
Automated NIDS Signature Creation using Honeypots
Christian Kreibich, Jon Crowcroft

University of Cambridge Computer Laboratory
JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom�

firstname.lastname � @cl.cam.ac.uk

Abstract— This paper describes Honeycomb, a system for
automated generation of attack signatures for network intrusion
detection systems (NIDSs). Our system applies pattern detection
techniques and protocol conformance checks on multiple levels in
the protocol hierarchy to network traffic captured on a honeypot
system. While running Honeycomb on an unprotected cable
modem connection for 24 hours, the system successfully created
precise traffic signatures that otherwise would have required the
skills and time of a security officer.

Currently, the creation of NIDS signatures is a tedious
manual process that requires detailed knowledge of the traffic
characteristics of any phenomenon that is supposed to be
detected by a new signature. Simplistic signatures tend to
generate large numbers of false positives; overly specific ones
cause false negatives. To address these issues, we present
Honeycomb1, a system that generates signatures for malicious
network traffic automatically. Our system applies protocol
analysis and pattern-detection techniques to traffic captured on
honeypots. Honeypots are computer resources set up for the
purpose of monitoring and logging activities of entities that
probe, attack or compromise them [1][5][6]. Using traffic on
honeypots has the major advantage of concentrating on traffic
that can be considered malicious by definition, as they provide
no production value.

We have extended the open-source honeypot honeyd [3]
by a subsystem that inspects traffic inside the honeypot.
Integrating our system with honeyd has advantages over a
bump-in-the-wire approach: we avoid duplication of effort, as
honeyd already uses libpcap to capture the relevant packets;
also, we avoid cold-start issues common to devices like packet
normalizers or NIDSs, since honeyd does not just passively
listen to traffic but rather emulates hosts answering incoming
requests. It hence knows exactly when a new connection is
started or terminated.

The philosophy behind our approach is to keep the system
free of knowledge specific to application layer protocols: Upon
packet interception, the system first performs protocol analysis
similar to traffic normalizers. However, instead of modifying
packets, deviations from expected behaviour are registered in
a signature. The system then performs flow reassembly and
compares the current connection’s flow with the connections
for which state is kept, trying to detect similarities in the
payloads. For this purpose, we have implemented a generic
O(n) longest-common-substring (LCS) algorithm based on
suffix trees, using the algorithm proposed by Ukkonen [7].
Any detected patterns are added to the signature.

Created signatures are stored in a signature pool that is
periodically reported to an output module; currently either
outputting Bro [2] or Snort [4] signatures. New signatures are

1http://www.cl.cam.ac.uk/users/cpk25/honeycomb/

added if they differ from all stored signatures, dropped if they
are duplicates, and used to improve existing signatures when-
ever possible. Signatures that differ only in destination ports
are aggregated to reduce the number of reported signatures.

alert udp any any -> 192.168.169.2/32 1434 (msg: "Honeycomb Fri Jul 18 11h46m33 2003 "; content: "|04
01 01
01 01
01 DC C9 B0|B|EB 0E
01 01 01 01 01 01 01|p|AE|B |01|p|AE|B|90 90 90 90 90 90 90 90|h|DC C9 B0|B|B8 01 01 01 01|1|C9 B1 18|
P|E2 FD|5 |01 01 01 05|P|89 E5|Qh.dllhel32hkernQhounthickChGetTf|B9|llQh32.dhws2_f|B9|etQhsockf|B9|
toQhsend|BE 18 10 AE|B|8D|E|D4|P|FF 16|P|8D|E|E0|P|8D|E|F0|P|FF 16|P|BE 10 10 AE|B|8B 1E 8B 03|=U|8B
EC|Qt|05 BE 1C 10 AE|B|FF 16 FF D0|1|C9|QQP|81 F1 03 01 04 9B 81 F1 01 01 01 01|Q|8D|E|CC|P|8B|E|C0|P
|FF 16|j|11|j|02|j|02 FF D0|P|8D|E|C4|P|8B|E|C0|P|FF 16 89 C6 09 DB 81 F3|<a|D9 FF 8B|E|B4 8D 0C|@|8D
14 88 C1 E2 04 01 C2 C1 E2 08|)|C2 8D 04 90 01 D8 89|E|B4|j|10 8D|E|B0|P1|C9|Qf|81 F1|x|01|Q|8D|E|03|
P|8B|E|AC|P|FF D6 EB|";)

Fig. 1. Signature Honeycomb created for the Slammer Worm.

Initial tests are encouraging; Honeycomb has created de-
tailed signatures for the CodeRed II and Slammer worms (see
Figure 1) and for a variety of portscanning techniques, while
maintaining good response times (see Figure 2).

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1
Honeycomb Performance Overhead

Received Packets

P
ro

ce
ss

in
g

Ti
m

e
(s

)

Honeycomb
Honeyd alone

Fig. 2. Honeycomb’s packet response times over 24-hour period.

In the future, we want to expose Honeycomb to more
aggressive traffic patterns to better understand its performance.
We are currently trying to minimise the amount of effort spent
per arriving packet. Regarding the LCS algorithm, approxi-
mate matching schemes would allow us to create signatures
that contain regular expressions. Also, applying Honeycomb to
other traffic could be useful for deriving signatures for specific
application traffic, or to verify existing signatures.

REFERENCES

[1] William R. Cheswick. An Evening with Berferd, in which a Cracker is
lured, endured, and studied. In Proceedings of the 1992 Winter USENIX
Conference, 1992.

[2] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-
Time. Computer Networks (Amsterdam, Netherlands: 1999), 31(23-
24):2435–2463, 1998.

[3] Niels Provos. Honeyd - A Virtual Honeypot Daemon. In 10th DFN-CERT
Workshop, Hamburg, Germany, February 2003.

[4] Martin Roesch. Snort: Lightweight Intrusion Detection for Networks. In
Proceedings of the 13th Conference on Systems Administration, pages
229–238, 1999.

[5] Lance Spitzner. Honeypots: Tracking Hackers. Addison-Wesley, 2003.
[6] Clifford Stoll. The Cuckoo’s Egg. Addison-Wesley, 1986.
[7] Esko Ukkonen. On-line construction of suffix trees. Algorithmica,

(14):249–260, 1995.

