
HoneyIM: Fast Detection and Suppression of
Instant Messaging Malware in Enterprise-like Networks

Mengjun Xie Zhenyu Wu Haining Wang
The College of William and Mary
{mjxie, adamwu, hnw}@cs.wm.edu

Abstract

Instant messaging (IM) has been one of most frequently
used malware attack vectors due to its popularity. Distinct
from other malware, it is straightforward for IM malware to
find and hit the next victim by exploiting the current victim’s
contact list and playing social engineering tricks. Thus,
the spread of IM malware is much harder to detect and
suppress through conventional approaches. The previous
solutions are ineffective to defend against IM malware in
an enterprise-like network environment, mainly because of
high false positive rate and the requirement of the IM server
being inside the protected network. In this paper, we pro-
pose a novel IM malware detection and suppression mecha-
nism, HoneyIM, which guarantees almost zero false positive
on detecting and blocking IM malware in an enterprise-like
network. The detection of HoneyIM is based on the concept
of honeypot. HoneyIM uses decoy accounts to trap IM mal-
ware by leveraging malware spreading characteristics. Fed
with accurate detection results, the suppression of HoneyIM
can conduct a network-wide blocking. In addition, Hon-
eyIM delivers attack information to network administrators
in real-time so that system quarantine and recovery can be
quickly performed. The core design of HoneyIM is generic,
and can be applied to the scenarios that either enterprise
IM services or public IM services are used in the protected
network. Based on open-source IM client Pidgin and
client honeypot Capture, we build a prototype of Hon-
eyIM and validate its efficacy through both simulations and
real experiments. Our results show that HoneyIM provides
effective protection against IM malware in enterprise-like
networks.

1. Introduction

Instant Messaging (IM) has been stepping into the work-
place as well as people’s daily life at remarkable speed. It
is estimated that enterprise IM users will grow to 78 mil-
lion by the end of 2008 [9]. However, large user-base and

communication immediacy also attract malware to land on
IM, which is particularly ideal for malware propagation. By
virtue of IM features and social engineering tricks, IM mal-
ware can spread quickly and stealthily, which poses a se-
rious security threat not only to home IM users but also
to organizations which allow the use of IM in workplace.
The IM malware studied in the paper refers to any mali-
cious code that spreads through Internet-based IM networks
such as Windows Messenger series (MSN) and AOL In-
stant Messenger (AIM), which have dedicated servers for
account management and message relay. Bropia [7] and
Opanki [8] are typical examples of such malware. Although
most of known IM malware spreads on popular public IM
networks, enterprise IM systems such as [6] and [14] can
also be penetrated as these corporate IM services usually
provide connectivity and interoperability with public IM
services. In 2005, the outbreak of a variant of Kelvir worm
even forced Reuters to shut down its IM service [4].

File transfer and URL-embedded message are two major
spreading vectors of IM malware. After compromising an
IM client, the malware propagates itself by either making a
malicious file transfer or sending a text message containing
a malicious URL to the online users1 in the victim’s contact
list. The contact list is also called buddy list. Once those
invigilant contacts click the file or URL, malicious code will
be triggered to execute or be downloaded from the URL
and executed, and subsequently the malware propagation
continues at an exponentially increasing speed.

Although the threat of IM malware, especially the
outbreak of zero-day IM malware, is on the rise, net-
work administrators still lack effective solutions to protect
enterprise-like networks such as campus networks and cor-
porate networks. Conventional protections using firewalls
and anti-virus products are insufficient to defend against
IM malware due to the unique propagation feature of IM
malware. Most of popular IM protocols are able to circum-
vent firewalls if their default ports are blocked. Signature-
based anti-virus products cannot detect zero-day IM mal-

1Offline contacts may also be attacked but this type of attack is rare.

ware. Meanwhile, anomaly detection techniques, such as
Norman Sandbox technology [18], may also be ineffec-
tive in catching evasive malware which behaves differently
in the sandbox environment. Compared to malicious file
transfers, malicious-URL-embedded IM messages are even
harder to be identified by firewalls and anti-virus programs.

IM providers may take quick responses, e.g., releasing
patches and mandating client upgrade, to newly discovered
vulnerabilities in their products. They may even proac-
tively block potentially malicious file transfers. However,
these filtering mechanisms still could be bypassed [22, 23].
Moreover, it is extremely hard for IM providers to protect
against malicious URLs that exploit the vulnerabilities of
Web browsers or other related applications [20]. While
some protection schemes, such as CAPTCHA and virus
throttling for IM [13, 33], can enhance IM security, the in-
curred overhead and usability degradation could be signif-
icant, and thus prohibit IM providers from using them in
near future.

Motivated by the shortage of effective defense against
IM malware, we propose HoneyIM, a framework for au-
tomating the process of IM malware detection and suppres-
sion in an enterprise-like network. Based on the concept of
honeypot, HoneyIM detects IM malware by leveraging its
inherent spreading characteristics. Specifically, HoneyIM
uses decoy accounts in normal users’ contact lists as sensors
to capture malicious content sent by IM malware, which
achieves almost zero false positive. With accurate detec-
tion, HoneyIM suppresses malware by performing network-
wide blocking. In addition, HoneyIM delivers attack in-
formation to network administrators for system quarantine
and recovery. The core design of HoneyIM is generic and
can be applied to a network that uses either private (enter-
prise) or public IM services. We implement a prototype of
HoneyIM for public IM services, based on open-source IM
client Pidgin [1] and client honeypot Capture [29]. We
validate the efficacy of HoneyIM through both simulations
and real experiments. The simulations show that even only
a small portion, e.g., 5%, of IM users in the network have
decoys in their contact lists, HoneyIM can detect the IM
malware as early as after 0.4% (on average) of IM users
are infected. The experimental results demonstrate that the
prototype system succeeds in detection, suppression, and
notification of IM malware within seconds.

The remainder of the paper is structured as follows. We
first describe the major spreading mechanisms of IM mal-
ware and related work in Section 2. Then we detail the
framework of HoneyIM in Section 3, followed by the im-
plementation and evaluation of HoneyIM in Sections 4 and
5, respectively. We discuss possible evasion to HoneyIM
and the countermeasures in Section 6. Finally, we conclude
the paper in Section 7.

2. Background and Related Work

2.1. IM Malware

IM malware propagates mainly through two ways: mali-
cious file transfer and malicious URL in text message. Usu-
ally the malware infection is triggered by the victim’s action
such as clicking the transferred file or the received URL. IM
malware could also spread without victim’s involvement,
e.g., by exploiting the vulnerabilities in IM clients. How-
ever, this type of spreading vector is rare.

In the file transfer mechanism that has been used since
early 2000s, IM malware propagates by initiating malicious
file transfers to remote contacts. Malicious files are usu-
ally renamed to attract victims or to evade network filters.
Once a victim clicks the file, the malware is invoked and
will attempt to infect more victims in the contact list. To
counter this type of malware spreading, some IMs such as
MSN forbid IM clients to transfer certain types of files such
as .pif files. While the actual file transfer is normally carried
out directly between two IM clients, the messages for trans-
fer establishment still go through IM server. Therefore, IM
servers can easily detect the messages for establishing mali-
cious file transfers and silently drop them to block malware
propagation.

Nowadays malicious URL messages become much more
popular than malicious file transfer for IM malware propa-
gation. Instead of sending a file, IM malware sends a text
message containing a malicious URL to remote contacts.
Once a victim clicks the link, either a malware binary is
downloaded and executed or some malicious web scripts
run to exploit the vulnerabilities of the Web browser or other
related applications. Compared to malicious file transfers,
malicious URL messages have several advantages in prop-
agation. First, malicious URL messages have more means
to compromise a system. File downloading is just one of its
attacking vectors. Second, malicious URLs can be used to
collect victims’ information by exploiting Web functional-
ity. For instance, the URL sent by Kelvir.k [21] points to
a php script and contains the contact’s email address. The
email address is harvested as soon as the URL is clicked.
Last but not least, IM malware can play more social engi-
neering tricks on URLs. For example, a malicious URL can
be crafted to mimic the link on a reputable Web site [3]. The
IM clients supporting HTML scripts also provide a play-
ground for IM malware to fake URLs at their will. Those
forged URLs appear normal but in fact point to malicious
webpages.

After infection, IM malware may take different actions
for propagation. Many types of malware start spreading im-
mediately after they compromise IM clients, while others
wait until they receive instructions to spread. The latter usu-
ally install certain bot programs on compromised machines,

through which the malware is controlled by the remote bot
herder.

2.2. Related Work

The security threats posed by IM malware have been
studied in [5, 12]. In [5], the spreading speed of IM mal-
ware is estimated, showing that 500,000 machines could be
infected within a minute.

Previous defense schemes against IM malware are
closely related to IM network modeling and traffic mea-
surement. Based on individual measurement and analysis,
[15, 24, 33] all verify that IM social networks formed by
IM contacts are scale-free, that is, the IM network connec-
tivities follow power-law distributions. However, a recent
measurement study [34] suggests that Weibull distributions
may be more appropriate for describing the connectivity of
IM social networks. For scale-free networks, a small por-
tion of nodes that are highly connected have significant ef-
fect on mitigating malware spread. Based on this observa-
tion, Smith [24] proposed to delay the propagation of IM
malware by disabling the accounts of most connected IM
users on the network. This scheme needs to be deployed on
IM servers. It only reduces the spread speed and may have
significant side-effects. Williamson et al. [33] applied their
virus throttling mechanism to IM and demonstrated its ef-
fectiveness by simulation. The throttling to IM is also con-
ducted at servers. The throttling becomes blind blocking if
its threshold is very restrictive, which degrades the usabil-
ity. Mannan and van Oorschot [13] proposed two defense
methods, namely limited throttling and CAPTCHA-based
challenge-response. They also provided a usage study on
per-user frequency of IM text messages and file transfers to
support the applicability of their second scheme. Liu et al.
modeled the spread of IM malware using multicast tree [11]
and analogous branching process with varied lifetime [10].
HoneyIM is orthogonal to all the schemes mentioned above,
and can achieve accurate detection and blocking without de-
grading usability.

Trivedi et al. studied the network and content charac-
teristics of spim, the spam messages on IM networks, by
using a proxy server as honeypot [31]. Their work is differ-
ent from HoneyIM, since [31] is a measurement study and it
targets spim but not IM malware. The honeypot used in [31]
refers to a SOCKS proxy, which is exploited by spimmers
to conceal their identities.

3. HoneyIM Framework

HoneyIM aims to assist network administrators in IM
malware defense by automating the process of malware de-
tection and suppression in an enterprise-like network. Uti-
lizing the innate spreading characteristics of IM malware

and applying the concept of honeypot, HoneyIM can detect
and block unknown IM malware at its early stage of spread-
ing, which greatly facilitates network filtration and system
quarantine and recovery. In this section, we first give an
overview of HoneyIM, how and why it can detect IM mal-
ware early. Then, we discuss several issues that need to be
considered when using HoneyIM in practice. After that, we
present the design of HoneyIM and the functionalities of its
components. Finally, we describe the deployment of Hon-
eyIM in an enterprise-like network.

3.1. Overview

HoneyIM is based on the concept of honeypot. As an ef-
fective intrusion detection technology, honeypot has been
used widely. According to [30], a honeypot is an infor-
mation system resource whose value lies in unauthorized
or illicit use of that resource. Not only can a honeypot
be a physical machine or a specialized program, which is
the common case, but it can also be an e-mail address, or
even an IM decoy user. Since IM malware always attempts
to infect other users on the victim’s contact list, HoneyIM
exploits decoy users to detect IM malware. Under normal
circumstances, a client user will not initiate a conversation
with a decoy user. Therefore, if the decoy user receives a
file transfer request or a URL-embedded text message origi-
nated from a client user, it is highly probable that malware is
spreading and the request/message sender is compromised.
Thanks to decoy users, HoneyIM can achieve almost zero
false positive in detection. This strong guarantee, which is
rarely offered by other schemes, relieves network admin-
istrators from worrying about possible interruption to nor-
mal IM users caused by the protection technique. In ad-
dition, HoneyIM can block malicious content that has been
detected and inform network administrators of the attack in-
formation, e.g., the IP address of the compromised machine,
in real-time.

Figure 1 illustrates the working mechanism of HoneyIM.
The IM user with an icon of honeypot is the one whose con-
tact list contains a decoy user. The events happen in the fol-
lowing sequence. (1) Some IM malware compromises an
IM client and (2) propagates. However, (3) when it tries to
spread again, it hits a decoy user and (4) is detected by Hon-
eyIM. (5) HoneyIM blocks the malicious content in IM traf-
fic (either at the edge gateway or at the IM server if the IM
service is provided within the network) and non-IM traffic2

instantly, and notifies the attack information to the network
administrator.

HoneyIM is designed to be independent, with no restric-
tion on the type and location of IM servers. Therefore, the
framework of HoneyIM can be flexibly realized under the

2Doing this is to block accesses to malicious contents, e.g., malicious
URLs.

Figure 1. Working mechanism of HoneyIM

context of either public IM services or private (enterprise)
IM services being used in the protected network. The core
of HoneyIM is the same for either server-enhanced (with
private servers) or serverless (with public servers) realiza-
tion. The difference lies in the implementation and deploy-
ment, which will be discussed in Section 3.4. The frame-
work of HoneyIM consists of several modules and these
modules can be deployed in a single machine or at differ-
ent places.

3.2. Design Issues

The success of HoneyIM largely depends on the use of
decoy users. In the following, we discuss three issues of
HoneyIM that are much related to decoy user, including ini-
tialization, sensitivity, and compatibility.

The initialization of HoneyIM mainly refers to the cre-
ation and addition of decoy user accounts. Strictly speak-
ing, it is a deployment issue. If public IM services are used
in the protected network, the network administrators need to
create decoy accounts and solicit some volunteer IM users
to add those decoy users into their contact lists. In contrast,
if an enterprise IM service is employed, the creation and ad-
dition of decoy users can be done automatically by the IM
server. However, the system must notify volunteer users the
purpose and usage of decoy accounts, and provide a disable
(or opt-out) option. This HoneyIM initialization is fulfilled
at one time, and the update of decoy accounts could be per-
formed if necessary. In addition to the volunteer policy for
IM user cooperation, the network administrators might re-
quire the IM users who have high connectivity degrees (i.e.,
the super-nodes in IM networks) to include decoy accounts
in their contact lists.

The sensitivity of HoneyIM is measured by the ratio be-
tween the number of infected users and that of all IM users
in the protected network when the spreading of IM malware
is first detected. The key factor affecting the sensitivity of

HoneyIM is the coverage of HoneyIM—the portion of the
IM users equipped with decoy user accounts among all IM
users within the network. It is obvious that HoneyIM cannot
detect malware for those users who do not include decoy ac-
counts in their contact lists. Moreover, IM malware may in-
tentionally or inadvertently bypass HoneyIM by not hitting
decoy users in the infected users’ contact lists. The word
“intentionally” does not mean that the IM malware knows
the decoys in advance, but reflects its capability of distin-
guishing decoys from other contacts. Here we assume that
the threat comes from the outside of the protected network
and the inside IM users do not collude with the outside at-
tackers. Given the coverage of HoneyIM, which is usually
determined by the network administration policy, we will
consider how to counter evasive IM malware to improve
HoneyIM sensitivity in Section 6.

Compatibility is not an issue if HoneyIM is deployed on
an enterprise IM server, since the server can maintain the
compatibility with supported IM clients. However, the com-
patibility has to be taken into account if public IM services
are used in the protected network. Under this circumstance,
various types of public IM systems may coexist. This is
especially true on the networks with less strict IM usage
policies such as campus networks. Thus, HoneyIM should
be able to talk with different types of IM clients.

Figure 2. Framework of HoneyIM

3.3. System Components

Figure 2 shows the general framework of HoneyIM,
which comprises four modules each performing a specific
functionality. Note that these modules could be deployed
either on the same machine or on different hosts (or net-
work devices). As displayed, the communication module is
responsible for handling IM traffic. It parses the IM traffic
to decoy users and delivers it to the detection module. The
detection module extracts attack vectors and related infor-
mation from IM messages, and then feeds them into the sup-
pression and notification modules. The suppression module
sifts through network traffic and filters out malicious traffic
containing attack vectors. Meanwhile, the notification mod-
ule informs network administrators of the detected malware
spreading.

3.3.1 Communication Module

The communication module is the base of HoneyIM. De-
coy accounts use it to join IM networks and communicate
with normal IM clients. This module realizes all neces-
sary functions of a normal IM client, such as signing on/off,
setting presence status, receiving messages and files, etc.
These functions are automatically executed by default and
can also be manually operated by a network administrator.
The module only accepts the messages from the users on
the contact list for blocking “spim”, the spam on IM net-
works. The communication module should support all IM
protocols that are used by the protected IM services, and
allow multiple accounts to log into different IM networks
simultaneously if necessary.

3.3.2 Detection Module

The detection module serves three purposes: (1) detect-
ing compromised IM clients, (2) identifying attack vectors,
and (3) validating attack vectors. It accomplishes the first
two tasks by consulting the communication and suppres-
sion modules and scrutinizing IM messages delivered by
the communication module, and attains the last task by con-
ducting deep-inspection.

The detection module classifies a sending IM client as
compromised, when a decoy account receives a file transfer
request or a text message with URL from the IM client. The
reason is that it is very rare for a normal user to issue such
a request or message to the decoy account3. The detection
is not affected by client-to-client or client-to-server traffic
encryption because the IM messages received by a decoy
(as a client) must be in plain-text. If IM malware spreads
through file transfer, the attack source, i.e., the IP address
of the compromised machine, is immediately known as a
file transfer is usually done between two IM clients directly.
However, if IM malware spreads through URL message, we
cannot identify the sender directly because the message is
usually relayed through server. Under this circumstance,
the attack source is inferred with the help of the suppres-
sion module, which will be described shortly. The detec-
tion module can easily generate the attack vector informa-
tion such as malicious file names and malicious URLs from
the received IM messages.

Furthermore, the detection module performs deep-
inspection to verify the virulence of the received file or
URL. There are many techniques available to achieve this
purpose. For example, we can use dynamic taint analysis
based techniques such as TaintCheck [17] and Argos [19]
to examine if a received binary can compromise system and
to generate the corresponding signature if a compromise oc-
curs. We also can adopt the technique used by HoneyMon-

3Even if a normal user accidentally sends a message to the decoy ac-
count, the message is usually a pure text message.

key [32] to check received URLs. HoneyMonkey detects
Web exploits by browsing URLs inside a virtual machine
and monitoring the change of system states. In general, any
effective and efficient host-based anomaly detection tech-
niques can be used for deep-inspection. HoneyIM does not
contain any specific technique for analyzing IM malware,
but rather provides a platform to apply existing techniques
for malware dissection and leave the choice of what tech-
nique to use to network administrators. The adopted tech-
niques are implemented as plug-ins of the detection mod-
ule, and the deep-inspection is conducted in a contained en-
vironment such as a virtual machine to prevent HoneyIM
itself from being compromised.

The incorporation of deep-inspection is justified by the
following considerations. First, deep-inspection can further
reduce false positives. It is possible that innocent URLs or
files could be sent with malicious content by IM malware
to disguise their malice. Second, deep-inspection helps dis-
cover additional or real attack vectors used by IM malware.
For example, file deep-inspection can generate the signa-
ture of malware binary, based on which the filtering is much
more robust against evasion than based on file name. IM
malware can also use different URLs in its spreading, which
in fact are doorway webpages redirecting traffic to the same
website that hosts real exploits. With URL deep-inspection,
the protection can be further enhanced because not only
doorway URLs but also real exploit URLs can be discov-
ered. Last but not least, deep-inspection uncovers the IM
malware activities, such as the infection mechanism and the
infected files, for network administrators.

After attack vector extraction and validation, the de-
tection module supplies the validated attack vectors and
sources to the suppression module for immediate network
traffic filtration. In the meantime, the detection module
feeds all collected attack information into the the notifica-
tion module, which informs network administrators of the
occurrence of an attack in real-time for prompt system quar-
antine and recovery.

3.3.3 Suppression Module

The suppression module in essence is a network filter. It
takes the attack source and vector information from the de-
tection module as input. Then, it blocks any traffic from
attack sources and filters out network traffic that contains
attack vectors. Different from other modules that have no
requirement for deployment location, the suppression mod-
ule should be installed at a network vantage point, where
it can monitor all traffic passing through the protected net-
work. The location of the suppression module will be fur-
ther discussed in Section 3.4.

The suppression module consists of two components:
non-IM traffic filter and IM traffic filter. These two compo-

nents are logically independent for flexible implementation
and deployment. The non-IM traffic filter fulfills two tasks:
blocking attack sources and filtering non-IM network traf-
fic. For the former, the filter simply drops any packet from
the attack sources to terminate malware propagation. For
the latter, the filter examines contents of inbound and out-
bound packets to identify if an internal user is attempting to
access a malicious webpage or transfer a virulent file. Any
packet containing a matched attack vector will be discarded.

The IM traffic filter also provides two functionalities.
The first is traffic filtration, which weeds out the IM mes-
sages that either come from (or go to) the compromised
clients or contain identified malicious file names or URLs.
Although a file is usually transferred between two clients,
the IM messages for establishing transfer connections are
relayed through servers in plain-text for mainstream IM
products. Therefore, blocking malicious file transfer by
dropping connection establishment messages is not affected
by client-to-client encryption. The second functionality of
the IM traffic filter is to help identify malicious URL send-
ing hosts within the protected network. Because messages
are relayed through server, the detection module cannot
identify the sources of malicious URL messages. To track
the IP address of the compromised host, the IM traffic fil-
ter records the URLs and the corresponding IP addresses of
their senders. With this information, the detection module
can easily pinpoint the malicious URL senders.

3.3.4 Notification Module

The notification module plays the role of messenger. Its
job is to inform network administrators of the occurrence of
IM malware spread upon the detection of an attack. Given
the fast spread of IM malware, the notification to network
administrators should be made in real-time or near real-time
by means of SMS (Short Messaging Service) or IM. The
notification module can also notify the victim about the fact
that his machine has been infected with IM malware via IM
or email.

3.4. Deployment

As mentioned in the overview section, HoneyIM can
be deployed with a private IM server inside the protected
network (server-enhanced deployment) or with public IM
services outside the network (serverless deployment). The
major differences between the two deployments lie in the
function location and system initialization of HoneyIM. In
serverless deployment, the non-IM and IM traffic filters of
the suppression module have to be placed on the network
edge device. However, in server-enhanced deployment,
while the non-IM traffic filter still needs to be on the net-
work edge device, the best place for the IM traffic filter is

the private IM server, where the filter can see all IM traffic.
Moreover, in practice many IM servers already include the
message filtering functionality, making IM traffic filtering
much easier there.

The deployment of HoneyIM also involves system ini-
tialization, i.e., the creation and addition of decoy accounts.
In serverless deployment, network administrators need to
register accounts for decoy users on public IM services be-
fore running HoneyIM. Due to the maximum size of con-
tact list (e.g., 600 for MSN) and the protection considera-
tion, the administrators can create multiple decoy accounts
and use them for different groups of IM users. Then, the
decoy accounts are added into the volunteer IM users’ con-
tact lists with their cooperation. By contrast, the server-
enhanced deployment saves the efforts of network admin-
istrators and IM users by automating the creation and ad-
dition of decoy accounts, just like the use of AIM Bots
for shopping and movie guide. This can be achieved by
adding a decoy account management module to the private
IM server. The module can also be used to (1) provide IM
users with the information of decoy accounts and the op-
tion to enable/disable them, and (2) update decoy accounts
periodically against potential evasion.

4. Prototype

To demonstrate the efficacy of HoneyIM, we have built
a prototype of the serverless HoneyIM, which can be eas-
ily transformed to the server-enhanced HoneyIM prototype
with minor changes in function location and system initial-
ization. We implement the HoneyIM modules using dif-
ferent techniques. We use a full-fledged open-source IM
client Pidgin (formerly known as Gaim) [1] to build the
communication module. The detection module employs
Capture [29], a high interaction client honeypot on Win-
dows systems, for URL deep-inspection. The detection
module extracts URLs from the communication module and
feeds them into Capture, which decides whether a URL
is malicious by comparing the system states such as reg-
istry and running processes before and after the URL is ac-
cessed. For any file transfer request HoneyIM does not per-
form deep-inspection but immediately fires an alert instead,
given that the file transfer method is relatively unpopular in
IM malware spreading and most IM users and programs are
vigilant to this type of threat. HoneyIM receives the deliv-
ered file and sends it to network administrators via email.
In the construction of the suppression module, we use Perl
IPQueue module for iptables [16] to perform URL logging
and pattern-matching. We implement the notification mod-
ule with two communication means: email and SMS. The
suppression module communicates with the detection mod-
ule via network socket, and thus can be deployed on a sep-
arate machine.

Because Pidgin supports multi-protocol and multi-
account, HoneyIM can log into multiple accounts on mul-
tiple IM networks simultaneously. Therefore, it can pro-
vide protection for multiple public IM networks. Note that
the choice of Pidgin and Capture is mainly due to the
availability of their source code. Upon the accessibility of
source code, any IM clients or anomaly detection systems
can be used to construct HoneyIM.

5. Evaluation

In this section, we first evaluate the detection sensitiv-
ity of HoneyIM under different coverages via simulation.
Then, we validate the applicability of HoneyIM through real
experiments.

5.1. Simulation

When adding decoy accounts is voluntary for IM users
on the protected network, it is very possible that HoneyIM
does not cover all IM users. Under this circumstance, how
effective would HoneyIM be? Because we cannot carry out
a large-scale experiment in practice, we turn to simulation
for answering this question. We adopt the simulation model
from [35] due to the similarity in propagation between IM
malware and Email worms [35]. The major metric we use is
the percentage of IM users being infected by the time the IM
malware is firstly detected by HoneyIM (the percentage of
infected IM users for short), and we investigate its variation
under different HoneyIM coverages.

5.1.1 Simulation Model

The simulation model of IM malware propagation is de-
scribed as follows. First, when an IM user receives an IM
message, she may or may not read the message immedi-
ately. The reading delay for user i, denoted by Ti, is a
stochastic variable. When the user receives a message with
a malicious URL 4, she clicks the URL with a clicking prob-
ability denoted as Ci. We assume that Ci is a constant for
user i. If the malicious URL is clicked, the malicious code
is downloaded and executed immediately. It infects the cur-
rent IM client and sends malicious URLs to all the victim’s
contacts with no delay. The malware will not spread again
unless the user receives the same URL and clicks it again.

Before we start the simulation, we need to determine the
IM network topology and the values of each Ci and Ti. Here
the IM network refers to the virtual network composed by
the contact lists of the IM users on the protected network.
According to [24] that studies an IM network containing
50,158 users, over 80% of the user contacts are bidirec-
tional, indicating that most of users are also in the contact

4The situation for malicious file transfer is similar.

lists of their buddies. Thus, we model the IM network topol-
ogy by an undirected graph G =< V, E >. For ∀v ∈ V , v
denotes a node (IM user), and for ∀e = (u, v) ∈ E, u, v ∈
V , e represents an edge that connects two users, u and v,
who are in each other’s contact list. |V | is the total number
of nodes, and D(i) is the degree of node i, i.e., the number
of edges connected to node i. The size distribution of con-
tact lists has been identified as scale-free by [15, 24, 33],
except that [34] claims that Weibull distribution has a better
fit. However, [34] does not give the parameters of Weibull
distribution and the number of their monitored IM users is
small compared to [15, 24, 33]. Therefore, we model the IM
network topology as power law and set the power law expo-
nent α to 1.7, based on the measurement results from [15]
and [24]. The network is generated by using GLP power law
generator [2] with the given α, the number of nodes |V |, and
the average node degree E[D]. We generate three IM net-
works with the number of nodes |V | = 1000/6000/6000
and the average node degree E[D] = 8/8/16, respectively.
The maximum node degrees of the generated networks are
all below 600, the maximum size of a contact list for MSN.

Similar to [35], we assume that IM users have inde-
pendent behaviors. Due to the large number of users |V |
and independent behaviors, the mean values of user read-
ing delay Ti and clicking probability Ci, denoted by E[Ti]
and E[Ci] (i = 1, 2, · · · , |V |), can be assumed to follow
Gaussian distribution. That is, E[Ti] ∼ N(µT , σ2

T) and
E[Ci] ∼ N(µC , σ2

C). We also assume that Ti follows ex-
ponential distribution and Ci is a constant for user i, and
the generation of Ti and Ci is constrained by Ti ≥ 0
and Ci ∈ [0, 1]. In simulation, we use N(20, 102) and
N(0.5, 0.32) to generate E[Ti] and E[Ci], respectively.

5.1.2 Simulation Results

Given the network topology, we randomly deploy decoys
in the network with different coverage R and run simula-
tion experiments. Each simulation run stops once IM mal-
ware hits a decoy user (blocking is in effect immediately) or
timeout occurs. The number of infected users and detection
time are the simulation output. For each coverage R, we
vary the decoy deployment 10 times and run simulation 100
times for each deployment, and have the mean and median
values derived from these 1, 000 simulation experiments.

With the increase of HoneyIM coverage, the correspond-
ing percentages of infected IM users on three different IM
networks are shown in Figure 3, in which the solid curves
are for mean values and the dashed curves are for median
values. The mean curves are above the median curves for
very small coverage values, and both types of curves drop
sharply and converge to zero with the increase of cover-
age. This clearly demonstrates the effectiveness of Hon-
eyIM. Figure 4 further zooms in on y-axis and compares the

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

50

Coverage of HoneyIM (%)

In
fe

ct
ed

 u
se

rs
 (

%
)

|V| = 1000, E[D] = 8

Mean
Median

0 2 4 6 8 10
0

5

10

15

Coverage of HoneyIM (%)

In
fe

ct
ed

 u
se

rs
 (

%
)

|V| = 6000, E[D] = 8

Mean
Median

0 2 4 6 8 10
0

2

4

6

8

10

12

14

Coverage of HoneyIM (%)

In
fe

ct
ed

 u
se

rs
 (

%
)

|V| = 6000, E[D] = 16

Mean
Median

Figure 3. Relations between HoneyIM coverages and infected user percentages

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Coverage of HoneyIM (%)

M
ea

n
in

fe
ct

ed
 u

se
rs

 (
%

)

|V|=1000, E[D]=8
|V|=6000, E[D]=8
|V|=6000, E[D]=16

Figure 4. Comparisons among mean curves

mean curves of the three IM networks. Even with the 5%
coverage, HoneyIM can detect the spread of IM malware
only after 2% (or 0.4%) of all IM users are infected for the
network with |V | = 1, 000 (or |V | = 6, 000). Compared
to the number of nodes |V |, the average node degree E[D]
has much less effect on the performance of HoneyIM. Two
mean curves, the dashed one for |V | = 6, 000, E[D] = 8
and the dotted one for |V | = 6, 000, E[D] = 16, are almost
identical.

We also compare the performance of HoneyIM with that
of IM throttling [33]. The throttling of IM malware is usu-
ally conducted on an IM server. We use the “no-delay”
mode of IM throttling and configure the working set size
and threshold to 5 and 2, respectively, as suggested. Since
it is difficult to simulate the working set for each user at run
time, we simplify the propagation model by (1) randomly
determining a node’s working set between 0 and 5 right be-
fore the node is propagating and (2) blocking the node af-
ter its propagation (no matter whether the delay queue is
overflowed or not). Therefore, the maximum number of the
nodes that a compromised node could infect is its working
set size plus 2 (the threshold). Note that this model is con-
servative compared to the original scheme, as we block an
infected node permanently once it starts spreading.

Figure 5 shows the performance comparisons between
HoneyIM (coverage R = 3%) and throttling on the three
IM networks. The solid curves represent HoneyIM and the
dotted curves represent throttling. The dashed curves show
the spreading of IM malware with no mitigation. Note that
the y-axis is logarithmic, and all the results for throttling
and no mitigation are the mean values for 100 runs. Com-
pared with throttling, HoneyIM can achieve similar perfor-
mance in terms of the number of infected users on a small
network (|V | = 1, 000), and perform much better when the
network becomes bigger (|V | = 6, 000) and has more edges
(E[D] = 16). More importantly, HoneyIM can accurately
detect the malware and block its spread right after detection,
while throttling cannot differentiate malicious traffic from
normal traffic, let alone block them in an effective manner.

5.2. Real Experiment

We set up a small testbed comprising three machines.
We use one machine as the IM client and the other two
as HoneyIM and the network gateway. The suppression
module of HoneyIM is deployed on the network gateway.
Both the IM client and HoneyIM run inside virtual ma-
chines for security and ease of experimentation. We first
use real IM malware binaries we have collected to test Hon-
eyIM by running malware on the IM client machine. We
test Jitux-A [26], Kelvir-F [27], Kelvir-M [25], and Kelvir-
Q [28], respectively, all of which spread through malicious
URL messages on MSN platforms. The URLs for Jitux-A
and Kelvir-F lead to .exe and .scr file downloading, while
the URLs for Kelvir-M and Kelvir-Q point to .php scripts
which also harvest victim’s email addresses. Unfortunately,
due to the legal reaction taken by the IM providers and se-
curity community, the webpages pointed by these known
malicious URLs are either invalid or have been removed by
the hosting websites5. The URL message sent by Kelvir-F
is not even received by HoneyIM, because of the filtering in
MSN servers. No detailed information about IM malware is

5This situation also applies to other known IM malware.

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

|V| = 1000, E[D] = 8

Virtual Time (tick)

In
fe

ct
ed

 u
se

rs

No mitigation
HoneyIM
Throttling

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

|V| = 6000, E[D] = 8

Virtual Time (tick)

In
fe

ct
ed

 u
se

rs

No mitigation
HoneyIM
Throttling

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

|V| = 6000, E[D] = 16

Virtual Time (tick)

In
fe

ct
ed

 u
se

rs

No mitigation
HoneyIM
Throttling

Figure 5. Effect comparisons between HoneyIM and IM throttling

0 2 4 6 8 10
0

10

20

30

40

50

60

70

Coverage of HoneyIM (%)

M
ea

n
in

fe
ct

ed
 u

se
rs

 (
%

)

|V| = 1000, E[D] = 8

Pr = 1
Pr = 0.5
Pr = 0.25

0 2 4 6 8 10
0

5

10

15

20

25

30

35

Coverage of HoneyIM (%)

M
ea

n
in

fe
ct

ed
 u

se
rs

 (
%

)

|V| = 6000, E[D] = 8

Pr = 1
Pr = 0.5
Pr = 0.25

0 2 4 6 8 10
0

5

10

15

20

25

30

35

Coverage of HoneyIM (%)

M
ea

n
in

fe
ct

ed
 u

se
rs

 (
%

)

|V| = 6000, E[D] = 16

Pr = 1
Pr = 0.5
Pr = 0.25

Figure 6. Effects of randomly selecting infection targets on HoneyIM

given by deep-inspection. Thus, we reconfigure the detec-
tion module to skip the deep-inspection step and rerun the
tests. The suppression and notification modules work well
as expected.

We also test the prototype using a generic approach
which overcomes the difficulty caused by the invalidity of
the known malicious URLs. We mimic IM malware by
sending malicious URLs collected by ourselves to decoy
accounts. The malicious URLs we used, in principle, have
no difference from those carried by known IM malware in
terms of Web exploits. Thus, they should have the same ef-
fect on normal IM clients and HoneyIM. The URL process
time of HoneyIM is mainly determined by deep-inspection,
which is usually finished within 30 seconds. Overall, Hon-
eyIM successfully detects all malicious URLs, updates the
URL blacklist, and sends the attack information to the des-
ignated recipient via SMS and email. For emulated mali-
cious file transfers, HoneyIM automatically receives files,
reveals file names to the suppression module, and sends file
payloads to the designated recipient via email. The whole
process takes seconds to complete, since no deep-inspection
is performed for file transfer.

6. Discussion

In previous sections, we assume that IM malware always
attempts to infect all online contacts by either initiating a
file transfer or sending a malicious URL during its spread.
This hit-all propagation strategy, however, might not always

be used. For example, “smart” IM malware may send ma-
licious URLs or files only to the active online contacts, i.e.,
those contacts that the infected IM client is talking to; or
the propagation is activated only after the infected client re-
ceives a message. Taking the non-hit-all strategy, IM mal-
ware might not hit the decoy contact even if the contact list
of the infected IM user includes the decoy accounts.

IM malware can realize the non-hit-all propagation strat-
egy by either intentionally or randomly selecting a part of
all online contacts as targets. To prevent decoys from being
easily distinguished, we can enhance HoneyIM with inter-
action functionality. As a countermeasure, HoneyIM uses
the interaction functionality to mimic human users for de-
coys by initiating chat sessions with normal users, making
it much harder for IM malware to tell decoys from others.
The chat content can be important security notices or other
user interested information. We readily agree that IM mal-
ware can still avoid decoy contacts even with the interaction
functionality, for example, by infecting the most active con-
tacts. However, the spread of this type of IM malware could
be significantly reduced. According to a recent IM traffic
measurement [34], IM users only contact a small portion of
users in their contact lists. On average an AIM user chats
with only 1.9 users and an MSN user chats with 5.5 users.

The random selection of infection targets may also help
IM malware bypass decoy contacts. To study the effect of
the random selection on HoneyIM, we conduct the follow-
ing experiments based on the previous simulation for Hon-
eyIM. We apply a probabilistic propagation strategy to the

experiments. That is, when IM malware propagates, it will
send malicious content to each contact with a probability
p. With the probabilistic infection, the number of users that
malware will contact becomes p×n on average, where n is
the total number of the online contacts of the infected user.

We test and compare the effects of random target se-
lection on HoneyIM with three different probabilities p =
1, 0.5, 0.25 on the three IM networks, respectively. Here
p = 1 refers to the aforementioned deterministic infection.
The comparison is displayed in Figure 6, in which the curve
of p = 0.5 is above the curve of p = 1 but below the curve
of p = 0.25. It indicates that with the decrease of the prob-
ability value, the average number of infected users becomes
larger. However, the difference among three curves quickly
becomes negligible with the increase of the coverage. In
general, the random target selection has little effect on Hon-
eyIM.

7. Conclusion

In this paper we have proposed HoneyIM, a novel de-
tection and suppression mechanism to defend against IM
malware for enterprise-like networks. Distinct from all pre-
vious defense schemes, HoneyIM introduces decoy users
for IM malware detection. It exploits the basic spreading
characteristics of IM malware and guarantees almost zero
false positive. With accurate detection, the suppression of
HoneyIM achieves instant network-wide blocking. More-
over, HoneyIM notifies network administrators of the in-
fected machines and the infection features of IM malware in
real-time. The generic design of HoneyIM enables its flex-
ible realization on a network that uses either enterprise IM
services or public IM services. We have built a prototype of
HoneyIM that works with public IM services using open-
source IM client Pidgin and client honeypot Capture.
The simulation studies demonstrate that even with a small
portion of IM users equipped with decoy accounts, Hon-
eyIM can still detect and block IM malware in the early
stage of its spread. The real experiments on the prototype
further demonstrate that HoneyIM is competently capable
of detecting and suppressing the spread of IM malware.

Acknowledgments

We are very grateful to the anonymous reviewers for their
insightful comments. This work was supported by NSF
grants CNS-0627339 and CNS-0627340.

References

[1] Pidgin. http://pidgin.im/, 2007.
[2] T. Bu and D. Towsley. On Distinguishing Between Internet Power Law Topol-

ogy Generators. In Proceedings of the 2002 IEEE INFOCOM, pages 638–647,
New York, NY, June 2002.

[3] A. Gostev. Social engineering: the latest chapter. http://www.
viruslist.com/en/weblog?weblogid=168136245, August 2005.

[4] M. Hicks. Reuters suspends im service due to kelvir worm. http://www.
eweek.com/article2/0,1759,1786151,00.asp, Apri 2005.

[5] N. Hindocha and E. Chien. Malicious Threats and Vulnerabilities in Instant
Messaging. http://www.symantec.com/avcenter/reference/
malicious.threats.instant.me%ssaging.pdf, 2003.

[6] IBM. Lotus Sametime. http://www-142.ibm.com/software/
sw-lotus/sametime.

[7] Kaspersky. IM-Worm.Win32.Bropia.aj. http://www.viruslist.com/
en/viruses/encyclopedia?virusid=72841.

[8] Kaspersky. IM-Worm.Win32.Opanki.d. http://www.viruslist.com/
en/viruses/encyclopedia?virusid=84950.

[9] N. Leavitt. Instant messaging: A new target for hackers. Computer, 38(7):20–
23, July 2005.

[10] Z. Liu and D. Lee. Coping with instant messaging worms - statistical mod-
eling and analysis. In Proceedings of the 15th IEEE Workshop on Local and
Metropolitan Area Networks, Princeton, NJ, June 2007.

[11] Z. Liu, G. Shu, N. Li, , and D. Lee. Defending against instant messaging
worms. In Proceedings of IEEE GLOBECOM 2006, pages 1–6, San Francisco,
CA, Nov. 2006.

[12] M. Mannan and P. C. van Oorschot. Secure Public Instant Messaging: A Sur-
vey. In Proceedings of the 2nd Annual Conference on Privacy, Security, and
Trust, pages 69–77, Fredericton, NB, Canada, 2004.

[13] M. Mannan and P. C. van Oorschot. On Instant Messaging Worms, Analysis
and Countermeasures. In Proceedings of WORM 2005, pages 2–11, Fairfax,
VA, Nov. 2005.

[14] Microsoft. Office Live Communications Server. http://www.
microsoft.com/office/livecomm/prodinfo/default.mspx.

[15] C. D. Morse and H. Wang. The Structure of An Instant Messenger Network
and Its Vulnerability to Malicious Codes. In Proceedings of ACM SIGCOMM
2005 Poster Session, Philadelphia, PA, Aug. 2005.

[16] Netfilter. iptables project. http://www.netfilter.org/projects/
iptables/.

[17] J. Newsome and D. Song. Dynamic taint analysis for automatic detection, anal-
ysis, and signature generation of exploits on commodity software. In Proceed-
ings of the 12th NDSS, San Diego, CA, Feb. 2005.

[18] Norman. Norman sandbox whitepaper. http://download.norman.no/
whitepapers/whitepaper_Norman_SandBox.pdf.

[19] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for fingerprint-
ing zeroday attacks. In Proceedings of the EUROSYS 2006, Leuven, Belgium,
April 2006.

[20] C. Raiu. The IM worms armada. http://www.viruslist.com/en/
weblog?weblogid=203678309, October 2006.

[21] R. Schouwenberg. Kelvir changes its approach. http://www.
viruslist.com/en/weblog?weblogid=162243612, April 2005.

[22] R. Schouwenberg. Do you like photos? http://www.viruslist.com/
en/weblog?weblogid=199354341, Sept. 2006.

[23] R. Schouwenberg. MSN filter bypassing - part 2. http://www.
viruslist.com/en/weblog?weblogid=199850358, Sept. 2006.

[24] R. D. Smith. Instant Messaging as a Scale-Free Network. http://arxiv.
org/abs/cond-mat/0206378v2, 2002.

[25] Sophos. Troj/Kelvir-M. http://www.sophos.com/virusinfo/
analyses/trojkelvirm.html.

[26] Sophos. W32/Jitux-A. http://www.sophos.com/virusinfo/
analyses/w32jituxa.html.

[27] Sophos. W32/Kelvir-F. http://www.sophos.com/virusinfo/
analyses/w32kelvirf.html.

[28] Sophos. W32/Kelvir-Q. http://www.sophos.com/virusinfo/
analyses/w32kelvirq.html.

[29] R. Steenson and C. Seifert. Capture: A high interaction client honeypot. http:
//www.nz-honeynet.org/capture.html.

[30] The Honeynet Project. Know Your Enemy: Learning about Security Threats
(2nd Edition). Addison-Wesley Professional, May 2004.

[31] A. J. Trivedi, P. Q. Judge, and S. Krasser. Analyzing Network and Content
Characteristics of Spim Using Honeypots. In Proceedings of the 3rd USENIX
SRUTI, Santa Clara, CA, June 2007.

[32] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King. Automated web patrol with strider honeymonkeys: Finding web sites
that exploit browser vulnerabilities. In Proceedings of the 13th NDSS, San
Diego, CA, Feb. 2006.

[33] M. M. Williamson, A. Parry, and A. Byde. Virus throttling for instant messag-
ing. Technical report, HP Lab Bristol, May 2004.

[34] Z. Xiao, L. Guo, and J. Tracey. Understanding Instant Messaging Traffic Char-
acteristics. In Proceedings of the 27th ICDCS, Toronto, Canada, June 2007.

[35] C. C. Zou, D. Towsley, and W. Gong. Modeling and Simulation Study of the
Propagation and Defense of Internet Email Worm. IEEE Transactions on De-
pendable and Secure Computing, 4(2):105–118, April-June 2007.

