, 522

LEAVE, 538, 540

MOV, 49

MOVSX, 535

MOVZX, 534-535

MUL, 49-50, 523

opcode (operation code), 47

operands, 47-48

RET, 51, 540

SBB, 529

Set Byte on Condition (SETcc),

513-514

SUB, 49-50, 522, 529

SYSENTER, 394
instructions (MSIL)

add, 432

beq, 432

bge, 432

bgt, 432

ble, 432

blt, 432

bne, 432

Index

575

box, 432

br, 432

call, 431

div, 432

ldarg, 431

1dc, 431

1df1ld, 431

ldloc, 431

mul, 432

newarr, 433

newobj, 433

ret, 431

starg, 431

stfld, 431

stloc, 431

sub, 432

switch, 432

unbox, 432
int 3 instruction, 331
integer overflows, 256260
Intel

assembly language notation, 49

C++ Compiler version 8.0, 59-60

LaGrande Technology Architectural

Overview, 319

NetBurst microarchitecture, 65-67
intellectual property, 310
Interactive Disassembler (IDA),

112-115, 121

interleaving code, 354-355
Intermediate Language (IL)

activation records, 430

add instruction, 432

beq instruction, 432

bge instruction, 432

bgt instruction, 432

ble instruction, 432

blt instruction, 432

bne instruction, 432

box instruction, 432

br instruction, 432

C#,36-37

call instruction, 431
code samples
counting items, 433-435
linked lists, 436443
details, 424
div instruction, 432
evaluation stack, 430
ldarg instruction, 431
1dc instruction, 431
1df1d instruction, 431
ldloc instruction, 431
mul instruction, 432
.NET executables, 429
newarr instruction, 433
newobj instruction, 433
ret instruction, 431
starg instruction, 431
stfld instruction, 431
stloc instruction, 431
sub instruction, 432
switch instruction, 432
unbox instruction, 432
intermediate representations, 55-56,
459-460
internal functions, 487
interoperability, 8, 17, 142
interpreters, 61-62
intrinsic string-manipulation func-
tions, 249-250
I/0O system (Windows operating
system), 103-104
IsDebuggerPresent Windows
API, 332-333

J

J#, 428

Jaffe, Joshua, “Differential Power
Analysis”, 319

Java, 36, 423

Java Virtual Machine (JVM), 60

Jcc instructions, 51

JiTs (just-in-time compilers), 62

576

Index

Johnstone, Richard, Computer Soft-
ware Security System patent, 311

Journal of the ACM, Self-adjusting
binary search trees, Robert Endre
Tarjan and Daniel Dominic
Sleator, 187

Jun, Benjamin, “Differential Power
Analysis”, 319

just-in-time compilers (JiTs), 62

JVM (Java Virtual Machine), 60

K

kernel memory, 74

kernel memory space, 75-77
kernel mode, 72-73
kernel-mode debuggers

applications, 122-123

defined, 117-118

limitations, 123

SoftICE, 124-126

virtual machines, 127

WinDbg, 123-124

Key ID (Windows Media Rights
Manager), 321

KeygenMe-3 crackme program,
358-363

keygenning, 364-365

keywords

class, b47

register, 545

static, 543

struct, 547

volatile, 545

kleptographic worms, 278
Knuth, Donald E.

The Art of Computer Programming —
Volume 2: Seminumerical Algo-
rithms (Second Edition), 251

The Art of Computer Programming —
Volume 3: Sorting and Searching
(Second Edition), 177, 187

Kocher, Paul, “Differential Power
Analysis”, 319

Kruegel, Christopher, “Static Disas-
sembly of Obfuscated Binaries”,
344

Kuhn, Markus G., “Cipher Instruc-
tion Search Attack on the Bus-
Encryption Security
Microcontroller”, 319

L
LaGrande Technology Architectural
Owerview, Intel, 319
last in, first out (LIFO), 40
layout
doubly linked lists, 553
singly linked lists, 551
stack, 539
stack frames, 539
trees, 554
ldarg instruction, 431
1ldc instruction, 431
1df1d instruction, 431
1dloc instruction, 431
LEA instruction, 522
LEAVE instruction, 538, 540
legality of reverse engineering,
17-23
lexical analysis or scanning, 55
libraries, 28
library functions, 475476
license agreements, 23
licenses for software, 311
Lie, David, “Architectural Support
for Copy and Taper Resistant
Software”, 319
LIFO (last in, first out), 40
linear sweep disassemblers, 337-338
line-level working-set tuning, 516,
518
linked lists, 32, 549-553
Linux, 423

Index

577

listing files, 58-59
lists, 31
live code analysis, 110
local variables, 42, 542-544
logical operators, 492-499
loops
break conditions, 506-507
defined, 33
posttested, 506
pretested, 504-506
skip-cycle statements, 507-508
unrolling, 508-509
Low, Douglas
“Manufacturing Cheap, Resilient,
and Stealthy Opaque Con-
structs”, 346
A Taxonomy of Obfuscating Transfor-
mations, 348
low-level data management, 37-38
low-level software, 9-10, 25

M

machine code, 11

Maier, David, Automatic Detection

and Prevention of Buffer-Overflow
Attacks, 252

malicious software
adware, 276-277
backdoors, 276
BIOS/firmware, 279-280
defined, 5-6, 273
deleting, 277
information-stealing wormes,

278-279
metamorphism, 283-285
mobile code, 276
polymorphism, 282-283
spyware, 276-277
Trojan/Backdoor.Hacarmy.D
program, 285-305

Trojan horses, 275

uses
backdoor access, 280
Denial-of-Service (DoS) attacks,
280
information theft, 281
resource theft, 280-281
vandalism, 280
viruses, 274
vulnerabilities, 281
worms, 274-275
malloc exploits, 255-256
malware. See malicious software
Malware: Fighting Malicious Code, Ed
Skoudis and Lenny Zeltser, 280
Managed C++, 428
managed code (.NET), 426
managing data
high-level, 38
lists, 31-32
low-level, 37-38
registers, 39
user-defined data structures, 30-31
variables, 30
“Manufacturing Cheap, Resilient,
and Stealthy Opaque Constructs”,
Christian Collberg, Clark Thom-
borson, and Douglas Low, 346
McCabe software complexity metric,
445
MDS5 cryptographic hashing algo-
rithm, 213
media-based copy protection tech-
nologies, 314-316
Memon, Nasir, “Protecting Digital
Media Content”, 322
memory management in Windows
kernel memory, 74-75
kernel memory space, 75-77
page faults, 73-74
paging, 73
section objects, 77-78
user memory, 74-75

578

Index

memory management in Windows
(continued)
user-mode allocations, 78-79
VAD (Virtual Address Descriptor)
tree, 78
virtual memory, 72-73
Virtual Memory Manager, 79-80
working sets, 74
memory mapped files, 78
metadata (.NET), 426
metamorphism, 283-285
methodologies of reversing, 110
methods, 556-557
microcode, 65

Microprocessor for Executing Enciphered

Programs patent, Robert M. Best,
311, 318
microprocessors, 63—68
Microsoft Intermediate Language
(MSIL)
activation records, 430
add instruction, 432
beq instruction, 432
bge instruction, 432
bgt instruction, 432
ble instruction, 432
blt instruction, 432
bne instruction, 432
box instruction, 432
br instruction, 432
C#, 36-37
call instruction, 431
code samples
counting items, 433-435
linked lists, 436443
details, 424
div instruction, 432
evaluation stack, 430
ldarg instruction, 431
1dc instruction, 431
1df1d instruction, 431
ldloc instruction, 431

mul instruction, 432
.NET executables, 429
newarr instruction, 433
newobj instruction, 433
ret instruction, 431
starg instruction, 431
stfld instruction, 431
stloc instruction, 431
sub instruction, 432
switch instruction, 432
unbox instruction, 432

Microsoft (MS)

C/C++ Optimizing Compiler ver-
sion 13.10.3077, 59

cryptographic service providers
(CSPs), 207

DUMPBIN executable-dumping
tool, 133-136

IIS Indexing Service Vulnerability,
262-271

ILDasm, 115-116

Next-Generation Secure Comput-
ing Base (NGSCB), 323-324

Virtual PC, 128

WinDbg debugger, 119-121,
123-124

Microsoft .NET platform

assemblies, 426, 453

C# programming language, 428

class library, 426

Common Intermediate Language
(CIL), 429

Common Language Runtime
(CLR), 426427

Common Type System (CTS),
428-429

comparison with Java, 423

compilation stages, 429

decompilers, 424425, 443

IL (Intermediate Language), 424,
429-430

J# programming language, 428

Index

579

Managed C++ programming lan-
guage, 428
managed code, 426
metadata, 426
NET Framework environment, 426
obfuscators, 424, 444-455
Visual Basic .NET programming
language, 428
Microsoft Word file format, 200
Misra, Jayadeve, Strategies to Combat
Software Piracy, 312
mobile code, 276
modules, 28
modulo, 527-528
monitoring tools
defined, 15, 129-130
FileMon, 130
PortMon, 130
Process Explorer, 130-131
RegMon, 130
TCPView, 130
TDIMon, 130
WinObj, 130
MOV instruction, 49
MOVSX instruction, 535
MOVZX instruction, 534-535
MS (Microsoft)
C/C++ Optimizing Compiler ver-
sion 13.10.3077, 59
cryptographic service providers
(CSPs), 207
DUMPBIN executable-dumping
tool, 133-136
IIS Indexing Service Vulnerability,
262-271
ILDasm, 115-116
Next-Generation Secure Comput-
ing Base (NGSCB), 323-324
Virtual PC, 128
WinDbg debugger, 119-121,
123-124

MSIL (Microsoft Intermediate Lan-
guage)
activation records, 430
add instruction, 432
beq instruction, 432
bge instruction, 432
ble instruction, 432
blt instruction, 432
bne instruction, 432
box instruction, 432
br instruction, 432
C#, 36-37
call instruction, 431
code samples
counting items, 433-435
linked lists, 436443
details, 424
div instruction, 432
evaluation stack, 430
ldarg instruction, 431
1dc instruction, 431
1df1ld instruction, 431
ldloc instruction, 431
mul instruction, 432
.NET executables, 429
newarr instruction, 433
newobj instruction, 433
ret instruction, 431
starg instruction, 431
stfld instruction, 431
stloc instruction, 431
sub instruction, 432
switch instruction, 432
unbox instruction, 432
Muchnick, Steven S., Advanced Com-
piler Design and Implementation, 54
MUL instruction, 49-50, 523-524
mul instruction, 432
multidimensional arrays, 31
multiple-alternative conditional,
490-491
mutexes, 87

580

Index

N
Nagra, J., “A Functional Taxonomy
for Software Watermarking”, 322
named objects, 81-83
native API, 90-91
native code decompilers, 457-459
Nebbett, Gary, Windows NT/2000
Native API Reference, 91, 389
NET
assemblies, 426, 453
C# programming language, 428
class library, 426
Common Intermediate Language
(CIL), 429
Common Language Runtime
(CLR), 426427
Common Type System (CTS),
428-429
comparison with Java, 423
compilation stages, 429
decompilers, 424-425, 443
IL (Intermediate Language), 424,
429-430
J# programming language, 428
Managed C++ programming lan-
guage, 428
managed code, 426
metadata, 426
.NET Framework environment, 426
obfuscators, 424, 444-455
Visual Basic .NET programming
language, 428
NetBurst microarchitecture, 65-67
networking protocols, 202
newarr instruction, 433
newobj instruction, 433
Next-Generation Secure Computing
Base (NGSCB), 323-324
nonexecutable memory, 254-255
NtQuerySystemInformation
native API, 333-334
NuMega SoftICE debugger, 124-126,
334

n-way conditionals, 33, 499-500,
502-504

o
OBFUSCATE macro, 343-344
obfuscation, 328-329, 344-345
obfuscators

defined, 63

DotFuscator, 444, 448-451

.NET, 424, 444-455

Remotesoft Obfuscator, 451-452

Remotesoft Protector, 452-455

Spices.Net, 444

XenoCode, 444, 446447
object code, 11
object-oriented design (OOD), 29
objects

base object, 29

clients, 29

defined, 29

inheritance, 29

named objects, 81-83

object-oriented design (OOD), 29

polymorphism, 29, 35

Windows operating system, 80-83
OF (overflow flag), 520-521
offline code analysis, 110
OllyDbg debugger, 118-120
OOD (object-oriented design), 29
opaque predicates, 338-340, 346-347
opcode (operation code), 11, 47
operand comparison, 50
operands

comparing, 480483

instructions, 4748

signed, 480481

unsigned, 482-483
operating systems

defined, 13

Windows

application programming inter-
faces (APIs), 88-91
architecture, 70-71

Index

581

compatibility, 71

context switching, 85-86

critical sections, 87

directories, 83

dispatcher, 84

dynamically linked libraries
(DLLs), 96-97

events, 86

exception handlers, 105-107

exceptions, 105-107

executable formats, 93-102

features, 70-71

handles, 81

history, 70

I/0 system, 103-104

kernel memory, 74

kernel memory space, 75-77

kernel mode, 72-73

multiprocessor capability, 71

multithreaded, 71

mutexes, 87

object manager, 80-81

objects, 80-83

page faults, 73-74

paging, 73

portability, 71

process initialization sequence,
87-88

processes, 84

scheduler, 84

section objects, 77-78

security, 71

semaphores, 87

64-bit versions, 71-72

supported hardware, 71

synchronization objects, 86-87

system calling mechanism, 91-93

32-bit versions, 71-72
threads, 84-85

user memory, 74

user mode, 72-73

user-mode allocations, 78-79

VAD (Virtual Address Descriptor)
tree, 78
virtual memory, 70, 72
Virtual Memory Manager, 79-80
Win32 subsystem, 104-105
working sets, 74
operation code (opcode), 11, 47
operators, 492-499
optimizers (compilers), 56-57
OR logical operator, 492, 494-498
ordering transformations, 346, 355
outlining, 353
overflow bugs
heap overflows, 255-256
integer overflows, 256260
stack overflows, 245-255
string filters, 256
overflow flag (OF), 520-521

P
page faults, 73-74
page tables (virtual memory), 72
pagefile-backed section object, 78
pages (virtual memory), 72
paging, 73
parity flag (PF), 521
password verification process
“Bad Password” message, 207-210
hashing the password, 213-218
password transformation algo-
rithm, 210-213
patching
Hex Workshop, 131-132
KeygenMe-3 crackme program,
358-363
patents, 20, 311, 318
PE (Portable Executable)
directories, 99-102
exports, 99
file alignment, 95
headers, 97-98
image sections, 95

582

Index

PE (Portable Executable) (continued)
imports, 99
relative virtual address (RVA), 95
relocations, 93-95
section alignment, 95-96
PEBrowse Professional Interactive
debugging, 122
executable dumping, 137-138
PEiD program, 376-377
PEView executable-dumping tool,
137
PF (parity flag), 521
Phrack paper, Alephl, 245
pipelines, 65-67
piracy
class breaks, 312-313
copy protection schemes, 313
copy protection technologies,
311-313
copyrights, 309-310
digital rights management (DRM),
319-321
intellectual property, 310
magnitude of, 309
software, 310-311
software piracy, 312
trusted computing, 322-324
watermarking, 321-322
polymorphism, 29, 35, 282-283
portability of Windows operating
system, 71
Portable Executable (PE)
directories, 99-102
exports, 99
file alignment, 95
headers, 97-98
image sections, 95
imports, 99
relative virtual address (RVA), 95
relocations, 93-95
section alignment, 95-96

PortMon system-monitoring tool,
130
posttested loops, 506
power usage analysis attacks, 319
precompiled assemblies (.NET), 453
PreEmptive Solutions DotFuscator
obfuscator, 444, 448-451
pretested loops, 504-506
primitive data types, 472-473
procedures
alldiv, 530-534
allmul, 530
calling, 487
Cryptex command-line data
encryption tool, 205-207
defined, 486
epilogues, 486
(,468
imported, 487488
internal, 487
intrinsic string-manipulation,
249-250
library, 475-476
prologues, 486
RtlDeleteElementGener-
icTable, 193-194
RtlGetElementGenericTable
disassembly, 153-155
initialization, 155-159
logic and structure, 159-161
search loop 1, 161-163
search loop 2, 163-164
search loop 3, 164-165
search loop 4, 165
setup, 155-159
source code, 165-168
RtlInitializeGenericTable,
146-151
RtlInsertElementGener-
icTable, 168-170
RtlIsGenericTableEmpty,
152-153

Index

583

RtlLocateNodeGenericTable,
170-178
RtlLookupElementGener-
icTable, 188-193
Rt1lNumberGenericTableEle-
ments, 151-152
RtlRealInsertElementWorker,
178-186
RtlSplay, 185-188
Process Explorer system-monitoring
tool, 130-131
process initialization sequence,
87-88
processes, 84
program comprehension, 443
program data
defined, 537
stack
defined, 538
layout, 539
stack frames
defined, 538
ENTER instruction, 538-540
layout, 539
LEAVE instruction, 538, 540
program structure
control flow
conditional blocks, 32
defined, 32
loops, 33
switch blocks, 33
data management, 29-32
defined, 26-27
encapsulation, 27
modules, 28
objects, 29
procedures, 28
programming languages
C, 34-35
C#, 36-37, 428
C++,35
Java, 36, 423
.NET, 428

prologues in functions, 486
proprietary software, 7-8
“Protecting Digital Media Content”,
Nasir Memon and Ping Wah
Wong, 322
protection technologies
attacks, 324
challenge response, 315-316
class breaks, 312-313
cracking, 357-358
crypto-processors, 318-319
Defender crackme program,
415416
dongle, 316-317
encryption, 318
hardware-based, 316-317
media-based, 314-316
objectives, 312
online activation, 315-316
requirements, 313
ripping algorithms, 365-370
serial numbers, 315
server-based software, 317
StarForce suite (StarForce Tech-
nologies), 345
trusted components, 312
Uncrackable Model, 314
Protector (Remotesoft), 452-455
Pu, Calton, Automatic Detection and
Prevention of Buffer-Overflow
Attacks, 252
pure arithmetic, 510-512

R

reciprocal multiplication, 524-527

recursive traversal disassemblers,
338-343

redundancy elimination, 57

register keyword, 545

register transfer languages (RTL),
468

register values, 42

584 Index

registers
defined, 39, 44-45
EAX, 45-46
EBP, 4546
EBX, 4546
ECX, 45-46
EDI, 45-46
EDX, 45-46
EFLAGS, 46, 519-520
EST, 4546
ESP, 4546
RegMon system-monitoring tool,
130
relative virtual address (RVA), 95
Remotesoft
Obfuscator, 451-452
Protector, 452-455
resource theft, 280-281
restructuring arrays, 356
RET instruction, 51, 540
ret instruction, 431
Reverse Compilation Techniques,
Christina Cifuentes, 477
reverse engineering
applications, 4-5
code-level reversing, 13-14
competing software, 8-9, 18-19
data reverse engineering
Cryptex command-line data
encryption tool, 200-202
defined, 199
file formats, 202-204
Microsoft Word file format, 200
networking protocols, 202
uses, 199-200
defined, 3—4
ground rules, 142-143
legality, 17-23
live code analysis, 110
offline code analysis, 110
security-related
cryptographic algorithms, 6
digital rights management
(DRM), 7

malicious software, 5-6
proprietary software, 7-8
software development, 8-9
system-level reversing, 13-14
reversing tools
Cryptex command-line data
encryption tool, 200, 202
debuggers, 15-16, 116-126
decompilers, 16, 129
disassemblers, 15, 110-116
executable dumping, 133-138
patching, 131-132
system monitoring, 15, 129-130
ripping algorithms, 365-370
RTL (register transfer languages),
468
RtlDeleteElementGener-
icTable function, 193-194
RtlGetElementGenericTable
function
disassembly, 153-155
initialization, 155-159
logic and structure, 159-161
search loop 1, 161-163
search loop 2, 163-164
search loop 3, 164-165
search loop 4, 165
setup, 155-159
source code, 165-168
RtlInitializeGenericTable
function, 146-151
RtlInsertElementGener-
icTable function, 168-170
RtlIsGenericTableEmpty func-
tion, 152-153
RtlLocateNodeGenericTable
function, 170-178
RtlLookupElementGener-
icTable function, 188-193
Rt1NumberGenericTableEle-
ments function, 151-152
RtlRealInsertElementWorker
function, 178-186

Index

585

Rt1lSplay function, 185-188
RVA (relative virtual address), 95

S
SBB instruction, 529
scheduler (Windows operating sys-
tem), 84
Schneier, Bruce, Applied Cryptogra-
phy, Second Edition, 312, 415
Schwarz, Benjamin, Disassembly of
Executable Code Revisited, 111
SDMI (Secure Digital Music Initia-
tive), 22
searching, 32
section objects, 77-78
Secure Audio Path, 321
Secure Digital Music Initiative
(SDMI), 22
security
defined, 243-244
Windows operating system, 71
security-related reverse engineering
cryptographic algorithms, 6
digital rights management
(DRM), 7
malicious software, 5-6
proprietary software, 7-8
Sega Enterprises, 18
self-adjusting binary search trees,
187-191
Self-adjusting binary search trees, Jour-
nal of the ACM (JACM), Robert
Endre Tarjan and Daniel Dominic
Sleator, 187
semaphores, 87
serial numbers, 315
server-based software, 317
Set Byte on Condition (SETcc),
513-514
sign extending, 535
sign flag (SF), 521
signed conditional codes, 483485

signed operands, 480481
single static assignment (SSA),
467-468
single-branch conditionals, 488—489
single-stepping, 16
singly linked lists, 550-552
64-bit arithmetic, 528-534
64-bit versions of Windows, 71-72
skip-cycle statements in loops,
507-508
Sklyarov, Dmitry (Russian program-
mer), 22
Skoudis, Ed, Malware: Fighting Mali-
cious Code, 280
Sleator, Daniel Dominic, Self-adjust-
ing binary search trees, Journal of
the ACM (JACM), 187
SoftICE debugger, 124-126, 334
software
anti-reverse-engineering
clauses, 23
assembly language, 10-11
bytecodes, 12-13
competing software, 8-9, 18-19
compilers, 11-12
copy protection schemes, 313
interoperability, 8, 17
license agreements, 23
low-level, 9-10, 25
malicious, 5-6, 273-277
operating systems, 13
system, 9-10
Uncrackable Model, 314
virtual machines, 12-13
software development, 8-9
software exceptions, 105
software licenses, 311
software piracy, 310-312
software watermarking, 322
Spices.Net obfuscator, 444
splay tables, 187-191
spyware, 276277

586

Index

SSA (single static assignment),
467-468
stack
defined, 40, 538
function calls, 42
layout, 539
LIFO (last in, first out), 40
local variables, 42
pop operations, 41
push operations, 41
register values, 42
stack checking, 250-254
stack frames
defined, 538
ENTER instruction, 538-540
layout, 539
LEAVE instruction, 538, 540
stack overflows, 245-255
StarForce suite (StarForce Technolo-
gies), 345
starg instruction, 431
“Static Disassembly of Obfuscated

Binaries”, Christopher Kruegel, et

al., 344
static keyword, 543
static libraries, 28
status flags, 4647
stdcall calling convention, 541
stfld instruction, 431
stloc instruction, 431
Strategies to Combat Software Piracy,
Jayadeve Misra, 312
string filters, 256
StrongBit Technology EXECryptor,
345
struct keyword, 547
structured exception handling,
105-106
structures for data
alignment, 547-548
arrays, 31, 548-549

classes
constructors, 559-560
data members, 555-556
defined, 555
inherited classes, 555-556
methods, 556-557
virtual functions, 557-560
defined, 547
generic data structures, 547-548
linked lists, 32, 549-553
lists, 31
trees, 32, 552, 554
user-defined data structures, 30-31
variables, 30
SUB instruction, 49-50, 522, 529
sub instruction, 432
switch blocks, 33, 499-504
switch instruction, 432
symbolic information, 328-330
symbolic link directory, 83
synchronization objects, 8687
SYSENTER instruction, 394
system calling mechanism (Win-
dows operating system), 91-93
system flags, 4647
system software, 9-10
system-level reversing, 13-14
system-monitoring tools
defined, 15, 129-130
FileMon, 130
PortMon, 130
Process Explorer, 130-131
RegMon, 130
TCPView, 130
TDIMon, 130
WinObj, 130

T

table API
callbacks prototypes, 195
definition, 145-146, 194-196
function prototypes, 196

Index

587

internal data structures, 195
RtlDeleteElementGener-
icTable function, 193-194
RtlGetElementGenericTable
function, 153-168
RtlInitializeGenericTable
function, 146-151
RtlInsertElementGener-
icTable function, 168-170
Rt1lIsGenericTableEmpty
function, 152-153
RtlLocateNodeGenericTable
function, 170-178
RtlLookupElementGener-
icTable function, 188-193
Rt1NumberGenericTableEle-
ments function, 151-152
RtlRealInsertElementWorker
function, 178-186
Rt1lSplay function, 185-188
table interpretation, 348-353
Tarjan, Robert Endre, Self-adjusting
binary search trees, Journal of the
ACM (JACM), 187
A Taxonomy of Obfuscating Transfor-
mations, Christian Collberg, Clark
Thomborson, and Douglas Low,
348
TCPView system-monitoring tool,
130
TDIMon system-monitoring tool,
130
technologies for copy protection
attacks, 324
challenge response, 315-316
class breaks, 312-313
cracking, 357-358
crypto-processors, 318-319
Defender crackme program,
415416
dongle, 316-317
encryption, 318

hardware-based, 316-317
media-based, 314-316
objectives, 312
online activation, 315-316
requirements, 313
ripping algorithms, 365-370
serial numbers, 315
server-based software, 317
StarForce suite (StarForce Tech-
nologies), 345
trusted components, 312
Uncrackable Model, 314
32-bit versions of Windows, 71-72
thiscall calling convention, 541
Thomborson, Clark
“A Functional Taxonomy for Soft-
ware Watermarking”, 322
“Manufacturing Cheap, Resilient,
and Stealthy Opaque Con-
structs”, 346
A Taxonomy of Obfuscating Transfor-
mations, 348
thread information block (TIB), 106
thread-local storage (TLS), 546-547
threads, 84-85
3DES encryption algorithm, 200
tools
Cryptex command-line data
encryption tool, 200, 202
debuggers, 15-16, 116-126
decompilers, 16, 129
disassemblers, 15, 110-116
executable dumping, 133-138
patching, 131-132
system monitoring, 15, 129-130
Torczon, Linda, Engineering a Com-
piler, 54
trade secrets, 20
Transcopy copy protection technol-
ogy, 314
trap flag, 335
trees, 32, 552, 554

588

Index

Trojan horses, 275
trusted computing, 322-324
tuning working sets
function-level, 515-517
line-level, 516, 518
two-way conditionals, 489—490
type conversion errors, 260-262
type conversions
defined, 534
sign extending, 535
zero extending, 534-535

U

unbox instruction, 432
Uncrackable Model, 314
undocumented APIs, 142-144
unrolling loops, 508-509

unsigned conditional codes, 485-486
unsigned operands, 482483

US vs. Sklyarov case, 22

user memory, 74

user mode, 72-73

user-defined data structures, 30-31
user-mode debuggers, 117-122

Vv
VAD (Virtual Address Descriptor)
tree, 78
vandalism, 280
variables
defined, 30
global variables, 542
imported variables, 544-546
local variables, 542-544
verification process for passwords
“Bad Password” message, 207-210
hashing the password, 213-218
password transformation algo-
rithm, 210-213
Virtual Address Descriptor (VAD)
tree, 78
virtual functions, 557-560

virtual machines
bytecodes, 12-13, 60-63
debugging, 127-128
Virtual Memory Manager, 79-80
virtual memory (Windows operat-
ing system), 70, 72
Virtual PC (Microsoft), 128
viruses, 274
Visual Basic .NET, 428
VMWare Workstation, 128
volatile keyword, 545
vulnerabilities
defined, 245
heap overflows, 255-256
IIS Indexing Service Vulnerability,
262-271
integer overflows, 256-260
intrinsic string-manipulation func-
tions, 249-250
malicious software, 281
stack overflows, 245-255
string filters, 256
type conversion errors, 260-262

w
Wagle, Perry, Automatic Detection and
Prevention of Buffer-Overflow
Attacks, 252
watermarking, 321-322
Win32 API, 88-90
Win32 subsystem, 104-105
WinDbg debugger
command-line interface, 119
disassembler, 119
extensions, 129
features, 119
improvements, 121
kernel-mode, 123-124
user-mode, 119-121
Windows APIs
generic table API, 145-146
IsDebuggerPresent, 332-333
undocumented APIs, 142-144

Index

589

Windows Media Rights Manager,
321
Windows NT/2000 Native API Refer-
ence, Gary Nebbett, 91, 389
Windows operating system
application programming inter-
faces (APIs), 88-91
architecture, 70-71
compatibility, 71
context switching, 85-86
critical sections, 87
directories, 83
dispatcher, 84
dynamically linked libraries
(DLLs), 96-97
events, 86
exception handlers, 105-107
exceptions, 105-107
executable formats, 93-102
features, 70-71
handles, 81
history, 70
I/0 system, 103-104
kernel memory, 74
kernel memory space, 75-77
kernel mode, 72-73
multiprocessor capability, 71
multithreaded, 71
mutexes, 87
object manager, 80-81
objects, 80-83
page faults, 73-74
paging, 73
portability, 71
process initialization sequence,
87-88
processes, 84
scheduler, 84
section objects, 77-78
security, 71
semaphores, 87
64-bit versions, 71-72

supported hardware, 71
synchronization objects, 86-87
system calling mechanism, 91-93
32-bit versions, 71-72
threads, 84-85
user memory, 74
user mode, 72-73
user-mode allocations, 78-79
VAD (Virtual Address Descriptor)
tree, 78
virtual memory, 70, 72
Virtual Memory Manager, 79-80
Win32 subsystem, 104-105
working sets, 74
WinObj system-monitoring tool, 130
Wong, Ping Wah, “Protecting Digital
Media Content”, 322
working sets, 74
working-set tuning
function-level, 515-517
line-level, 516, 518
worms
Code Red Worm, 262
defined, 274-275
information-stealing worms,
278-279
Wroblewski, Gregory, General
Method of Program Code Obfusca-
tion, 347

X
XenoCode obfuscator, 444, 446447
XOR algorithm, 416

4

Zeltser, Lenny, Malware: Fighting
Malicious Code, 280

zero extending, 534-535

zero flag (ZF), 521

Zhang, Qian, Automatic Detection and
Prevention of Buffer-Overflow
Attacks, 252

L, k1S
Eugeen A.
KathovshY

